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Abstract is always projected from the viewpoint of the local user as

if the he is looking through a window into the remote scene.

In telepresence applications each user is immersed in a
rendered 3D-world composed from representations trans-
mitted from remote sites. The challenge is to compute dense
range data at high frame rates, since participants cannot
easily communicate if the processing cycle or network la-
tencies are long. Moreover, errors in new stereoscopic
views of the remote 3D-world should be hardly perceptible.
To achieve the required speed and accuracy, we use trinocu-
lar stereo, a matching algorithm based on the sum of modi-
fied normalized cross-correlations, and subpixel disparity
interpolation. To increase speed we use Intel IPL func-
tions in the pre-processing steps of background subtraction
and image rectification as well as a four-processor paral-
lelization. To evaluate our system we have developed a test-
bed which provides a set of registered dense “ground-truth”
laser data and image data from multiple views.

Figure 1. A local user on the left shares the
same environment with a remote user on the
right. A 3D description of the remote envi-
ronment is projected stereoscopically on the
screen from the viewpoint of the local user.

1 Introduction

Th f today’ | d hi First attempts to realize immersive tele-presence in-
€ power ottoday's general purpose and graphics pro-,,;aq sjave stereo cameras that moved according to the

cessors and the high bandwidth of the recent Internet genery .| master's head and obtained a stereo-pair from the cor-
ations provide the necessary infrastructure for tele—presence;ect viewpoint. Thisview-dependensolution is impossi-
systems. In this paper we describe the computer vision Payje in a multi-user networked environment subject to laten-
of the realization of a new medium called tele-immersion. cies. In this paper, we addregisw-independemeconstruc-
Tele-lmmersuo_n enables users in phys_lcally remote SPaCeS;5 from stereo in the context of tele-presence as described
to collaborate in a shared space that mixes the local with theabove Having acquired a scene snapshot at a remote site
remote rgalltles [9, _21]._An exqmple of a tele-presence SYS"\we transmit it represented with respect to a world coordi-
tem [15] illustrated in Fig. 1 brlngs_two users fro.m remote ote system. Displaying the 3D scene snapshot from a new
places to thg same” table. A real-t!me m“'t'P'e view stereo point of view involves only primitive transformations hard-
reconstruction of a remote person is transmitted to the IocaIWired in every graphics processor. In addition to real time
S'te.’ C?rgb'r.'tid ){N'th a sto_red o_ff-htne 33_—I:)ackground and response, the user should not experience depth distortion
Iorqje%el with S e:jeozcg%clzirm%ctorsi( (_al_#ser wetars POy outliers through her polarized stereo glasses. The basic
arizedglassesanda - ead-tracker. Theremo escenﬁuestion is how to achieve a perceptually best reconstruc-

“This work has been supported by NSF 110083209, ARO/MURI 1O IN real-time. . .
DAAHO04-96-1-0007, NSF CDS-97-03220, DARPA-ITO-DABT63-99-1- The algorithm we propose here is based on the maxi-

0017, Penn Research Foundation, and Advanced Network and Services. mization of a computationally expensive correlation mea-




sure summed over the centre-right and the centre-left recti-
fied pairs. For the sake of speed, no ordering constraint is
considered and there is no special handling of occlusions or
specularities. Integer disparities are interpolated to obtain a
subpixel estimate. A median filtering of the disparity map
eliminates most of the outliers. Disparities can be filtered
subject to the correlation value (goodness of fit) or the im-
age gradient (matching feasibility). Two trinocular camera Figure 2. Camera configuration, user view.
configurations are supported: an inline non-parallel triple
and an L-shaped triple.

The second contribution of this paper is the evaluation
of our results. The performance metrics were first intro-
duced in [16]. Here, we present results on a new data-set
of trinocular imagery and registered laser range data. Two
metrics are introduced for evaluation: The first metric is
stll_l the classical \_/|ew-|ndepen_dent _World-cent_red neare_stpre dict the reference appearance.
neighbour depth difference, which might seem irrelevant in

the sense of image based rendering, but will still affect per- int:(;réi:eeé(ttﬁleoigtsig2%2?;?2;5%;%'“2 e;iil. tLleOJ/ngvr:g
formance of tele-collaboration systems where users inter- Y. Again,

act with virtual 3D-objects whose visibility and collisions C.hECkEd for consistency are from the set _use_d for computa-
: o : ._tion and they can definitely not cover the viewing volume of
with the “real” scene must be monitored. The second metric . . ; .

