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Abstract

General structure-from-motion methods are not adept at
dealing with constrained camera motions, even though such
motions greatly simplify vision tasks like mobile robot local-
ization. Typical ego-motion techniques designed for such a
purpose require locating feature correspondences between
images. However, there are many cases where features
cannot be matched robustly. For example, images from
panoramic sensors are limited by nonuniform angular sam-
pling, which can complicate the feature matching process
under wide baseline motions. In this paper we compute the
planar ego-motion of a spherical sensor without correspon-
dences. We propose a generalized Hough transform on the
space of planar motions. Our transform directly processes
the information contained within all the possible feature
pair combinations between two images, thereby circumvent-
ing the need to isolate the best corresponding matches. We
generate the Hough space in an efficient manner by study-
ing the spectral information contained in images of the fea-
ture pairs, and by re-treating our Hough transform as a cor-
relation of such feature pair images.

1 Introduction

Estimating the planar motion of a camera (ego-motion esti-
mation) is a problem that has numerous applications, rang-
ing from mobile robot localization to stereo algorithms.
When the motion between frames is large, differential al-
gorithms using optical flow are bypassed in favor of tech-
niques which track features or points between images. So-
phisticated feature extractors [11, 8] are often application
or scene-dependent in that many parameters must be tuned
in order to obtain satisfactory results for a particular data
set. Although the tracking of features is considered a fa-
miliar and well-understood problem, there are many prac-
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tical scenarios (depending on properties of the imaging
sensor, or scenes and objects with repeated textures) for
which features cannot be successfully matched. Take for
example omnidirectional camera systems, which have be-
come synonymous with mobile robots. The panoramic view
which makes such sensors so appealing is also being repre-
sented by relatively fewer pixels (per viewing angle). This
fact, combined with the projection geometry of such sen-
sors, makes the problem of matching points between im-
ages quite difficult under many circumstances. Since a
particular class of central omnidirectional sensors can be
mapped to the sphere, our problem of planar ego-motion
from spherical images encompasses images obtained from
such panoramic sensors. However, due to the geometry of
the spherical perspective projection, a global image trans-
formation which models rigid motions of a camera does not
exist, and so we cannot altogether abandon the calculation
of localized image characteristics. Previously, Aloimonos
and Hervé [1] showed the rigid motion of planar patches
can be estimated without correspondences using a binoc-
ular stereo setup. In [2] Antone and Teller use a Hough
transform on lines in images to identify vanishing points
(which are used in rotational alignment). A subsequent
Hough transform on feature pairs in rotationally aligned im-
ages is used to estimate the direction of translation. The
computational complexity of a direct computation is cir-
cumvented by pruning possible feature pairs and only de-
siring an rough estimate of the solution, which is used to
initialize an EM algorithm. Roy and Cox [10] contributed a
correspondenceless motion algorithm by statistically mod-
eling the variance of intensity differences between points
relative to their Euclidean distance. This model is then used
to estimate the likelihood of assumed motions. Geyer et al
[5] proposed a 6D Radon transform on the space of Essen-
tial matrices parameterized by ordered pairs in the rotation
group SO(3). Both proposed solutions address the general
ego-motion problem, but in this paper we consider the con-
strained problem of a camera moving in a plane. We re-
visit the familiar two-view epipolar constraint and examine



what happens when we are able to parameterize planar mo-
tions with only rotations. Furthermore, we circumvent the
pitfalls of feature tracking by processing image features di-
rectly without searching for the best matches. The resulting
planar constraint deals with these feature pairs which can al-
ternatively be considered elements of the product of spheres
S2 × S2. To compensate for the fact that we must consider
all possible feature pairs between images, we introduce a
generalized Hough transform that implicitly accounts for
the fact that the majority of our information does not rep-
resent the correct motion. We explore the efficient com-
putation of our Hough space by realizing from the planar
epipolar constraint that the elements of the Hough space can
be identified with the direct product group SO(3)×SO(3),
which acts transitively on the domain of our feature images.
Such a group theoretic framework allows us to compute our
Hough space very efficiently.

