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Abstract— Mobile robots can be easily equipped with nu-

merous sensors which can aid in the tasks of localization

and ego-motion estimation. Two such examples are Inertial
Measurement Units (IMU), which provide a gravity vector via

pitch and roll angular velocities, and wide-angle or panoramic
imaging devices which capture 360 field-of-view images. As

the number of powerful devices on a single robot increases, an

important problem arises in how to fuse the information com-
ing from multiple sources to obtain an accurate and efficient
motion estimate. The IMU provides real-time readings which
can be employed in orientation estimation, while in principle
an Omnidirectional camera provides enough information to
estimate the full rigid motion (up to translational scale). How-
ever, in addition to being computationally overwhelming, such

an estimation is traditionally based on the sensitive search
for feature correspondences between image frames. In this

paper we present a novel algorithm that exploits information
from an IMU to reduce the five parameter motion search to
a three-parameter estimation. For this task we formulate a

generalized Hough transform which processes image features

directly to avoid searching for correspondences. The Hough
space is computed rapidly by re-treating the transform as a
convolution of spherical images.

Index Terms— Omnidirectional vision, localization, inertial
Sensors.

|. INTRODUCTION

The commoditization of peripheral sensors like GPS
units, range finders, wide-angle or panoramic cameras,
and Inertiadl Measurement Units (IMU) has made it fairly
effortless to equip mobile robots with a plethora of sens-
ing devices (see Figure 1). This advance has altered the
way longstanding problems of robot self-localization and
ego-motion estimation are approached. Instead of collect-
ing enough reliable information to perform any of these
motion-based tasks, the problems are now geared towards
the fusion of information already available. Since many
devices on a robot independently capture enough data to
provide partial or even complete solutions to these motion
estimation problems, the target is to find the optimal fusion
of available sensors in order to reach the objectives of
accuracy and efficiency. In this paper we assume that a
robot is outfitted with two useful devices: an IMU and a
single viewpoint Omnidirectional camera system.

An IMU generaly combines three orthogonal accelerom-
eters to deliver the angular velocities of motion. The mea-
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surements of the roll and pitch angles can be used to form
the gravity vector, which could alternatively be obtained
directly from an on-board inclinometer. In terms of motion
estimation, the gravity vector reduces our rotational search
space down to a single rotation about a known axis.

As opposed to IMUs, cameras generally capture enough
information in a pair of images to estimate both rota-
tional and trandational components of motion. However,
due to the projective nature of image formation, distance
information is lost and only the trandational direction, but
not magnitude, can be recovered. The successful fusion of
information from inertial sensors with image information
has numerous applications. For example, for augmented re-
ality, accurate registration is required to seamlessly overlay
artificial objects on a real view. Azuma et al. [3] created
a hybrid inertial-vision tracker where a vision-based algo-
rithm refines orientation estimates provided by an inertial
sensor. Recently Burschka and Hager developed a vision
approach to SLAM [4]. This approach circumvented the
problems caused from drift in the inertial measurements by
using a vision algorithm to estimate directly the relative
pose of the camera between frames. In addition to these
examples, thereis also the InerVis Workshop [1] dedicated
solely to the integration of inertial and vision sensors.

One drawback to the approaches just mentioned is that
the vision component requires some successful feature or
target tracking. In [4] the pose is obtained by locating
and tracking landmarks, while in [3] tracked image fea-
tures provide the refinement to the orientation estimate.
Sophisticated feature extraction and matching agorithms
[11], [8] must often be tailored in different environmentsto
achieve satisfactory results. Notwithstanding an impressive
volume of research dedicated towards this problem, there
are many scenarios (depending on properties of the imag-
ing sensor, or scenes and objects with repeated textures)
for which features cannot be successfully matched. Take
for example Omnidirectional camera systems, which have
become synonymous with mobile robots. The panoramic
view which makes such sensors so appealing is aso being
represented by relatively fewer pixels (per viewing angle).
Combined with the projection geometry of such sensors,
this complicates successful feature tracking.

Although we will not rely on finding correspondences
between two images, we still must not abandon local image
characteristics altogether. Previously, Aloimonos and Hervé
[2] showed the rigid motion of planar patches can be



estimated without correspondences using a binocular stereo
setup. More directly related to the task of planar ego-
motion in arbitrary scenes, Roy and Cox [10] treated this
approach by statistically modeling the variance of inten-
sity differences between points relative to their Euclidean
distance. This model is used to estimate the likelihood
of assumed motions. Geyer [6] proposed a 6D Radon
transform on the space of Essential matrices parameterized
by ordered pairsin the rotation group SO(3). Whereas both
proposed techniques address the general motion problem,
we are concerned with the restricted 3-parameter subprob-
lem enabled by the presence of a gravity vector obtained
from an onboard IMU.