. . . _auser in a tele-presence environment. However, like [24] it
refers to novel views but is related to the fact that rendering is a truthful measure if we do not have access to anv around-
in our system is stereoscopic. Even if the depth errors aretruth Y9
along the viewing rays the user will still perceive the depth '
error with her polarized glasses.

In the next section we review the related work. Then 3 System’s Overview and Algorithm
we present a system overview and finally we describe the
performance evaluation.

of how it could be used in telepresence beyond the off-line
reconstruction of static structures.

The closest evaluation approach is by Szeliskiin [24, 25]
and is based on the discrepancy in predicted intensities.
This evaluation involves mainly motion sequences where
the novel view is a real image. In our case the novel views
are arbitrary and for this reason we need the ground truth to

For depth reconstruction, a cluster of 5 firewire cameras
(Fig. 2) are arranged on an arc Hi° separation to ‘sur-
2 Related Work round’ the user and prevent any break of presence due to
a hard edge where the reconstruction stops. These cam-
eras are used to calculate trinocular stereo depth maps from
overlapping triples. For example the combined trinocular
reconstruction illustrated in Figure 5, was computed from 3
\ﬁ’iples <C(), Cl, CQ), <Cl, CQ, C3>, and(Cg, Cg, C4>

We will not review the huge number of existing papers
(see the annual bibliographies by Azriel Rosenfeld) on all
aspects of stereo (the reader is referred to a standard revie
[5]). Application of stereo to image based rendering is very Both responsiveness and quality of depth data are critical
well discussed and reviewed in the paper by Narayanan anqOr

Kanade [17]. Stereo approaches may be classified with re- immersive applications. ”.1 order improve the frame rate
i . of our system we have applied a number of techniques to
spect to the matching as well as with respect to the recon-

. : : : : reduce the weight of calculation, particularly in the expen-
struction scheme. Regarding matching we differentiate be- ) . :
. ._ ~ sive correlation matching required to generate dense depth
tween sparse feature based reconstructions (see treatise N bs. The simplest technigue for the developer of course
[6]) and dense depth reconstructions [19, 17]. Approaches. pS. b q b !

such as [3, 26] address the probabilistic nature of matchingIS to purchase more and faster computers. ‘We have built
: . : ; our system on 5 quad PIIl 550 MHz servers (one for each
with particular emphasis on the occlusion problem. Area-

) reconstructed view) and parallelized our code accordingly.
based approaches [12] are based on correlation and empha- . .2
One of the servers acts as a trigger server for the firewire

size the real-time responsiveness as we do. An approach e,
with emphasis on virtualized reality is [17]. This system acquisition. When all of the reconstructors are ready for

captures the action of a person from a dome of 51 cameras?he next frame the trigger server triggers all of the cam-

Surround camera clusters are also very suitable for voxel—(lara"3 smultar:jeto usly. 'Ifach(;:ompyter ?rr]ab_s the image dfrgrg
based techniques like space-carving [8, 22, 13, 4, 23]. The camera and tranSmits and receves the images needed by

processing is off-line and in this sense there is no indication Its ne|ghboyr_s anq itself. Within each quad machine the im-
ages are divided into 4 equal bands and each processor is