The organization of this paper is as follows. In section 2
we will introduce the traditional Hough transform on the
space of lines and generalize it for the space of planar mo-
tions. We will follow this with a brief exposition of har-
monic analysis on the sphere and product of spheres, and
its application in formulating the generalized Hough as a
correlation (Section 3.1). Practical considerations and ex-
perimental results follow in Section 4 and we will wrap up
our discussion with some concluding remarks in Section 5.

2 Motion estimation as Hough

Consider a camera viewing points P1···j , which are given as
vectors relative to the camera’s reference frame. The spher-
ical perspective projection maps world points P1···j to im-
age points p1···j , where pi = Pi/||Pi||. Now assume the
camera undergoes a rigid motion in the X-Y plane given
by the pair (R, t), where R = Rz(α) is a rotation about
the Z-axis by α degrees and t is a vector in the X-Y plane.
We wish to reflect the fact that without knowledge of the
environment, t can only be estimated up to scale, and thus
can be defined with only one free parameter. We will write
t = Rz(θ)�e1. From the camera’s new coordinate frame, the
world points are now given as Q1···j = RP1···j + t, and
the world points Q1···j map to image points q1···j , where
qi = Qi/||Qi||. Since pi and qi do not retain any in-
formation about the depth of the world points P i and Qi,
we can only infer that the Rpi, qi, and t lie on the same
plane: (Rz(α)pi × qi)T Rz(θ)�e1 = 0. This condition is
just the familiar two-view epipolar constraint restricted to
camera motions in the X-Y plane. However, we are not
necessarily limited to treating motions only in this plane.
Consider a camera moving in an arbitrary plane given by
the angles β, and γ (the vector Rz(γ)Ry(β)�e3 is orthog-
onal to all vectors lying in the plane). Since Rz(γ)Ry(β)
and −Rz(γ)Ry(β) describe the same plane, we can restrict
(β, γ) to the hemisphere: β ∈ [0, π

2 ] and γ ∈ [0, 2π). Since
we can define any plane of motion with rotations, it is im-
mediately clear that motions on the plane (β, γ) are sim-

ply a coordinate frame rotation from motions in the X-Y
plane. In other words, if the point pairs (p i, qi) satisfy a mo-
tion in the plane (β, γ), then the point pairs (p ′

i, q
′
i), where

{p′i, q′i} = Ry(−β)Rz(−γ){pi, qi}, will satisfy the same
motion in the X-Y plane. This epipolar constraint for gen-
eral planar motions can be expressed as:

(Rz(α)(Rz(γ)Ry(β))T pi × (Rz(γ)Ry(β))T qi)
T Rz(θ)�e1 = 0

(1)
As always, the translational component of ego-motion can
only be recovered up to scale, so in general there are always
at least two solutions (Rz(θ), Rz(θ+π)), which satisfy (1).
We proceed with a discussion on how we can explore this
planar epipolar constraint to obtain an ego-motion solution
without finding image correspondences.

2.1 Hough on the space of planar motions

We will first introduce the Hough transform as it applies
to identifying lines in planar images before we illustrate
how we can use similar intuition to identify the correct pla-
nar ego-motion parameters of a spherical camera. Specif-
ically, we will examine the continuous case of the Hough
transform which is often identified with the Radon trans-
form. The Radon transform will convert a function from
data space into parameter space, and for identifying lines
on a planar image it is given as

G(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)δ(ρ − x cos θ − y sin θ)dxdy

Here g(x, y) is the weighting function, in this case an in-
tensity or gradient image. δ is a soft characteristic function,
which measures how close the point (x,y) lies to the line
defined by (ρ, θ). Intuitively, for any line (ρ, θ), G(ρ, θ)
counts the number of image points which belong to the line
given by ρ−x cos θ−y sin θ = 0, weighted by the intensity
of the image points. As the Radon transform identifies lines
in planar images, we would like to formulate a conceptually
similar transform that will identify the four parameters de-
scribing the planar motion of a camera between two images
I1, I2.

