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Abstract— The paper deals with vision-based localization and
control of leader-follower formations of unicycle robots. Each
robot is equipped with a panoramic camera which only provides
the view-angle to the other robots. As an original contribution,
the localization problem is analytically studied using a new
observability condition valid for general nonlinear systems and
based on the Extended Output Jacobian matrix. The state of the
leader-follower system, estimated via the extended Kalmanfilter,
is used by an input-state feedback control law to stabilize the
formation. Simulations as well as experimental results validate
the theoretical results and show the effectiveness of the proposed
design.

Index Terms— Mobile robots, nonlinear observability, forma-
tion control, panoramic cameras, feedback linearization.

I. I NTRODUCTION

A growing interest on coordination and control of multiple
autonomous agents matured in the last decade [7], [9], [15],
[20]. The formation control problem has been playing an
important role in this research area, giving rise to a rich
literature [1], [22], [23]. Byformation controlwe simply mean
the problem of controlling the relative position and orientation
of robots in a group while allowing the group to move as a
whole. In the leader-follower formation control approach, a
robot, the leader, moves along a predifined trajectory while
the other robots, the followers, are to maintain a desired
distance and orientation to it [5], [8]. Even if leader-follower
architectures are known to have poor disturbance rejection
properties and the over-reliance on a single agent for achieving
a common goal may be undesirable, the leader follower
approach is appreciated for its simplicity and scalability.

An inexpensive and challenging way to approach the forma-
tion control problem is to use exclusively passive vision sen-
sors (off-the-shelf cameras) which provide only the projection
(or view-angle) of the scene points, but not the distance.

Obviously, formation control can be achieved only if a
localization problemhas been solved, i.e. only if an estimate
of the relative distance and orientation of the robots w.r.t. a
common reference frame is available.

The localization problem with vision sensors is intrinsically
nonlinear [4], in fact linearized approximations can be non-
observable while tools from differential nonlinear systems
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theory prove the possibility to reconstruct the state. Sucha
problem is usually referred to as theobservability of perspec-
tive dynamical systems[12], [13] and can be embedded in
the more general problem of current state estimation using
input-output measurements. In [6], the state estimation for a
single robot is approached using a Luenberger-like nonlinear
observer, based on the projection of stationary landmarks in
the environment. In [24], the localization problem for a team
of nonholonomic mobile robots with calibrated vision sensors
is addressed using motion segmentation techniques based on
optical-flow.

This paper deals with vision-based localization and control
of leader-follower formations of unicycle robots. Our workhas
been particularly inspired by [8], in which the authors present
an interesting centralized framework for vision-based leader-
follower formation control. In [8] the distance between the
robots is assumed to be known and provided by the on-board
fully calibrated panoramic cameras. The height of the cameras
to the floor is supposed to be a priori known as well. These
strong assumptions restrict the practical applicability of the
control strategy in [8] to near robots.

As an original contribution, in this work we assume that
each panoramic cameraonly provides the view-angle to the
other robots, but not the distance, that is estimated by a
nonlinear observer (the extended Kalman filter, EKF). The
observability of the leader-follower system has beenanalyti-
cally studied using a new sufficient condition valid for generic
nonlinear systems and based on the Extended Output Jaco-
bian matrix. The observability condition for our system has
an attractive geometrical interpretation, that allows to better
understand how both the observer and the input-state feedback
control law affect the formation localizabiilty. Simulation and
experimental results are presented to validate the theoretical
contribution and to show the effectiveness of the proposed
design.

The rest of the paper is organized as follows. In Sect. II,
the leader-follower kinematic model and the assumptions
on sensing and communication are presented. In Sect. III,
we introduce the new observability condition based on the
Extended Output Jacobian matrix. In Sect. IV, the input-state
feedback control law is described. Simulations as well as
experimental results are presented and discussed in Sect. V
and VI. In Sect. VII the main contributions of the paper are
summarized and future research directions are hightlighted.
The Appendix recalls some basic facts on the consistency of
a state estimator.
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II. L EADER-FOLLOWER SETUP

A. Kinematic model

Let us consider the leader-follower setup considered in
Fig. 1. The kinematics of each robot can be abstracted as a
unicycle model,