LUnfortunately, no n-view-datasets (> 2) were in the workshop site deV(_)Fed to a particular band. The thread for eth processor
and our data-set was ready only by the deadline date rectifies, background subtracts, matches, median filters the




disparities and reconstructs points in its band of the image.images so that their epipolar lines lie along the horizontal
When all processors have completed processing the texturémage rows so that corresponding points lie on the same im-
and depth map are transmitted via TCP/IP to a remote ren-age lines, thus simplifying the search for correspondences.
derer. This data is encoded as 3-(32210) unsigned char The modified normalized cross-correlation (MNCC) cor-
image planes (RGB) of texture, plus one unsigned short im-respondence metric is:
age plane wherg/ z values have been scaled into unsigned
short, and background and unmatched foreground pixels are
flagged. The total is about 3 Mbits per view per frame.
. Our expectation fof tele-immersion |s_that tth' workspace wherel;, andig are the left and right rectified images over
will contain a person in the foreground interacting with re- : .
. . . the selected correlation windows.
mote users, and a background scene which will remain more . . .
. . : For each pixelu, v) in the left image, MNCC produces
or less constant for the duration of a session. To obtain the ) . . X
. . S . a correlation profile:(u, v, d) where disparityl ranges over
speed and quality of depth points our application requires, . .
. acceptable integer values. Selected matches are maxima
we reconstruct the background scene in advance of the ses- "~ . ) : . . , .
. o . . In this profile, which satisfy various ‘peak’ characteristics.
sion and transmit it once to the remote sites. While the user - . S . :
. . . Parabola fitting on the correlation profile is used to identify
moves in the foreground during a session, we need a methoq . . . .
) he subpixel peak location and calculate the subpixel dispar-
to segment out the static parts of the scene. We have chosen)

to implement a background subtraction method similar to Ity adjust.ment. L .
i The trifocal constraint is a well known technique to re-
that proposed by Martins et al. [11].

fine or verify correspondences and improve the quality of
stereo range data. It is based on the fact that for a hypoth-
esized matchu, v, d] in a pair of images, there is a unique
location we can predict in the third camera image where we
expect to find evidence of the same world point [5]. A hy-
pothesis is correct if the epipolar lines for the original point
[u, v] and the hypothesized mat@h— d, v], intersect in the
third camera image. The most common scheme for exploit-
ing this constraint is to arrange the camera triple in a right
angle (or L-shape), allowing matching along the rows and
columns of the reference image [18, 1, 7].

Our initial telecubicle configuration, illustrated in Fig-
ure 2, placed cameras on an arc surrounding the user at
the same level. This does not allow us to arrange or rec-

A sequence ofV (2 or more) background imagés are tify triples of camera image planes such that they are copla-
acquired in advance of each session. From this set we com¥nar, and therefore it is more expensive for us to exploit the
pute a pixelwise average background imate- 1 >°, B;. trinocular constraint.

We then compute the average pixelwise difference between Following Okutomi and Kanade’s observation [20], we
BandB;, D = % ZZ_(E - B)). optimize over the sum of correlation values with respect to

During a tele-immersion session each primary image the true depth value rather than disparity. Essentially we
is subtracted from the static mean backgrouipd= B — I, treat the camera tripléL, C, R) as two independent stereo
a binary image is formed via the comparisbn = Ip > pairs(L, Cr) and(Cr, R).

T x D whereT is a configurable threshold (generally we ~ When revising our system design to parallelize and im-
useT = 7). These thresholded difference images are quite prove its speed, we discovered that by using foreground seg-
noisy. A series of erosions and dilations is performedgn ~ mentation we need consider only one half to one third of
in order to sharpen the background mask. The morpholog-the pixels in the reference imagé. This makes it feasi-

ical operations are implemented by IPL separable convolu-ble to calculate the entire correlation profile for each pixel
tions. Typical results are illustrated in Figure 3. one at a time. To calculate the sum of correlation scores

In our efforts to maintain speed and quality in dense we precompute a lookup table of the locatien, , vc, )
stereo depth maps we have examined a number of correin C, corresponding the current pixel @iz (based on the
lation correspondence techniques. We have concluded thatight-left rectification relationship). We also compute a lin-
the depth quality of trinocular Modified Normalized Cross ear approximation for the disparity, = M (uc,vey,) X
Correlation (MNCC) is necessary to our application. dr+b(ucy,,vey) atfue, , vo, ] which arises from the same

The reconstruction algorithm begins by grabbing images depth point aguc,,, vc,,,dr]. As we calculate the corre-
from 3 strongly calibrated cameras. The system rectifies thelation scorecorrg(ucy,, voy,dr), We look up the corre-

2 cov(Iy, IR)
cormynccl e, Ir) = o2(I) + o2(Ig)’ 1)

Figure 3. Background image, foreground im-
age and subtracted result.



