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ABSTRACT
Tele-immersion is a technology that augments your space
with real-time 3D projections of remote spaces thus facili-
tating the interaction of people from different places in vir-
tually the same environment. Tele-immersion combines 3D
scene recovery from computer vision, and rendering and
interaction from computer graphics. We describe the real-
time 3D scene acquisition using a new algorithm for trinoc-
ular stereo. We extend this method in time by combining
motion and stereo in order to increase speed and robustness.

1. INTRODUCTION

In this paper we describe our contribution to the realiza-
tion of a new mixed reality medium called tele-immersion.
Tele-immersion enables users in physically remote spaces
to collaborate in a shared space that mixes the local with the
remote realities. The concept of tele-immersion involves all
visual, aural, and haptic modalities. To date, we have dealt
only with the visual part, and in collaboration with the Uni-
versity of North Carolina (Henry Fuchs and co-workers) and
Advanced Network and Services (Jaron Lanier), we have
accomplished a significant step toward realization of visual
tele-immersion.

Our accomplishment is best illustrated in Fig. 1 taken
during the first full scale demonstration at the University
of North Carolina. A user wears passive polarized glasses
and an optical tracker (Hiball) which captures the head’s
pose. On the two walls two realities, from Philadelphia
and Armonk respectively, are stereoscopically displayed by
polarized pairs of projectors. The static parts of the two
scenes are view-independent 3D descriptions acquired off-
line. The 3D-descriptions of the persons in the fore-ground
are acquired in real-time at the remote locations and trans-
mitted over the network. The projections on the walls are
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Fig. 1. A user in Chapel Hill wearing polarized glasses
and an optical tracker communicates with two remote users
from Philadelphia (left) and Armonk (right). The stereo-
scopically displayed remote 3D-scenes are composed from
incoming streams of textured 3D data depicting the users,
and off-line acquired static backgrounds.

dynamically rendered according to the local user’s view-
point, and updated by real-time real-world reconstructions
to increase the feeling of sharing the same conference table.

There are two alternative approaches in remote immer-
sion technologies we did not follow. The first involves video-
conferencing in the large: surround projection of 2D pano-
ramic images. This requires only a correct alignment of sev-
eral views, but lacks the sense of depth and practically for-
bids any 3D-interaction with virtual/real objects. The sec-
ond technology is closer to ours [1] but uses 3D-graphical
descriptions of the remote participants (avatars). In the sys-
tem description which follows, the reader will realize that
such a technique could be merged with our methods in the
future if we extract models based on the current raw depth
points. This is just another view of the model-free vs model-
based extrema in the 3D-descriptions of scenes or the bottom-
up vs top-down controversy. Assuming that we have to deal
with persons, highly detailed human models might be ap-
plied or extracted in the future. However, the state of avatar-
based tele-collaboration is still on the level of cartoon-like
representations.

In this paper, we will describe the real-time 3D acqui-



sition of the dynamic parts of a scene which in Fig. 1 are
the persons in the foreground. The approach we chose to
follow is view-independentscene acquisition. Having ac-
quired a 3D scene snapshot at a remote site, we transmit
it represented with respect to a world coordinate system.
Display from a new point of view involves only primitive
transformations hard-wired in every graphics processor.

We will not review the huge number of existing papers
(see the annual bibliographies by Azriel Rosenfeld) on all
aspects of stereo. The closest approach to ours is the vir-
tualized reality system by Narayanan and Kanade [2]. Al-
though terms like virtualized reality and augmented reality
are used in many reconstruction papers, it should be em-
phasized that we address areactivetelepresence problem,
whereas most image based rendering approaches try to re-
place a static graphical model with a real oneoff-line. Stereo
approaches may be classified with respect to the matching
as well as with respect to the reconstruction scheme. Re-
garding matching we differentiate between sparse feature
based reconstructions (see treatise in [3]) and dense depth
reconstructions [4, 2, 5].

2. SYSTEM OVERVIEW AND ALGORITHMS

A tele-immersion telecubicle is designed both to acquire a
3D model of the local user and environment and to provide
an immersive experience for the local user. The acquired
model is used for rendering and interaction at remote sites.
Immersive display is achieved via head tracking and stereo-
scopic projections on large scale viewscreens. The current
set-up is one-way and the acquisition site consists only of
a camera cluster which provides a set of trinocular views.
Both responsiveness and quality of depth data are critical
for immersive applications. Our system uses rectification,
background subtraction, correlation matching and median
filtering to balance quality and speed in our reconstructions.

2.1. Background Subtraction

Our expectation for tele-immersion is that the workspace
will contain a person in the foreground interacting with re-
mote users, and a background scene which will remain more
or less constant for the duration of a session. Under this as-
sumption we reconstruct the background scene in advance
of the session and transmit it once to the remote sites. Dur-
ing a session, we need a method to segment out the static
parts of the scene. We have chosen to implement the back-
ground subtraction method proposed by Martins et al. [6].
To further optimize calculation we compute the foreground
mask for both images of the reference pair. In this way fore-
ground pixels are only matched against foreground pixels,
not background pixels.