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω, (1)

where (x, y) represents the position of each robot andθ its
orientation with respect to the world frame〈W 〉. The leader
〈L〉 has a configuration vector[xL yL θL]T while thefollower
〈F 〉 has a vector[xF yF θF ]T . The control inputs of the leader
and the follower are the linear and angular velocities[vL ωL]T

and [vF ωF ]T , respectively.
The whole leader-follower system can be modelled using

polar coordinates, whereρ is the distance from the center of
the leader to a markerP placed at a known distanced on the
follower (see Fig. 1). The variableψ is the view-angle from
they-axis of the leader to the markerP , while β is the relative
orientation of the robots, i.e.,β , θL − θF .

In the spirit of [8], [17], we introduce the following kine-
matic model:

Proposition 1 (Leader – follower kinematic model):With
reference to Fig. 1, the leader – follower kinematic model
can be written as follows:

ṡ = G(s)u, (2)

x

y
P

ρ

〈W 〉

〈F 〉

〈L〉

θF

θL

d

η

ξ

ψ

β

xF

xL

Fig. 1. Leader-follower setup in polar coordinates representation.

C

P〈F 〉

〈L〉

xL

ξψ

Fig. 2. View-angles computation (on the leader). HSV color blob detection
is used to determine the two anglesξ andψ from the leader to the follower’s
center and marker, respectively.

〈F 〉

〈L〉
„

vF

ωF

«

η

State estimation
Control computation

Fig. 3. The communication network and the information flow between the
leader and the follower.

wheres , [ρ ψ β]
T , u , [vF ωF vL ωL ]T and

G(s) =




cos γ d sin γ − cosψ 0
− sin γ
ρ

d cos γ
ρ

sinψ
ρ

−1

0 −1 0 1





whereγ , β + ψ.
The kinematic model in the case ofq followers can be

obtained by simply extending (2). In this case the input vector
is u , [vF1

, ωF1
, ..., vFq

, ωFq
, vL, ωL]T and the state vector is

s , [sT1 ... sTq ]T ∈ IR3q (see [17] for more details).

B. Sensing

Each robot is equipped only with an omnidirectional cam-
era [3]. This sensor is particularly suited for mobile robot
navigation, due to its field of view that is wider than that of
a standard pinhole camera (Fig. 2). According to the setup in
Fig. 1, 〈L〉 can measure the view-anglesξ andψ given by the
observation of the follower’s centroid and the colored marker
P , respectively. Analogously, the camera on〈F 〉 can measure
the view-angleη to the leader.

The measurement of view-angles is obtained on each robot
by means of an automatic real-time color detection and
tracking algorithm [10]. Since in our setup each robot has
been characterized by a specific color, leader-follower sensing
association is fully automatic. More implementation details
will be discussed in Sect.VI.

C. Communication

The state estimation process and the control computation
are centralized on the leader, which transmits to the follower
the control velocities[vF ωF ]T needed to drive the forma-
tion (Fig. 3). Due to the above assumption, the inter-robot
communication is made fast because the follower will only
need to transmit its view-angleη to the leader. We assume no
communication delays in the view-angle transmission. From
Fig. 1 is evident thatβ can be computed as follows:

β = −ξ + η + π. (3)

To simplify the discussion, we will henceforth referonly to
β, implicitly assuming the transmission ofη. To summarize,



IEEE TRANSACTIONS ON ROBOTICS, SUBMITTED FOR PUBLICATION AS A SHORT PAPER, APRIL 22, 2008 3

we will assume that the leader can measure a two dimensional
output vector,

y , [y1 y2]
T = [ψ β]T . (4)

As a concluding remark we emphasize here two original
contributions which differentiate this work from [8]. First of
all, we do not assume a full knowledge of camera calibration
parameters. In fact, only the image centerC is needed to
compute the view-angles and, in many practical cases,C
simply coincides with the central black hole in panoramic
images (Fig. 2). Second, and most important, we assume that
the leader-follower relative distanceρ in (2) is unknown. The
problem of range estimation will be studied in detail in the
next section.