Figure 4. Five camera views.

sponding[uc, ,vc, | and computa/iz, then calculate the

correlation scor@orrL(ucL,ch,@). We select the dis-
parity dr which optimizes

corrr = corrp (uc,, , Ve, , dr) + COrg(ucy, von, dr)

The method can be summarized as follows:

Pixelwise Trinocular Stereo

Step 1: Precompute lookup table faf';, locations
corresponding t@'r locations, andi;, approx-
imation lookup tableg// andb

Step 2: Acquire image triplg L, C, R)
Step 3: Rectify (L, C) and(Cg, R) independently.
Step 4: Calculate foreground mask fary andR
Step 5: For every foreground pixel' g ,qsk (4, v)
Step I: For every disparitylp € D,
If RyasKv + dr,v) € foreground
Step i: computecorrr(ucy,, Vo, dr)
Stepii: lookup|uc, ,ve, ]
Stepiiii: computed;, = M (ucy,,vey) X
dRer(ucR,ch) .
Step iv: computecorry, (uc, ,ve,,dr)
Step v: corrp = corry, 4 Ccorrg
Step vi: If corrp is a peak
Step 1: Fit parabola to find sub-
pixel correlation peak and dis-
parity adjustment,, q;
Step 2: Updatecorryggt = corrr,
dpest= dr + dadj
Step 6: Goto 2

We have implemented an algorithm for L-configurations
to test its properties versus our existing system. We rectify
the triple such that the upper (U) and lower-left (L) images

methods. The immediate advantage is that only 3 rectifica-
tions are required. Further, in the pixelwise approach, there
is no need to lookup the centre-left index. However travers-
ing the left image columnwise is less efficient in terms of
memory access than row traversal. The algorithm otherwise
proceeds as above, computing the maximum sum of MNCC
correlations over the disparity range for each pixel. Again a
linear approximation for the corresponding upper disparity
is calculated, given the lower disparity and the current pixel
location.

An added challenge with our five camera cluster is the
combination of multiple reconstructions into a single ren-
dered view. We currently depend on the accuracy of our
calibration to a common reference frame for all cameras.
Figure 4 shows a set of camera views for a single frame
in the current telecubicle camera cluster. From this im-

Figure 5. Three trinocular reconstructions
combined and rendered, rotated view.

are column aligned and simultaneously the left and right (R) age set 3 reconstructed views are calculated for overlapping
images are row aligned. No explicit relationship is enforced triples. Figure 5 shows a profile rotation of the total set of
between the upper and right images as in [1] because it in-104,350 depth points calculated using trinocular MNCC for
troduces too much distortion for dense correlation stereothe frame in Figure 4.



Laser Data
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Figure 7. Trinocular triple camera views and laser data.

4 Experiments the visible targets if they are too distorted. Each time the
cameras were reconfigured the 3D target was placed in the
workspace and a laser scan performed. Without moving the

True ground truth is almost impossible to obtain, but we ° )
have devised a method to acquire registered dense deptff'9€t @ set of images was captur'ed.. A separate c.a||l.)ra-
tion process was performed for the intrinsics and extrinsics

data of the same scenes we reconstruct by using a Cyber X 1
Ware Laser Scanner (http://cyberware.com/). The experi-Of the cameras only. To register the 3D frames the visi-

mental setup is pictured in Figure 6. The acquired object is P1€ targets were extracted for all camera views. The cor-
responding target points were reconstructed in the stereo

frame from all pairs of cameras. The target points asso-
ciated with each 3D target plane were used to estimate the
equation of the plane in camera spacg;© — dc; = 0.
Similarly a subset of points belonging to each plane was
extracted (by hand) from the scanner data, and the plane
equations estimatedv§; ¥ — dg; = 0). We compose the

matricesNC = (n(;1n(;2n(;3) anst = [n51nggn53).