We treat this motion estimation problem with a general-
ized Hough transform on the space of three-parameter mo-
tions. This transform processes features directly, rendering
the search for matching pairs between images unnecessary.
By decoupling the search for the one remaining rotational
parameter and the trandational direction, we reduce the
complexity of the Hough computation down to a con-
volution of two spherical images. This is advantageous
because spherical convolution enjoys a marked speedup
when performed in the Fourier domain.

The organization of this paper is as follows. In section |1
we will generalize the Hough transform to the space
of three-parameter motions in which we are interested.
We will mold this Hough into a spherical convolution
in Section Il (an introductory exposition on spherical
harmonic analysis is offered in the appendix), and we will
cover the full motion estimation algorithm in Section 111-
A. Experiments follow in Section IV and we discuss
planned future work along with some concluding remarks
in Section V.

Il. MOTION ESTIMATION AS HOUGH

Images processed on board mobile robots are increas-
ingly likely to come from wide-angle or panoramicimaging
devices such as Omnidirectional camera systems. The
projection models for these camera systems are quite
different from the traditiona planar-perspective model. In
fact, for many Omnidirectional systems combining digital
cameras with conic mirrors, the natural image modality is
often the surface of a parabola or hyperbola rather than a
planar surface. For a large class of such single-viewpoint
sensors, the projection geometry is equivalent to first a
projection of scene points onto a sphere, followed by a
stereographic projection to the image plane. This enables
us to unify images from many Omnidirectional sensors
under the canopy of spherical images. In this setting, the
imaging surface takes the shape of a sphere, while the
single viewpoint of the camera would lie at the center
of this sphere. The spherical perspective projection model
maps scene points P € R? to image points p € S?, where
p=P/||P]|.

Now consider such a spherical camera observing a scene
from two different locations and orientations which are
related by the rigid camera transformation (R,T),R €
SO(3), T € R3. If P and Q are the 3D coordinates of the

Fig. 1. A computer controlled wheelchair sporting numerous
sensing devices, including a laser range finder, IR proximity
sensors, encoders for odometery, an IMU, and an Omnidirectional
camera.

same world point as viewed from the two camera frames,
then the relationship between P and ) can be determined
from the relative pose of the cameras. Q = RP +T. Since
the projection of P, @ to image points p, ¢ will not retain
any information about the distances of the points from the
camera center, we can only infer that three vectors Rp, q,
and T lie on the same plane. This condition gives rise to
the traditional two-view epipolar constraint:

(Rpx ¢)TT =0 1)

Notice that this constraint is independent of the translation
vector’s scale, so only the direction of translation can be
recovered without prior knowledge of the environment. To
reflect this we will write 7' as a unit vector explicitly
defined by two rotations: T’ = R, ()R, (3)es. Here R, ()
is a rotation about the Z-axis by the angle +, and €3 is
the unit vector representing the north pole (Z-axis). The
epipolar constraint (1) then becomes

(Rp x )" (R.(v)Ry(B)é3) =0 2

This motion space is five dimensional (three for orientation
and two for direction), but we would like to remove some
complexity by integrating information from an onboard
IMU. For many off-the-shelf IMUs, the recorded inertial
measurements come in the form of angular velocities about
the three canonical axes of R3. Two of these measurements,
the angles of Pitch and Roall, can be combined to determine
the gravity vector. We would like to fuse this partia ori-
entation information with our image information to reduce
the dimensionality of our unknown parameter space. The
gravity vector acts as somewhat of a reference vector since
it has the effect that we can rectify our camera coordinate



frames so that the rotational component linking the two
cameras is just a rotation about a known axis (without
loss of generality we will aways choose this axis to be
the Z-axis). With the assistance of the IMU readings, our
unknown 3D rotation is reduced to a one-parameter rotation
about the Z-axis R.(«). The epipolar constraint for this
restricted motion is

(R.(a)p x q)" (R.(7)Ry(B)€3) = 0 3)

We now continue with a discussion on how to exploit this
reduced constraint to obtain an ego-motion solution without
having to find image correspondences first.