III. V ISION-BASED OBSERVABILITY OF

LEADER-FOLLOWER FORMATIONS

A. Observability of nonlinear systems

This section reviews some basic facts about the observability
of nonlinear systems [13], [14] and presents a novel and
general condition (Prop. 3) that will be used to study the
observability of vision-based leader-follower formations.

Consider a generic nonlinear systemΣN of the form

ΣN :

{
ṡ(t) = f(s(t),u(t)) , s(0) ≡ s0

y(t) = h(s(t)) = [h1 h2 ... hm]T
(5)

wheres(t) = [s1(t) s2(t) ... sn(t)]T ∈ S is the state,y(t) ∈ Y
the observation vector andu(t) ∈ U the input vector.S, Y
and U are differential manifolds of dimensionn, m and p,
respectively.

The problem ofobservabilityfor ΣN can be roughly viewed
as the injectivity of the input-output mapRΣN

: S × U 7→ Y
with respect to the initial conditions.

Two statess1, s2 (s1 6= s2) are saidindistinguishable[19]
and denoted bys1Is2, if ys1,u(t) = ys2,u(t), i.e. there exists
an inputu(t) and a timet for which, starting from different
s1 ands2, ΣN exhibits the same outputs.

The concepts of observability and indistinguishability are
tightly related, as shown in the following definition [19].

Definition 1 (Observability):Given two statess1, s2 ∈ S,
the systemΣN is observable, if

s1Is2 ⇒s1=s2.

Given a scalar-valued functionλ(s) : IRn 7→ IR, we define the
gradient operator as follows:

dλ(s) ,
∂λ(s)

∂s
=

[
∂λ(s)

∂s1

∂λ(s)

∂s2
...

∂λ(s)

∂sn

]
.

The Lie derivativeof a scalar-valued functionh(s) along a
vector fieldg : IRn → IRn is a real-valued function, defined
as,

Lg h(s) , dh g .

The Lie derivative can be repeated recursively as,

Lkg h(s) , Lg

[
Lk−1

g h(s)
]
, ∀ k ≥ 1,

beingL0
g h(s) , h(s).

For a generic nonlinear system as in (5), global or complete
observability can not be usually expected and weaker notions,
such that oflocal weak observabilityhave been introduced in
the literature. A sufficient condition for the observability of
ΣN has been first introduced by Hermann and Krener in [11]
and is here reported for the reader’s convenience.

Proposition 2 (Observability rank condition):ΣN in (5) is
said to be locally weak observable at a pointso ∈ S, if there
exist an open setD of so and positive integersj1, j2, . . . , jm
satisfyingj1+j2+. . .+jm = n such that, for arbitrarys ∈ D,
the set of row vectors defined by

{Lj−1
f dhi(s) | i = 1, . . . ,m; j = 1, . . . , jm} (6)

is linearly independent. �

An equivalent and more intuitive formulation of Prop. 2
is presented and proved in what follows. It is based on the
so-called Extended Output Jacobian (EOJ) matrix [6].

Proposition 3 (EOJ observability rank condition [17]):
ΣN is said to be locally weakly observable at a pointso ∈ S,
if there exist an open setD of so such that, for arbitrary
s ∈ D,

rank(J) = n,

whereJ ∈ IRmn×n, the Extended Output Jacobian matrix, is
built by stacking the row vectors,

{dh
(j−1)
i (s) | i = 1, ...,m ; j = 1, ..., n}. (7)

The superscriptj refers to the order of time differentiation of
the functionshi(s), i = 1, ...,m.

Proof: The proof is constructive. Computing the Lie
derivatives in (6), it turns out that fori = 1, ...,m,

(j = 1) L0
f dhi(s) =

∂hi(s)

∂s
= dh

(0)
i (s) (8)

(j = 2) L1
f dhi(s) =

∂

∂s

[
L0

f dhi(s)
]
f(s) =

= d

[
∂hi
∂s

f(s)

]
= d

[
∂hi
∂s

∂s

∂t

]
= dh

(1)
i (s) (9)

(j = 3) L2
f dhi(s) = d

[
∂

∂s

[
L1

fhi
]
f(s)

]
=

= d

[
∂h

(1)
i

∂s
ṡ

]
= d

[
∂
(
∂hi

∂t

)

∂s

∂s

∂t

]
= dh

(2)
i (s)(10)

...
...