From (1) we have parameterized our planar motion
with just rotations. If we parameterize the proper rota-
tion group SO(3) with ZYZ Euler angles R(α, β, γ) =
Rz(γ)Ry(β)Rz(α), we can rewrite (1) as

((QR)T pi × QT qi)T �e1 = 0 (2)

where R = Rz(−α) and Q = Rz(γ)Ry(β)Rz(θ).
For each planar motion (R, Q), we want to count the

number of point pairs (p, q), where p ∈ I1, q ∈ I2, such
that (p, q) satisfies the motion constraint (2), weighted by
the similarity of the points p, q. This formulation will be
robust only if we find a measure which consistently iden-
tifies projections of the same scene point in each image.
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Note that in this case we do not have such a strong con-
straint on false positives, since the presence of outliers is
inherently accounted for with a generalized Hough trans-
form, whereas a best-fit minimization requires strong con-
ditions on the quality and quantity of matches for successful
ego-motion estimation. With this objective a simple image-
based measure will not suffice. Our proposal is to use SIFT
image features [9] which compute distinguishing character-
istics such as local gradient orientation distributions. Using
this idea of a similarity between features, we can formulate
an integral transform to compute the validity of each possi-
ble rigid motion:

G(R, Q) =

Z
p

Z
q

g(p, q)δ(((QR)T p × QT q)T �e1)dpdq (3)

Here the soft characteristic function δ measures how close
the pair of feature locations p and q come to satisfying the
motion constraint (2). The weighting function g(p, q) mea-
sures the similarity between features located at points p and
q, and is given as

g(p, q) =

j
e−||p−q|| if features have been extracted at p and q
0 otherwise

where ||p− q|| is a measure of difference between two fea-
tures. Notice that the domain of both our weighting func-
tion and characteristic function is the manifold S 2 × S2,
since (p, q) is an ordered pair of points on the sphere S 2.
Similarly, points in our parameter space can be identified
with elements of the direct product group SO(3) × SO(3).
Thus, the functions g, δ are defined on the homogeneous
space S2 × S2 of the Lie group SO(3) × SO(3). In the
following section we will utilize this group theoretic frame-
work to compute G(R, Q) using the harmonic analysis of
functions defined on the space S 2 × S2.

3 Hough as correlation

Taking a close look at (3), we see that the Hough transform
G(R, Q) is in fact a correlation of functions defined on the
product of spheres S2 × S2. The correlation shift in this
case is performed by elements of the group SO(3)×SO(3).
As explained with detail in [7], a correlation between func-
tions defined on the sphere S 2, where the shift is given by
an element of SO(3), can be computed efficiently using a
Spherical Fourier Transform (SFT). We now proceed to ex-
tend this development to consider the direct product group
SO(3)×SO(3), beginning with a short exposition of spher-
ical harmonic analysis. Readers are referred to [3] for ex-
tensive information regarding the computation of a discrete
SFT.

As the angular portion of the solution to Laplace’s equa-
tion in spherical coordinates, the spherical harmonic func-
tions Y l

m form a complete orthonormal basis over the unit

sphere:

Y l
m(θ, φ) = (−1)m

√
(2l + 1)(l − m)!

4π(l + m)!
P l

m(cos θ)eimφ,

where P l
m(cos (θ)) are associated Legendre polynomials.

Thus, for any function f(ω) ∈ L2(S2), we have a Spherical
Fourier Transform (SFT) given as

f(ω) =
∑
l∈N

∑
|m|≤l

f̂ l
mY l

m(ω) (4)

f̂ l
m =

∫
ω∈S2

f(ω)Y l
m(ω)dω (5)

An important property of the spherical harmonic functions
Y l

m is

Y l
m(R−1η) =

∑
|k|≤l

Y l
k(η)U l

km(R), (6)

where the (2l+1)× (2l+1) matrices U l are the irreducible
unitary matrix representations of the transformation group
SO(3), whose elements are given by

U l
mk(R) = e−imαP l

mk(cosβ)e−ikγ . (7)

The P l
mk are the generalized Legendre polynomials. From

(6) we obtain a Shift Theorem relating coefficients of ro-
tated functions :

h(ω) = f(R−1ω) ⇔ ĥl
m =

∑
|k|≤l

f̂ l
kU l

mk(R) (8)

This Shift Theorem (8) shows us that the U l matrix rep-
resentations of the rotation group SO(3) are the spectral
analogue to 3D rotations. As vectors in R

3 are rotated by
orthogonal matrices, the (2l+1)-length complex vectors f̂ l,
comprised of all coefficients of degree l, are transformed by
the unitary matrices U l.