A sequence ofN (2 or more) background imagesBi

are acquired in advance of each session. From this set we
compute a pixelwise average background image, we then
compute the average pixelwise difference between the mean
image and each background imageD (a kind of standard de-
viation). During a tele-immersion session each primary im-
ageI is subtracted from the static mean backgroundID =
B � I , a binary image is formed via the comparisonIB =
ID > T � D whereT is a configurable threshold (gener-
ally we useT = 7). A series of erosions and dilations are
performed onIB in order to sharpen the background mask.

2.2. Matching

The reconstruction algorithm begins by grabbing images
from 2 or 3 strongly calibrated cameras. The system rec-
tifies the images so that their epipolar lines lie along the
horizontal image rows so that corresponding points lie on
the same image lines, thus simplifying the search for corre-
spondences.

In our efforts to maintain speed and quality in dense
stereo depth maps we have examined a number of corre-
lation correspondence techniques. In particular we have fo-
cussed on binocular and trinocular Sum of Absolute Differ-
ences (SAD), and binocular and trinocular Modified Nor-
malized Cross Correlation (MNCC). In general the SAD
calculation is: corrSAD(IL; IR) =

P
W jIL � IRj for a

windowW in rectified imagesIL andIR. The disparityd
determines the relative window position in the right and left
images. A better correspondence metric is modified nor-
malized cross-correlation (MNCC),corrMNCC(IL; IR) =
2 cov(IL;IR)

�2(IL) + �2(IR)
.

For each pixel(u; v) in the reference image, the met-
rics above produce a correlation profilec(u; v; d) where dis-
parity d ranges over acceptable integer values. Selected
matches are maxima (for MNCC) or minima (for SAD) in
this profile. The trifocal constraint is a well known tech-
nique to refine or verify correspondences and improve the
quality of stereo range data. It is based on the fact that for
a hypothesized match[u; v; d] in a pair of images, there is
a unique location we can predict in the third camera image
where we expect to find evidence of the same world point.
Following Okutomi and Kanade’s observation [4], we op-
timize over the sum of correlation values with respect to
the true depth value rather than disparity. Essentially we
treat the camera triplehL;C;Ri as two independent stereo
pairshL;CLi andhCR; Ri, using thehL;CLi pair to verify
matches in the right-reference pairhCR; Ri.

To calculate the sum of correlation scores we precom-
pute a lookup table of the location inCL corresponding the
current pixel inCR (based on the right-left rectification re-
lationship). We also compute a linear approximation for
the disparitycdL = M(uCR ; vCR) � dR + b(uCR ; vCR)
at [uCL ; vCL ] which arises from the same depth point as



Step SAD MNCC Tri-SAD Tri-MNCC
Capture 89 83 69 94
Rectify 25 25 48 48
Background 32 32 32 32
Matching 93 160 400 455
Median Filt. 9 9 9 9
Reconstruct 5 4 5 4
Transmit 7 7 7 7
Total 260 ms 320 ms 570 ms 650 ms
fps 3.8 3.1 1.75 1.5

Table 1. Timings for online implementations of correlation
methods for 320x240 images, 60 disparities.

[uCR ; vCR ; dR]. As we calculate the correlation scorecorrR(
uCR ; vCR ; dR), we look up the corresponding[uCL ; vCL ]
and computecdL, then calculate the correlation scorecorrL(
uCL ; vCL ;

cdL). We select the disparitydR which optimizes
corrT = corrL( uCL ;vCL ;cdL)+corrR(uCR ; vCR ; dR): The
method can be summarized as follows:

Pixelwise Trinocular Stereo
Step 1: Precompute lookup table forCL locations correspond-

ing toCR locations, and approximation lookup tablesM
andb

Step 2: Acquire image triplehL;C;Ri
Step 3: Rectify hL;CLi andhCR; Ri independently.
Step 4: Calculate foreground mask forCR andR
Step 5: for every foreground pixel

Step I: corrbest= INVALID,
dbest= INVALID

Step II: for every disparitydR 2 Dr

Step i: computecorrR(uCR ; vCR ; dR)
Step ii: lookup [uCL ; vCL ]
Step iii: computecdL = M(uCR ; vCR) � dR +

b(uCR ; vCR)
Step iv: computecorrL(uCL ; vCL ;cdL)
Step v: corrT = corrL + corrR
Step vi: if corrT better thancorrbest

corrbest= corrT
dbest= dR

Step 6: Goto 2
Step 7: Median filter disparity map

3. PERFORMANCE AND RESULTS

As one would expect, methods exploiting SAD were faster
than MNCC based implementations. Timings for various
methods all implemented on a quad-Pentium-III-550MHz
are presented in Table 1. Systems such as the Digiclops by
Point Grey Research (www.ptgrey.com) and the Small Vi-
sion System (www.videredesign.com) also offer real-time
stereo performance using SAD. Our timings reflect dispar-
ity ranges about twice as long as those published for these
systems, but we distribute processing on a 4 processor sys-
tem. We have not had the opportunity to directly compare
performance and image quality,

For tele-immersion we are further interested in the qual-
ity and density of depth points. Although the computa-

                                    

Fig. 2. Trinocular triple.                        

a. b.