(j = n) Ln−1
f dhi(s) = dh

(n−1)
i (s) (11)

and by stacking the vectors (8),(9),(10) and (11) in a matrix,
from Prop. 2 we obtain the thesis.

Remark 1:Prop. 3 states that the observability ofΣN can
be tested by checking the rank of the EOJ matrixJ made
of the state partial derivatives of the output vector and of all
its n − 1 time derivatives. In particular, it is straightforward
to verify thatΣN is observable also whenat least onen× n
submatrix ofJ has full rank. This simplifies the analysis, since
it is not necessary to check for the determinants of all the
possible submatrices ofJ.
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B. Observability of leader-follower formations

Prop. 3 is used here to determine an observability condition
for the leader-follower system described in Sect. II.

From Prop. 3, the observability of (2) with output (4), is
guaranteed when at least one3 × 3 submatrix of the whole
6 × 3 EOJ matrix is nonsingular. Let us consider, e.g. the
submatrixJ:

J =





∂y1
∂ρ

∂y1
∂ψ

∂y1
∂β

∂ẏ1
∂ρ

∂ẏ1
∂ψ

∂ẏ1
∂β

∂y2
∂ρ

∂y2
∂ψ

∂y2
∂β



 =





0 1 0

∂ψ̇
∂ρ

∂ψ̇
∂ψ

∂ψ̇
∂β

0 0 1



 , (12)

whose determinant is,

det(J) = −
∂ψ̇

∂ρ
=

1

ρ

[
ψ̇ + ωL

]
. (13)

Therefore, ifψ̇ + ωL 6= 0, the states is observable.
In the case ofq > 1 followers, the observability condition

is a simple extension of (13) (see [17]).

C. A geometrical interpretation of the EOJ singularity

In Fig. 4 we provide a basic example to give some geo-
metrical interpretation of (13). A leader and two followersare
considered at two different time instants,t = 0 andt = 1. All
the robots move with the same translational velocity and zero
angular velocity.

We first note that thatψ2(1) 6= ψ2(0) (and thusψ̇2 6= 0)
due to the different initial orientation between〈L〉 and 〈F2〉.
Then, from (13), it turns out that the states2 is observable.
This is intuitively correct, since the visual information varies in
time and it is then expected to improve the localizability. This
leads also to the intuition that curvilinear trajectories have a
favourable effect on observability, since a change of the output
signal (4) occurs there.

From an inspection of Fig. 4, it is also evident that there is
not any improvement in the localization between〈L〉 and〈F1〉
since their relative motion is zero fromt = 0 to t = 1 (and
thus ψ̇1 = 0). Recall that Prop. 2 only provides a sufficient
condition for observability and that det(J) = 0 does not
necessarily imply that the states1 is not observable. However,
the simulation and experimental results reported in Sect. V
and Sect. VI will give us the strong evidence that a singular
EOJ matrix can be used as an index of non-observability.

〈F2〉 〈F1〉
〈L〉

t = 0

t=1

ψ1(0)=ψ2(0)

ψ2(1)
ψ1(1)

Fig. 4. Geometrical interpretation of the EOJ singularity.

D. Observer design

In order to control the formation, an estimateŝ of the state
configurations is required. An extended Kalman filter has
been designed to estimate the rangeρ given the input vector
u and the outputsy. We assume additive noise on both the
process and measurement equations,

ṡ = G(s)u + z (14)

y = Cs + v (15)

whereC is the output transition matrix andz andv are zero
mean white gaussian noises with covariance matricesQ and
R, respectively.s(0), z andv are assumed to be uncorrelated.
Equation (14) has been discretized using the Euler forward
method with sampling timeTc,

s(k + 1) = Γ (s(k),u(k)) + Tc z

where Γ(s(k),u(k)) , TcG(s)u + s(k) and k ∈ IN . As
we will see in Sect.V, the EKF exhibits good performances
in estimating the distanceρ in both the simulations and
the experiments we conducted to test the robustness of our
approach.