As expected, this theory extends to the direct product
group SO(3) × SO(3) acting on the homogenous space
S2 × S2. The expansion for functions in S 2 × S2 is given
as

f(ω1, ω2) =
X
l∈N

X
|m|≤l

X
n∈N

X
|p|≤n

f̂ ln
mpY l

m(ω1)Y
n

p (ω2)

f̂ ln
mp =

Z
ω1

Z
ω2

f(ω1, ω2)Y l
m(ω1)Y n

p (ω2)dω1dω2,

with a corresponding Shift theorem (in matrix form):

h(ω1, ω2) = f(RT
1 ω1, R

T
2 ω2) ⇔ ĥln

mp = U l(R1)
T f̂ lnUn(R2)

(9)
We will now present an efficient computation of the corre-
lation (3) using these results.
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3.1 Algorithm

Expanding (3) with (9), and from the orthogonality of the
spherical harmonics,

G(R,Q) =
X
l,n

X
|m,r|≤l

X
|p,q|≤n

e−imαU l
rm(Q)Un

qp(Q)f̂ ln
mpδ̂ln

rq

From the homomorphism property of the representations
U , we know that

U l
mn(R(α, β, γ)) =

X
|k|≤l

e−i(m(γ+ π
2 )+k(β+π)+n(α+π

2 )) ·

·P l
mk(0)P l

kn(0)

Defining Q′ = Rz(γ − π
2 )Ry(β − π)Rz(θ + π

2 ), we get

G(R, Q′) =
X
lmrk

X
npqj

P l
rk(0)P l

km(0)P n
qj(0)P

n
jp(0) ·

·ei(kβ+rθ+mγ+jγ+pβ+qθ+mα)ĝln
mpδ̂ln

rq

As it happens, the exponentials in G(R, Q) are orthogo-
nal to the Fourier basis of the circle, so after taking a 4-D
Fourier transform of G we obtain

Ĝxyzw =
X
lmrk

X
npqj

P l
rk(0)P l

km(0)P n
qj(0)P

n
jp(0) ·

·δ(x,m)δ(y,k+j)δ(z,m+p)δ(w,r+q)ĝ
ln
mp

ˆδln
rq ,

where δ(a,b) is the Kronecker delta. After simplifying,

Ĝxyzw =
∑
lnqj

P l
(w−q)(y−j)(0)P l

(y−j)(x)(0) ·

·Pn
(q)(j)(0)Pn

(j)(z−x)(0)ĝln
(x)(z−x)δ̂

ln
(w−q)(q)

Looking closely at this formula for Ĝ, we can see that it
depends solely on the Legendre polynomials P l(0), and the
coefficient matrices ĝ, δ̂. Since P l(0) and δ̂ contain no im-
age information, they can be computed and stored offline.

Furthermore, the first SFT of δ can be computed analyt-
ically since δ(p, q) = δ((p× q)T �e1) is just a great circle on
the sphere for any fixed p. This reflects the fact that under a
pure translation along the X axis the point p can only move
to another point on the great circle intersecting p, �e1, and
−�e1.

Only ĝ needs to be computed for each pair of images un-
der consideration. Although we can obtain our ego-motion
estimate directly from the 4D IFFT of Ĝ, generating this
coefficient grid for large L, N can be quite expensive. For a
faster practical implementation we now present an alterna-
tive solution.