Fig. 3. Rendered reconstructions, profile view. (a) Binocu-
lar MNCC; (b) trinocular MNCC.

tion times were greater, the high quality of trinocular depth
maps makes them a desirable alternative to faster but nois-
ier SAD range images. Figure 2 illustrates a trinocular triple
and Figure 3 (a) and (b) the resulting rendered depth maps
for binocular MNCC (right pair) and trinocular MNCC re-
spectively. The improvement in depth map from use of
the trinocular constraint is evident in the reduction of noise
speckle and refinement in profile detail.

4. MOTION-BASED ENHANCEMENTS

The dominant cost in stereo reconstruction is that of the cor-
relation match itself, in general proportional toN �M �D

for images of sizeN�M andD tested disparity values. By
using background subtraction in our application we have re-
duced the number of pixels considered by the search to one
half to one third of the totalN�M . To reduce the matching
costs further, we must reduceD, the number of disparities
considered for each of the remaining pixels. A further ob-
servation regarding online stereo reconstruction is that for
high frame rates there will be considerable similarity be-
tween successive images. We can exploit this temporal co-
herence in order to further optimize our online calculations.
We propose a simple segmentation of the image, based on
finding regions of the disparity image which contain only a
narrow range of disparity values. Using a per region optical
flow calculation we can estimate the location of the region
in future frames, and bound its disparity search rangeDi.

Our method for integrating disparity segmentation and
optical flow can be summarized in the following steps, il-
lustrated in Figure 4:

Step 1: Bootstrap by calculating full disparity map for
the first stereo pair of sequence (Fig. 4(a-b)).

Step 2: Use flood-fill to segment the disparity map into
rectangular windows containing a narrow range
of disparities (Fig. 4(c)).
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Fig. 4. Frame 25 (left) of stereo sequence (a), computed full
disparity image (b), 44 extracted regions (c), flow per region
(d), frame 38 (e), region based diaprity (f).

Step 3: Calculate optical flow per window for left and
right smoothed, rectified image sequences of in-
tervening frames (Fig. 4(d)).

Step 4: Adjust disparity window positions, and dispar-
ity ranges according to estimated flow.

Step 5: Search windows for correspondence using as-
signed disparity range, selecting ’best’ correla-
tion value over all windows and disparities asso-
ciated with each pixel location (Fig. 4(e-f)).

Step 6: Goto Step 2.

Most time-critical systems using correlation matching
will benefit from this approach as long as the expense of
propagating the windows via optical flow calculations is less
than the resulting savings over the full image/full disparity
match calculation.

Restricting the change in disparity per window essen-
tially divides the underlying surfaces into patches where
depth is nearly constant. We use a threshold on the maxi-
mum absolute difference in disparity as the constraint defin-
ing regions, and we allow regions to overlap. Only rectan-
gular image windows are maintained, rather than a convex
hull or more complicated structure, because it is generally
faster to apply operations to a larger rectangular window
than to manage a more complicated region structure. Re-
gions are extracted using flood fill or seed fill, a simple poly-
gon filling algorithm from computer graphics.

Optical flow calculations approximate the motion field
of objects moving relative to the cameras, based on the fa-
miliar image brightness constancy equation:Ixvx+ Iyvy +
It = 0, whereI is the image brightness andIx, Iy andIt

are the partial derivatives ofI with respect tox, y andt, and
v = [vx; vy] is the image velocity. We use a standard local
weighted least square algorithm [7] to calculate values forv

based on minimizinge =
P

Wi
(Ixvx+ Iyvy + It)

2; for the
pixels in the current windowWi. For each disparity window
we assume the motion field is constant across the regionWi,
and calculate a single value for the centre pixel. Given im-
age regions, we must now adjust their location according to
our estimated flow for the right and left images. Basically
we force the window to expand rather than actually mov-
ing it. Since the windows have moved as a consequence
of objects moving in depth, we must also adjust the dispar-
ity rangeD(t) = [dmin; dmax] for each window using the
estimated flow velocities.

In the case of our disparity windows, each window can
be of arbitrary size, but will have relatively few disparities to
check. Because our images are rectified to align the epipo-
lar lines with the scanlines, the windows will have the same
y coordinates in the right and left images. Given the dispar-
ity range we can extract the desired window from the right
image givenxr = xl � d.

The complexity of stereo correspondence on our pro-
posed window system is about half that for full images,
depending on the number of frames in time used to esti-
mate optical flow. We have demonstrated experimentally
that our window-based reconstructions compare favourably
to those generated by correlation over the full image, even
after several frames of propagation via estimated optical
flow. The observed mean differences in computed dispar-
ities were less than 1 pixel and the maximum standard devi-
ation was 4.4 pixels.
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