IV. I NPUT-STATE FEEDBACK CONTROL

Consider the set of kinematic equations equivalent to (2):

ṡr = F(s)uL + H(s)uF (16)

β̇ = ωL − ωF (17)

wheresr , [ρ ψ]T is a reducedstate-space vector. Matrices
H andF ∈ IR2×2 are the two upper left and right2×2 minors
of of G, respectively.

In the spirit of [8], we propose here an input state feedback
control law for the robot formation. Let us consider the
following control input

uF , [vF ωF ]T = H−1(s)
(
p− F(s)uL

)
(18)

where

p = ṡdesr − K (sr − sdesr ) (19)

whereK = diag{k1, k2}, with k1, k2 > 0. The superscript
“des” refers to the desired values. Equation (18) acts in (16)
as a feedback linearizing control, so that the closed-loop
dynamics become,

ṡr = ṡdesr − K(sr − sdesr ) , β̇ = ωL − ωF . (20)

The following proposition states that it suffices to controlsr
towardssdesr using (18), to guarantee the local stability of the
whole state-space vectors.

Proposition 4: Let us suppose thatvL > 0, |ωL| < Wmax,
|β(0)| < π and that ṡdesr is bounded. Then the control law
(18)-(19) stabilizes the system dynamics (16)-(17).

Proof: Let us refer to[eρ eψ]T = sr − sdesr as the state
tracking error vector. From (20), it follows that[eρ eψ] is
globally exponentially stable. We now prove that the internal
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dynamics is stable, i.e., that|β| is bounded. DrawingωF
from (18), equation (17) can be rewritten as:

β̇ = −
sin γ

d

(
ρ̇des − k1 eρ

)
−
ρ cosγ

d

(
ψ̇des − k2 eψ

)
−

−
vL
d

sinβ − ωL

(ρ
d

cos γ − 1
)
. (21)

Due to the physical constraints of the robots, we can reason-
ably assume thatωL is bounded. Moreover, if alsȯψdes and
ρ̇des are bounded, then (21) can be re-written as:

β̇ = −
vL
d

sinβ −B(t). (22)

Note that without the termB(t), a bounded persistent dis-
turbance, (22) islocally asymptotically stable for|β| < π.
From the stability theory of nonlinear systems with persistent
disturbances [21], being|β(0)| < π and B(t) bounded, it
follows that|β(t)| < ε, ∀ t > T , for finite timeT and∀ ε > 0.

Remark 2 (Distant robots):If the distance between the
leader and follower isbig, it is in general difficult to exactly
locate the markerP in the image (recall Sect. II-B and
Fig. 2). A possible solution consists in detectingonly the robot
centroid, that is equivalent to assumed = 0. Even though
this assumption does not affect the observability condition
presented in Sect. III-B, however it has a negative influence
on the control. In factH(s) is singular whend = 0 and the
control in (18) is not applicable. In [16], a possible solution is
presented with a feedback control based on dynamic extension
that overcomes this control issue.

V. SIMULATION RESULTS

This section presents the simulation experiments we con-
ducted to test the effectiveness of the proposed formation
control strategy. The simulations gave us also the evidence
that a singular EOJ matrix can be used as an index of non-
observability.
The following velocity input was assigned to the leader,

vL(t) = 0.3 m
/

s

ωL(t) =

{
0 rad

/
s if t ∈

{
[0, 6], (14, 20], (28, 34]

}

π/8 rad
/

s otherwise,

which undergoes a piecewise rectilinear-circular
trajectory that is particularly suited for testing the
condition (13), according to the geometrical interpretation
in Sect. III-C. The formation considered in the
simulation experiments consists of two followers. We
set s(0) = [0.261 2.183 1.047 0.368 4.399 0.524]T and
sdesr = [0.3 3π/4 0.3 5π/4]T , where distances are in meters
and angles in radians.