As we discussed earlier, if the plane of motion is known,
we can transform our points p, q so that the effective plane
of motion is the X-Y plane. This means for every plane
through the origin we can compute a Hough transform to
find the angle of rotation and direction of translation. The

global maximum over all planes will represent the cor-
rect planar ego-motion. For each plane Rz(γ)Ry(β), our
new reference frame can be obtained by shifting g(p, q) :
g(Rz(γ)Ry(β)p, Rz(γ)Ry(β)Tq). Practically, instead of
rotating and interpolating functions on S 2 × S2, we can
achieve the same effect from (9). Searching for motion only
in the X-Y plane, our epipolar constraint is

(Rz(α − θ)pi × Rz(−θ)qi)T �e1 = 0 (10)

Proceeding with the same exposition as for the case of gen-
eral planar motion, we find that our correlation function G,
which is now a function of two rotations about the Z-axis,
can be written directly as

G(Rz(θ − α), Rz(θ)) =
X

lnmp

ĝln
mpδ̂ln

mpei(m(α−θ)−pθ), (11)

and the Fourier coefficients of Ĝ are simply

Ĝk1k2 =
∑
ln

ĝln
k1k2

δ̂ln
k1k2

(12)

Thus, the Fourier coefficients Ĝ can be computed directly
from ĝ and δ̂. Note also that the resolution of our correlation
grid directly depends upon the band-limit we assume for g
and δ. If our band-limit is chosen to be L, we will obtain
a result that is accurate up to ±(180/(2L + 1))◦ for each
parameter.

3.2 Searching for the plane

We have proposed a fast Hough transform for each plane of
motion in our discretized parameter space. Since we iden-
tify planes with the angles β ∈ [0, π

2 ], γ ∈ [0, 2π), search-
ing through the space of planes is equivalent to searching on
the hemisphere. There have been numerous attempts to gen-
erate an equidistant (distance meaning geodesic distance)
distribution of points on the sphere, and here we adopt a
method based on the subdivision of the icosahedron [6].
This allows us to use a fast multi-resolution approach to
localize the plane of motion.

4 Experiments

In this section we will address some practical considera-
tions regarding the computation of our planar ego-motion
parameters, followed by experimental results. For compar-
ison we estimated the Essential Matrix with manually se-
lected correspondences, and also with RANSAC using the
set of possible feature pairs as input. The rotation and trans-
lation were then decoupled.
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4.1 Spherical Images

The projections of catadioptric systems with a unique effec-
tive viewpoint are equivalent to a projection on the sphere
followed by a projection from a point on the sphere axis to
the plane [4]. If calibrated, such a sensor enables us to in-
terpolate images on the sphere reflecting a correct spherical
perspective projection. To obtain spherical images, we used
a system consisting of a Canon Powershot G2 digital cam-
era along with a parabolic mirror attachment produced by
Remote Reality. The mirror’s field of view is 212◦. The im-
ages are mapped to the sphere by interpolating onto the θ-φ
grid, where angular sampling is uniform. Figure (1) shows a
sample catadioptric image obtained from a parabolic mirror
and its corresponding projection onto the sphere.

Figure 1: Top left: a parabolic catadioptric image. Bottom: cor-
responding spherical image on a uniformly sampled θ-φ grid. Top
right: the image as it would appear on the surface of the sphere

We begin with Figure (2), which shows on top a repre-
sentative pair of spherical images obtained from our cata-
dioptric system. In this experiment the plane of motion is
known to be the X-Y plane, so we only need to estimate the
rotation angle and translation direction for each image pair.
Table (1) shows the results of our estimation for a number
of image pairs compared to the estimates obtained from two
comparative techniques. Our coefficient grid Ĝ was com-
puted for a maximum degree L = N = 32, so our angular
samples were spaced approximately 5.54◦ apart, giving us
a solution accurate up to ±2.77◦. In Figure (2), bottom,
we show the final discretized Hough space for the roughly
translational motion along the X axis. From the grids it is
easy to see that the correct solutions are identified. In all ex-
amples where the plane of motion is known, our algorithm
obtained a solution sufficiently close to the one generated by
manually-selected correspondences. Since SIFT detected
on the order of 1000 features in the images we used, there
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Figure 2: Top: Two spherical images from a camera moving in
the X-Y plane. Bottom: The Hough space of two pairs of images
where the motion between frames consists of only a translation
along the X direction approx. You can see clearly that the two
correct solutions at θ = 0 and θ = π have the highest values in
the Hough space.