We can then calculate the laser to camera transformation
Figure 6. Experimental Setup: Buffalo Bill Tsc = [Rsc tsc] by estimating the closest rotation ma-
statue, scanner head and camera cluster trix Rgc satisfyingNe = RscNg. This is given byUvV”T
(left), 3D target for coordinate frame registra- whereU, V' are the left and right singular vector matrices
tion (right). of NCNs‘l. The translation can then be computed =

(ncincancs) H(der — ds1, do2 — dsa, dos — dgs) ™.
The data set acquisition proceeded as follows:

a concrete statue of Buffalo Bill smoking a cigar. Since the
capture process requires a completely static scene through  the camerarig was configured.
one or two image grab cycles and a laser scan (about 1 4 4 sequence of camera calibration images was captured
minute) no live subject was suitable. The Cyberware Head
and Face 3D Color Scanner (Model 3030) has a motorized
scanner head which travels around the subject to be scanned e for each object data set:
in a360° circle. It captures a cylinder of range values about

e the 3D calibration images and laser scan were captured

30 cm in height and 40-50 cm in diameter (sampling pitch — the statue was positioned in the workspace
6 ~1mm,y~ 700 um, z~ 100 um). We have there- — the images were captured
fore been limited to ground truth for the head of the statue — the laser scan was captured.

only, although our camera images have a somewhat larger
field of view. Images were captured using Sony DFW-V500  The registered data used in our experiments is illustrated
Firewire cameras connected to a Matrox Meteor 11/1394 in Figure 7. We computed the disparity maps illustrated in
capture card. Figure 8 using both our inline triple and L-shape trinocular
To achieve registration of the laser and stereo coordinatestereo algorithms. The value of ground truth registered data
frames we developed a 3D target with 3 planar surfaces (il-is that it allows us to identify error sources and compare
lustrated in Figure 6b). Calibration patterns with distinct various instantiations of stereo reconstruction. In this paper
coded targets are attached to each plane. The planes are note examine the errors arising due to occlusions in the scene
orthogonal because our calibration algorithm cannot extractand we compare the L-cluster to the inline cluster.



Figure 9. Reconstruction profiles: The  first image shows a profile for 100% density without points

occluded in the centre and the right original images, the second imagshows a profile for 90% density
without points occluded in the centre and the right original images, the third image shows a profile
for 100% density without half-occluded points, and the fourth image shows a profile for 90% density

without half-occluded points.

when projected are occluded in both centre and right recti-
fied images. By half-occluded points we mean the model
points which when projected are visible only in the centre
image. As we will also observe in later plots, the majority
of the outliers lie in the 10% tail of the density distribution
and therefore the 90%-density profiles are “cleaner”. As
expected, when we do not show the fully occluded points
(1st/2nd images) we obtain reconstructions with more holes
but less outliers.

Fig. 10 shows the difference between an inline and an L-
Figure 8. Disparity maps for inline and L- shaped camera set-up. The L-shaped set-up exhibits more
shape trinocular triples. holes due to the nature of the occlusions in the particular
statue: The probability that a point becomes half-occluded

A somewhat subtle issue in looking at the ground truth When adding a third camera in the vertical direction is
data is how to identify “correspondences” between the laserigher than a when adding a camera in the horizontal di-
and stereo data. One possibility is to associate each recon€ction.
structed point with the nearest laser pointin 3D. This allows
outliers to be associated with depth points that did not gen-
erate them, but all stereo points are accounted for. A second
possibility is to project the laser points into the image and
associate the stereo point arising from a pixel with the near-
est laser point which also projects to the pixel. We illustrate
both approaches in the plots below.

To illustrate the effects of various parameters and thresh-
olds on the performance of algorithms with respect to
ground truth error, we evaluate error at various levels of out-
put density as proposed by Barron and Beauchemin [2]. By
n% disparity density we denote the highest n% of image
points sorted according to the goodness of matching given  Figure 10. The reconstruction profiles for 90%
by the value of the normalized cross-correlation. The de- depth density for an inline(left) and an L-
pendence on the image gradient was studied in [16]. shaped (right) configuration, respectively.