The gain matrix of the controller isK = 6 I4, where I4

denotes the4×4 identity matrix. The EKF was initialized with
ŝ(0| − 1) = [32ρ1(0) ψ1(0) β1(0) 3

2ρ2(0) ψ2(0) β2(0)]T

corresponding to a 50% perturbation of the unknown
distances to the leader and covariance matrix
P(0| − 1) = 10−2 · diag{1, 1.1, 1.1, 1, 1.1, 1.1}.
The other parameters areTc = 10 ms, d = 0.1 m, Q =
diag{3 · 10−5, ̺, ̺, 3 · 10−5, ̺, ̺} and R = ̺ I4, where

0 1 2 3 4 5
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Fig. 5. Simulation results: (a) Trajectory of the robots; (b) Time history of
NEES and 95% bounds (N = 15); (c) Time history ofdet(J).

̺ = 0.9187 · 10−4 rad2. White gaussian noise is added to the
measurements.

Fig. 5(a) shows the trajectory of the three robots (in order
to have a temporal reference the vehicles are drawn every two
seconds). It is evident that the followers miss the formation
exactly along the rectilinear tracts of the trajectory (e.g. in
t ∈ (14, 20]) where visual data are not changing sensibly so
as to improve the localization process. On the other hand,
when the leader switches from the rectilinear to the curvilinear
tracts (e.g. int ∈ (20, 28]), a change in the visual information
occurs and this leads to an improvement of the localization:
the desired formation is in fact immediately recovered. The
consistency of the EKF is studied in Fig. 5(b) where a concise
representation of the estimation error, the time history of
NEES (see the Appendix), is provided (herer1 = 4.38,
r2 = 7.87 andN = 15). Comparing Fig. 5(a) with Fig. 5(b),
it is evident that the NEES tends to leave the 95% bounds
exactly in correspondence of the rectilinear tracts of the leader
trajectory (e.g. int ∈ (14, 20]).

Fig. 5(c) reports the time history of det(J). Note thatJ
is relative to follower 1: similar results are obtained when
the J relative to the follower 2 is considered. According to
condition (13), we see that the states1 (analogouslys2) is
observable along the curvilinear tracts of the trajectory,i.e.
where det(J) 6= 0. More interestingly, note thatdet(J) is
near zero in the time intervals in which the NEES increases,
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Leader

Follower

P

camera

Fig. 6. Experimental setup. TheScarabrobots used in the experiments.

meaning that the states1 (analogouslys2) is not observable
there. Even though further theoretical investigations areneeded
to confirm this result, this empirical evidence makes us con-
jecture that Prop. 3 is both necessary and sufficient, i.e. that
the singularity of the EOJ matrix can be used as an index of
non-observability.

VI. EXPERIMENTS

In order also to validate the proposed formation control
strategy in a real scenario, some experiments have been
carried out at the GRASP Lab, University of Pennsylvania,
Philadelphia. The experimental setup consists of twoScarab
robots acting as the leader and the follower (see Fig. 6).

The Scarab is a differential driven robotic platform designed
at the GRASP Lab, measuring20 × 13.5 × 22.2 cm3. The
leader and the follower run identical modularized software
with well-defined interfaces connecting modules via the Player
robot architecture system. In order to provide a ground truth
information of the actual robots pose, a tracking system
consisting of LED markers on the top of each robot and eight
overhead cameras are employed. More technical details on the
Scarab robots and on the tracking system can be found in [18].

Each robot is uniquely identified by a colored marker and
equipped with a panoramic camera, consisting of a hyperbolic
Remote Reality mirror (folded) screwed on a Point Grey Fire-
fly IEEE 1394 camera. The image resolution is320×240 pix-
els. Only the image principal point(u0, v0) is known and is
given by(159.48, 123.70) pixels and(172.89, 126.53) pixels,
for the leader and the follower’s camera, respectively. HSV
color blob detection is run on each robot using the Intel’s
OpenCV libraries. Though many other techniques are available
in the literature (e.g. optical-flow, corner detection, etc.), we
experienced good real-time performances and robustness of
our code to changing in illumination, to partial occlusionsand
also to the tracking of far robots. The distance between the
center of the robot and the marker isd = 20 cm.

Note that, due to the presence of the LED marker on the
top of each robot, the position of the panoramic camera on
the vehicles is different from that shown in Fig. 1. However,
a simple algebraic transformation is sufficient to readapt the
robots’ angle measurement to the model in Fig. 1. This
transformation has been implemented in the code running on
the robots without significantly affecting the performanceand
the computational burden.
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Fig. 7. Experimental results. (a) Trajectory of the leader and the follower. The
time instants in which the leader switches from the rectilinear to the circular
tracts and viceversa, are highlighted. (b)-(e) Snapshots from the experiment.