Generalized RANSAC Manual
Hough Corresp.

α 44.3◦ 33.9◦ 47.1◦Pair 1
θ 49.8◦ 25.1◦ 44.7◦

α 38.8◦ 46.2◦ 35.6◦Pair 2
θ 27.7◦ 16.5◦ 25.0◦

α 0.0◦ −4.3◦ 1.2◦Pair 3
θ 5.5◦ −4.4◦ 1.6◦

Table 1: Estimates of planar motion parameters when the plane
of motion is known. In this case only the angle of rotation (α) and
the direction of translation (θ) need to be estimated. The Hough
was computed with L = N = 32, giving us an accuracy of ±2.8◦.

were on the order of 106 features pairs, of which 99.9%
are guaranteed outliers. Since RANSAC estimates are done
with a minimal number of feature pairs, the overwhelming
number of outliers drastically effects the average time to
find a suitable solution. Also, this algorithm is very suscep-
tible to the accumulation threshold since we don’t search
for a global maximum but rather terminate once we find the
first suitable solution. Even after pruning the feature pairs
by eliminating the worst matches, this sensitivity is reflected
in the results.

For motion in an unknown plane, visual results are
shown in Figure (3), where the Hough space for the rotation
angle and translation direction obtained at the final plane.
This plane, as described in Section (3.2), was obtained with
a coarse-to-fine search through the space of planes done in
two iterations. The figure shows the Hough space at the fi-
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Figure 3: Discretized Hough space for two pairs of test images.
On the left is the Hough space for the initial plane (X-Y) and on
the right the grid at the plane of the solution. Note the sharp iden-
tifiable peak when the solution is found.

nal solution adjacent to the inital starting point (which cor-
responds to X-Y as the plane of motion). Numerical re-
sults of are shown in Table (2). For Pair 1, we visually
documented a motion of the camera in the X-Z plane and
this was reflected in an angular measurement in β of 173.8◦

(180◦ would be exactly on the X-Z plane). The maximum
value in the Hough space is identified with a smooth and
strong peak, which indicates that spectral interpolation may
be effective in increasing the resolution and accuracy of our
result.

The computational time to compute (12) for L = N =
32 is 0.2 sec on a typical 2GHz machine, and obtaining the
Hough space via a 2D IFFT requires 1 ms. If we are per-
forming the test for a plane hypothesis, the rotation of the
function g(p, q) takes an additional 1.57 sec. In total, the
time it takes to generate our Hough space for any plane is
1.77 sec. All of these times were generated in Matlab.

5 Conclusion
Fourier techniques conventionally attempt to perform a
computation on the global spectral content of an image.
In problems of matching, for example, one standard ap-
proach is to correlate the spectrum of the target and pattern
images. These approaches are limited because as global
operators they cannot account for signal alterations intro-
duced by occlusion, depth-variations, and a limited field
of view. Instead of trying to estimate motion using the
spectral components of the intensity images, we perform
our Fourier decomposition on the feature information stored
within the images. The epipolar geometric constraints pro-
vided by planar ego-motion allow us to establish a general-

Generalized Manual
Hough Correspondences

β 173.8◦ 174.7◦

γ 135.0◦ 132.0◦

α 44.3◦ 49.6◦Pair 1

θ 49.8◦ 44.3◦

β 86.9◦ 91.0◦

γ 105.5◦ 100.6◦

α 16.6◦ 172.4◦Pair 2

θ 0.0◦ 1.0◦

Table 2: Estimates of planar motion with unknown plane. All
four parameters of motion are estimated. The angle of rotation (α)
and the direction of translation (θ), and the plane of motion (β, γ).
For the Hough, the computation was at L = N = 32, resulting in
an accuracy of ±2.8◦.

ized Hough transform which falls between a pure spectral
computation (global) and a best-fit correspondence tech-
nique (local). Results indicate that planar ego-motion can
be correctly computed for a spherical camera using only
image features and without first finding image correspon-
dences.
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