A. Hough on the space of motions

We shall begin with an introduction to the traditional
Hough transform as it applies to identifying lines in planar
perspective images before illustrating how similar intuition
can be used to identify the correct motion parameters
of a spherical camera. Specifically, we will examine the
continuous case of the Hough transform which is often
identified with the Radon transform. For identifying lines
on a planar image the Radon transform is given as

0) = / / g(z,9)0(p — x cos § — ysin 0)dzdy

Here g(x,y) is the weighting function, in this case an
edge image. This could be computed simply as a gradient
magnitude image. § is a soft characteristic function which
measures how close the edge pixel (z,y) lies to the line
defined by (p, #). Conceptudly, for any line (p, 0), G(p, 8)
counts the number of edge pixels (z,y) which belong to
the line given by p — zcosf — ysiné = 0, weighted by
the gradient magnitudes. As the Radon transform identifies
lines in images, we would like to formulate a conceptually
similar transform that will identify the free parameters
describing the motion of a spherical camera.

A restricted camera motion as described by the constraint
(3) isidentified by three individual rotations. If we parame-
terize the full rotation group SO(3) with ZY Z Euler angles
a, 8, and v so that R(a, 5,7) = R.(7)Ry(B)R. (), we
can rewrite (3) as

(Ry Rip x R3q)"é3 =0, (4)

where Ry = R(0,7v,0) and Ry = R(«,0,0). A camera
motion is now identified with the rotation pair (R1, R2).
For each such motion, we we want to count the humber
of point pairs (p, g), where p is an image point of the first
image, and ¢ the second, such that (p, ¢) satisfies the motion
constraint (4), weighted by the similarity of the points p,

q.

Unlike motion estimation algorithms which rely on
a best-fit minimization, accumulator algorithms like the
Hough transform implicitly account for a large percentage
of outliers. Thus we need not search for the perfect
similarity measure which will eliminate false positives.
The objective is simply to identify a measure which is
dlightly more discriminating than a simple image-based
comparison. Our proposa is to use SIFT image features
[9] which compute distinguishing characteristics such as

local gradient orientation distributions. SIFT features typi-
cally associate a 128 dimensional feature vector with each
feature location. Using this notion of a similarity between
features, we can formulate an integral transform to compute
the validity of each rigid motion:

G(Ry, B) = / / a(p, @)5(((

Here the soft characteristic function § measures how
close the feature pair (p, ¢) comes to satisfying the motion
constraint (4). The weighting function g(p, ¢) measures the
similarity between features p and ¢, and is given as

9(p,q) = {

where ||p — q|| is the measure of difference between two
features. When using SIFT, this difference can be as simple
as the Euclidean distance between two feature vectors.

Before going further, we should make note that the
lone remaining rotational parameter R; = R.(«) is not
a complete unknown. In fact, we can aways integrate
the angular velocity from the IMU to obtain an estimate
for . Although this measurement may be corrupted by
drift, in some circumstances it may still provide an initial
starting value to help reduce the possible search space.
This scenario motivates us to decouple the rotational term
Ry from the tranglational component of motion. In the
following section we will see how fixing and searching
over « can reduce the computation of our Hough transform
(5) to a simple convolution of two spherical images.

Ry Rip x R3 q)"€3)dpdg (5)

e~ IlP=all if features have been extracted at p and ¢
0 otherwise

1. HOUGH AS CONVOLUTION

Suppose we fix the rotation angle . Thisimplies that we
have completely rectified or " de-rotated” our spherical im-
ages so that our search is now limited to just atranglational
direction. We can rewrite our Hough transform without the
rotational term «, leaving us with

/ / a(p, )5(((

// 9(p,q)6((R3 (p x q))"é3)dpdq  (7)

This formulation is quite different than the one we
originaly started with (5). Previously, for each motion we
were interested in accumulating al the possible feature
pairs (p, q) between two spherical images which satisfied
the epi polar constraint. In this new simplified Hough, we
are interested in accumulating points (p x ¢) € R® which
satisfy the constraint (R2 (p x ¢))T ez = 0. We can equiv-
alently consider normalized points w = % such that
(RTw)Te3 = 0. w isill-defined when ¢ = +p, but this can
occur for only a negligible subset of possible point pairs,
which are easily omitted. Now that we are considering
points w € S2, our similarity function g(p, ¢) must change
accordingly. Since the projection (p; xp2) € R3 +— w € S?
is not unique, our weights are generated by summing over
all pairs which are equivalent in this mapping:

W = > e s(lwx (p x g)ll) ®

p€li g€l

G(Ry) = R3p x R3q)"é)dpdg (6)

Re-examining our Hough transform we see that

/ 9(@)5((BEw)T ) dw. ©)

w

G(R2) =



This Hough is a correlation between two functions defined

on the sphere S2, where the correlation shift in this case is
performed by elements of the rotation group SO(3). We
proceed to show how this correlation can alternatively be
phrased as a convolution of two spherical signals.