For the experiment, we choses(0) = ŝ(0| − 1) =
[0.75 m , 5/4π rad, 0]T andsdesr = [0.5 m , 5/4π rad]T . The
control gains arek1 = k2 = 0.5 and Tc = 0.1 s. Moreover,
P(0| − 1) = 10−2 · I, Q = 10−5 · diag{3, 9, 9} and R =
10−5 · diag{9.1, 9.1}.

As in Sect. V, we selected an input vector[vL, wL]T giving
rise to a rectilinear/circular trajectory.

Fig. 7(a) shows the trajectory of the robots during the whole
experiment1, from which it can be seen that the follower
succeeds in attaining the desired formation. We highlighted the
time instants in which the leader switches form the linear to
the curvilinear trajectory, and viceversa. A series of snapshots
from the experiment is reported in Figs. 7(b)-7(e). The range
estimation errorρ− ρ̂ and the range tracking errorρdes− ρ̂ are
shown in Fig. 8(a) and Fig. 8(b), respectively. Note that, as
expected from the theory (see Sect. III-C), the estimation and
tracking errors decrease and stay close to zero approximately

1A video of the experiments can be downloaded at
www.dii.unisi.it/∼gmariottini/VisionLocalizationMultirobot.m4v.
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Fig. 8. Experimental results. Time history of (a) the observation error; (b)
the control error; (c) det(J).

in t ∈ [20, 55], that is during the circular trajectory. Moreover,
in confirmation of the simulation results of Sect. V, the EOJ
matrix is close to singularity approximately at the same time
instants in which the tracking and estimation errors increase,
that is when the leader moves along the rectilinear tracts (see
Fig. 8(c)).

VII. C ONCLUSIONS AND FUTURE WORK

This paper studies the vision-based localization and control
of a leader-follower formation of nonholonomic mobile robots.
Each robot is equipped with a panoramic camera which only
provides the view-angle to the other vehicles. The vision-based
formation localizability problem is addressed using a new suf-
ficient observability condition based on the Extended Output
Jacobian matrix. The state of the leader-follower system is
estimated via the extended Kalman filter and an input-state
feedback control law is designed to stabilize the formation.
Simulations as well as real-data experiments performed with
Scarab robots illustrate the theory and show the effectiveness
of the proposed design.

The comparison between the extended Kalman filter and
other state estimators (such as, e.g. the unscented Kalman
filter, particle filters, etc.) is the subject of on-going research
and will be addressed in future works. Future research is
also involved in extending our results to vehicles with more
involved kinematics (such as e.g., car-like robots).
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APPENDIX

CONSISTENCY OF A STATE ESTIMATOR

Definition 2: A state estimator is said to beconsistent[2] if
its state estimation error̃s(k|k) , ŝ(k) − s(k|k) is such that
E [ s̃(k|k) ] = 0 and E[ s̃(k|k) s̃(k|k)T ] = P(k|k).

To practically evaluate the consistency of an estimator, the
normalized estimation error squared(NEES) is defined:

ε(k) , s̃(k|k)T P−1(k|k) s̃(k|k).

Let us considerN Monte Carlo simulations that pro-
vide N samplesεi(k) of the random variableε(k). Let
ε̄(k) = 1

N

∑N
i=1 εi(k) be the sample mean ofε(k). The hy-

pothesis that the state estimation errors are consistent with
the estimator calculated covariances is not invalidated if
ε̄(k) ∈ [r1, r2], r1, r2 ∈ IR.
Under the Gaussian assumption,Nε̄(k) ∼ χ2

N 3q whereχ2
N 3q

is a N 3q degrees of freedom Chi-square distribution.r1, r2
can then be computed from a table providing the points on
the Chi-square distribution for a given tail probability (see,
e.g. Appendix C in [2]).

It is worth noting that even if specifically designed for
linear systems, the consistency criterion based on the NEES
is commonly used also in the nonlinear case.
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