In Fig. 9 we show the reconstruction profiles for densi-
ties of 100% and 90% (1st-3rd and 2nd-4th respectively),
and excluding, for the sake of visualization, fully or half- Figure 11 uses density plots to demonstrate the relevance
occluded points (1st-2nd and 3rd-4th image, respectively).of correlation scores and occluded points in reconstruction
By fully occluded points we mean the model points which quality. We plot the proportion of points included by a cor-




relation threshold against the median distance between cor-
responding laser and stereo points for both the inline and L
configurations. The errors are calculated for the indicated
proportion of points retained by fixing a threshold on the
correlation score (ie. we calculate correlation thresholds
which give us 20%, 30%, 40% etc of the data, then calcu-
late the error metric for points which satisfy the threshold).
Overall the median errors of 2—4mm are reasonable given
the configuration of the rigs and the limits on ground truth
registration. The L-shape reconstruction has consistently, if
slightly higher error, probably because of scene occlusions.
The viewing ray (VR) correspondence method (11 b), gives
higher error measures than Nearest Neighbour (NN) (11 a),
probably because the ground truth registration was calcu-
lated using Euclidean distance.

VR Distance (Half occlusions)

NN Distance (Half occlusions)

Intensity Based Prediction Error

RMS Intensity Error
5 &a 8 bl

e

-2 -15 -1 -05 05 1 15 2

Camera
Figure 12. RMS intensity error forimages from
cameras -2 to 2, warped to the reference im-
age from camera 0, according to the recon-
structed depth data for the inline reconstruc-
tion.

?/\\\,,,Q Step Tri-MNCC

2 Rectify 49

I Background 31
- Matching 350

_—— S — Median Filter 8
% of pom(':.mc\uded K °;°‘"‘S neluded Reconstruct 3

. Total 456 ms

Figure 11. Median of the 3D distance be-
tween corresponding points vs. output den-
sities obtained from descending correlation
thresholds for inline triple and L-shape re-
constructions. a) 3D difference between near-
est neighbours(NN), b) 3D difference between
points along the same viewing ray(VR).

Table 1. Timings for online implementation of
Trinocular MNCC.

VS accuracy required in tele-presence applications. Because
of speed constraints we did not employ any global optimiza-
tion like dynamic programming. To minimize matching
ambiguities we employed three cameras and to maximize
accuracy we used a computationally expensive similarity
In Figure 12 we reproduce Szeliski and Zabih's [25, 24] measure (Modified Normalized Cross-correlation) instead
prediction error metric. Camera views -1, 0 and 1 representof Simp|e measures like SAD or SSD. These results in a
the inline trlple used to reconstruct the depth information. performance of 2-3fps (depending on the number of fore-

We can see that the reference image (0) has essentially zerground points) on a quad-Pentium machine with a median
error. For the non-reference views, the error climbs to about3p error of approximately 3mm.

15 and for two unrelated views we see RMS error of about ) )
28 intensity levels. We have contributed to the evaluation of stereo algo-

Finally in terms of speed our system reconstructs 2-3 "thms by building a unique experimental set-up with fully
frames per second, depending on the contents of the scenfedistered ground-truth laser data and image data, and
and the size of the disparity search range. We run online at?y €xamining two possible 3D distance metrics (Nearest
320x240 pixel image size and 64 disparities. Typical tim- Neighbour and Viewing Ray). We studied the median of

ings for various algorithm stages are indicated in Table 1. €ach error metric vs the depth density based on the match
goodness. Because we know the ground-truth we could also

observe the error behaviour in the non-occluded vs the half-

5 Conclusion i
occluded regions.

In this paper we presented a new rectification and match-  Our future work involves the fusion of several trinocular
ing algorithm for trinocular stereo. The algorithm works views, occlusion handling, the integration of silhouettes and
for both inline non-parallel and L-shaped camera configura- correspondences, and the integration of motion and stereo
tions. The emphasis was on optimizing the balance of speed14].
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