Our characteristic function §(w?'€3) is just the image of
the eguatorial great circle, which corresponds to a camera
trandlating along the Z-axis. Now consider what happens
to ¢ asit is rotated by an element of SO(3). We can write
w € S? as a rotation of the north pole vector €3, just as
we did for the trandation vector T (2). By making the
substitution w = Rses, R3 € SO(3), we have

G(Ry) = /R o(Rsc3)5((RT Rse3)Té3)d Ry (10)

Since ¢ is just the image of the equator, a rotation of § by
an element R € SO(3) is equivalent to a rotation by its
inverse RT":

S(RyRs)es)"e3) = O((R3Re)e3)"es)  (11)
Remember that Ry = R.(v)Ry(8) is the rotation that
determinesthe direction of cameratrandationasT = Roé3
(here we have normalized the translation vector to unit
length). (10) becomes

1) = [ gmes(rT) EdR, (12
R3

which is the exact definition of the convolution of two

spherical signals. From the appendix we know that the
Spherical Fourier coefficients of G(T") can be computed

as
N Y
Gin = 2 2l—‘f']. g in 6(l) (13)

where § and § can be obtained from (15). Subsequently,
we can take an inverse transform (14) of G to obtain the
real values of the original Hough space G(T).

A. Algorithm

We now present the full ego-motion estimation algorithm
in Figure (2). It is important to note that the resolution of
our Hough space G(T') depends directly upon the band-
limit we assume for g and 6 when computing the Spherical
Fourier Transform. If the band-limit is chosen to be L, we
will obtain a result for G(T') with 2L uniformly spaced
samples in both angles (6 € [0,7],~ € [0,2m)). We are
now ready to discuss experimenta results displaying the
effectiveness of this approach.

IV. EXPERIMENTS

In this section we will address some practical con-
siderations regarding the computation of our ego-motion
parameters, followed by experimental results.

INPUT
1) Omnidirectional images I1, I, and gravity vec-
tor from two robot locations
OFFLINE
1) Compute the spherical Fourier coefficients 4
ONLINE

1) Generate SIFT feature sets p, ¢ from images
I, L.
2) Map feature point locations from Omni image
to sphere: p; — P € S?, ¢; — Q; € S?
3) Rectify spherical features P, () using gravity
vector from IMU.
4) Discretize search space for « € [0, 27)
5) Initidize amax = 0, Gmax = 0.
6) Replace feature sets with Cartesian product of
feature sets. P x Q.
7) For each «; in search space:
a) w; = R.()P; x Q.
b) Compute g(w) from (8) and then § from
SFT.
c¢) Compute G from (13).
d) Obtain G(T') from inverse SFT of G.
e) if mx(G(T)) > Gmax:
o Omax — Q.
o Set Thax to peak position of G(T).
o Gmax = max(G(T)).
8) Motion estimate is aimax and Tinax.

Fig. 2. The agorithm to estimate three unknown parameters of motion

A. Spherical Images

As we have discussed earlier, the projections of cata-
dioptric systems with a unique effective viewpoint are
equivalent to a projection on the sphere followed by a
projection from a point on the sphere axis to the plane
[7]. If cdibrated, such a sensor enables us to interpolate
spherical perspective images. We used a system consisting
of a Canon Powershot G2 digital camera along with a
parabolic mirror attachment produced by Remote Reality.
The mirror'sfield of view is 212°. The images are mapped
to the sphere by interpolating onto the 8-¢ grid, where
angular sampling is uniform. Figure (3) shows a sample
catadioptric image obtained from a parabolic mirror and
its corresponding projection onto the sphere.

Our first experiment is designed to test the merits of the
full algorithm given in Figure 2 as an effective estimator
of motion. Our input data set is a sequence of synthetic
spherical images simulating a camera moving along a
tilted circle in space. Ten images were generated along
this circle, and so the first and last image positions were
identical. The orientation of the camera at each point was
selected at random. The motion between all consecutive
pairs of images was estimated using the full agorithm
of Figure 2. Each successive run of this experiment was
performed with an increasing corruption applied to the
IMU input gravity vector. Figure 4 shows the estimated



Fig. 3. Top Left: a parabolic catadioptric image. Bottom: the
corresponding spherical image on a uniformly sampled 6-¢ grid.
Top Right: the spherical image as it would appear on the surface
of the sphere
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Fig. 4. A simulated path of a camera moving in acircle in space.
The motion was estimated between every two consecutive images.
Positions marked by circles correspond to noise-free simulation.
The path traced by the '+ isfor noise of 3° in the simulated IMU
measurement. The'*’ isfor noise of 6° in the IMU readings. Note
that for such a significant IMU error (6°) there is still very little
drift in the measurements by the time we return full circle to
position 0.

camera location for three different trias: first with the
input gravity vector as ground truth, second with 3° error
in the input gravity vector, and third with 6° error in the
gravity vector. The motion estimate from each tested pair of
images was then concatenated to produce an estimate of the
trgjectory followed by the camera. We are able to display
this path because the magnitude of trandation was kept
fixed between each position along the circle. As the results
indicate, the estimation is reliable even in the presence of
what would be significant IMU error.

In Figure 5 we show the estimation result for a purely
trandlational sequence. To test the stability for larger ro-
tations against ground truth we also perform artificial
rotations to one image before estimation. The small errors
in the estimated angle of rotation « for rotations up to
60° show that for the estimation is accurate even for large
rotations.

[ ¢

Fig. 5. Top Row: Omnidirectional images taken from camera
locations where relative motion is a pure translation along the X
axis. Middle Left: the translational Hough space for the estimated
motion from the images on the top row. The translational direction
of the X-axisis clearly identified with strong peaks in the middle.
Middle Right: Simulated rotations were tested using the pair of
real translational images. Through al rotations up to 60°, the
largest rotational error found was 5° and this is the trandational
Hough space for one such instance. Bottom: Error in estimated
angle of rotation « for rotations up to 60°.

Figure 6 shows the estimation results for a pair of im-
ages separated by an arbitrary one-parameter rotation and
trandational direction. In lieu of reliable ground truth the
fully rectified spherical images are shown overlayed with
the estimated trandational direction and epipolar circles
(see figure caption for details).

V. CONCLUSION

In this paper we have presented a novel ego-motion
estimation agorithm fusing IMU measurements with visual
information. The vision component of the algorithm suc-
cessfully estimates ego-motion without first having to com-
pute feature correspondences between images. Preliminary
results indicate the Hough transform is a viable tool for
motion estimation, and in our future work we will attempt
to export this algorithm to a mobile robot equipped with
an Omnicam and IMU.

APPENDIX

This section is designed to provide a cursory introduction
to the theory of harmonic analysis on the sphere. Readers
are referred to [5] for a thorough exposition regarding the
computation of a discrete Spherical Fourier Transform and
a proof of the spherical convolution theorem.

As the angular portion of the solution to Laplace's
equation in spherical coordinates, the spherical harmonic



Fig. 6.

On the left is a pair of Omnidirectional images separated by a rotation R, («) and a free trandation. After the ego-motion algorithm was

run, the spherical images were rectified for the correct .. On the right are the rectified spherical images (only the visible band on the sphere is shown
here). The great circles representing a subset of the epipolar circles are overlayed on the images. Points that lie on a great circle in the first image will
lie on the same great circle in the second image if the estimation is correct. From visual inspection this result is very accurate but not perfect. The two
antipodal spherical points representing the intersection of all the circles is in fact also the direction of trandation.

functions Y}, form a complete orthonormal basis over the
unit sphere:

2L+ 1) = m)! im
WPZ (cos0)e™™?,

where P! (cos (#)) are associated Legendre polynomials.
Thus, for any function f(w) € L?(S?), we have a Spherical
Fourier Transform (SFT) given as

fw) S fLYhw) (14)

LEN |m|<I

fio= / F (@) Vh (w)do (15)
weSs?

An important property of the spherical harmonic functions
Y! is
Y (R w) @)U (R), (16)

- Yo

|kI<l

where the (21 +1) x (21 +1) matrices U' are the irreducible
unitary matrix representations of the transformation group
SO(3), whose elements are given by

Ui (R) = e~ Py (cos B)e” ™. (17)

The P!, are the generalized Legendre polynomials. From
(16) we obtain a Shift Theorem relating coefficients of
rotated functions :

h(w) = f(R™'w) & kL, =

> AULER) (19

[k <l

This Shift Theorem (18) shows us that the U! matrix
representations of the rotation group SO(3) are the spectral
analogue to 3D rotations. As vectors in R? are rotated by
orthogonal matrices, the (2{+1)-length complex vectors f,
comprised of al coefficients of degree [, are transformed
by the unitary matrices U".

The convolution of two functions f,h € L2%(S?) is
defined as

(foh)(w) = / f(RéM(RTw)AR (19)
RESO(3)

From the SFT (14, 15) and the Shift Theorem (18), we can
write the coefficients of f « h as

(Frm, = omfsmibf @)

Thisresult is similar to the convolution theorem of function
defined on the real line, which illustrates that the spectral
analogue to the convolution integral is just the multiplica-
tion of Fourier descriptors.
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