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Abstract

Omnidirectional images arising from 3D-motion of a cam-
era contain persistent structures over a large variation of
motions because of their large field of view. This persis-
tence made appearance-based methods attractive for robot
localization given reference views. Assuming that central
omnidirectional images can be mapped to the sphere, the
question is what are the underlying mappings of the sphere
that can reflect a rotational camera motion. Given such a
mapping, we propose a systematic way for finding invari-
ance and the mapping parameters themselves based on the
generalization of the Fourier transform. Using results from
representation theory, we can generalize the Fourier trans-
form to any homogeneous space with a transitively acting
group. Such a case is the sphere with rotation as the act-
ing group. The spherical harmonics of an image pair are
related to each other through a shift theorem involving the
irreducible representation of the rotation group. We show
how to extract Euler angles using this theorem. We study
the effect of the number of spherical harmonic coefficients
as well as the effect of violation of appearance persistence
in real imagery.

1. Introduction

Research in localization or estimation of camera displace-
ment has been dominated by the detection and tracking of
landmarks or salient image features in images. In the vast
majority of discrete motion approaches, the features are
points. Only in the case of differential motion, appearing
in the image as optical flow, direct approaches have been
employed using spatiotemporal image derivatives only. The
latter approaches have been quite successful in case of affine
or projective transformations in significant areas of images
and in particularly in the production of mosaics. Though
designed for image velocities, their hierarchical implemen-
tations can also handle larger motions.

Recent interest from the areas of robotics and graphics
to omnidirectional or panoramic sensors has given rise to a
new group of approaches for localization which are based

on the global appearance of the scene. Panoramic mosaics
or omnidirectional images contain significant scene content
with persistent appearance. Image content can change only
due to change of viewpoint or (dis-)appearing components
but not because of change in viewing direction. The fact that
important structures remain visible enables global naviga-
tion tasks to be performed image-based. Appearance-based
localization [18, 16] has been shown to be successful using
a large set of reference views and applying PCA on them.
Pajdla and Hlavac [29] studied the rotation just around the
optical axis of panoramic systems.

It is worth, revisiting the problem of image transforma-
tions now that the scope involves several image modalities
and that the image deformations are more general. Re-
garding conventional imagery, it is basic knowledge that we
can compute affine invariants and that we can compute an
affine transformation from combinations of image moments
[15, 22] or from Fourier descriptors [30]. Little work has
been done on the computation of 3D-rotations from area-
based features [17, 28, 24]. Though, there has been much
work on projective invariants based on points or curves,
there is hardly work on projective image invariants.

Based on harmonic analysis [13, 7, 20] we propose a
framework for studying image deformations applicable not
only in the plane but also in other domains like the sphere.
This framework involves three steps:

� Identify the domain of definition of the signal as a ho-
mogeneous space and the group acting on it.

� Check whether an irreducible unitary representation
exists for the acting group. Compute the generalized
Fourier transform of the image.

� Compute the transformation (group action) from a
generalized shift theorem. Compute invariants from
the magnitude of the Fourier coefficients.

In this paper, we apply this “recipe” on spherical images
arising from omnidirectional cameras with acting group the
group of rotations SO(3). As a matter of fact there is no
simpler action we can model on the sphere, because even
the equivalent of a plane shift is a rotation on the sphere.
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Our approach can be used not only for camera motion,
but also for template matching and target tracking on the
sphere. The Fourier transform on the sphere is the well
known spherical harmonic transform and the Euler angles
of the group action are computed from the generalized shift
theorem.

The recipe is known from abstract harmonic analysis and
generalizes to non-commutative groups. Chirikjian and Ky-
atkin [7] have published a very good reference involving
engineering applications. A very good introduction can be
found in [9]. Previous work in computer vision on spherical
harmonics addresses range images [3, 19, 6].

The contribution of this paper to computer vision is
twofold:

� We present a new methodology on image processing of
spherical images regarding rotations. Recall that even
simple image shifts on omnidirectional images are ac-
tually rotations. Note that the sphere is the most conve-
nient domain to work with. If we use tangential planes
then we cannot capture larger deformations.

� As an example we show direct rotation estimation from
the spherical harmonic coefficients. This involves a
novel derivate of the spherical harmonic shift theorem
that allows us to express all Euler angles in exponen-
tials. Attitude estimation from global features can be
regarded as a matching problem and can be tuned by
choosing any of the high energy spherical coefficients
we prefer.

How far can such an approach go beyond the sphere and
a 3D-rotation acting on the sphere we do not know. We
know that several results are applicable on the effect of 3D-
rotations on the perspective plane. We discuss these future
questions in the conclusion.

The closest approaches to ours are all approaches that
compute collineations directly from image intensities [4,
23, 25] or their derivatives [21]. General differential mo-
tions of an calibrated camera are estimated in [11] and of
an uncalibrated camera in [5]. The disadvantage of exist-
ing direct methods is that they rely on a series of iterations
involving a warping of the image at every step and in princi-
ple they are iterative closest point algorithms. Our method
would be comparable to the derivative-based methods when
applied hierarchically but our harmonic decomposition al-
lows us to use any of the energy components we want. We
indeed implement and compare with our approach a simple
version of estimation of small rotational motion from the
brightness change constraint equation.

We will start the paper with the math preliminaries pre-
senting comprehensively the spherical Fourier transform.
For a superficial survey of the terms used, the reader is re-
ferred to the appendix. Then we present the shift theorem

and a novel corollary useful for our algorithm in the subse-
quent section. Experiments are conducted with real images,
with artificial or real motion, and our estimation is com-
pared to a conventional flow technique. We conclude with
an outlook and a short description of the biological rele-
vance.

2 The Spherical Fourier Transform

The treatment of spherical harmonics is based on [10, 1]
We parameterize points on the unit sphereS2 using tra-
ditional spherical coordinates, with� representing the an-
gle of colatitude (� 2 [0; �]), and� the angle of longitude
(� 2 [0; 2�)). Thus, any point�(�; �) 2 S2 is uniquely
written as the unit vector

�(�; �) = (cos� sin �; sin� sin �; cos �):

We will write f(�) for any function whose domain is re-
stricted to the unit sphere.

The rotation of a point� 2 S2 is performed by an el-
ementg of the rotation groupSO(3). In this paper we
will parameterizeSO(3) with ZY Z Euler Angles, for rea-
sons that will be evident later. That is to say, any rotation
g(�; �; ) 2 SO(3) can be written as

g(�; �; ) = Rz()Ry(�)Rz(�)

whereRz(�) andRy(�) represent respectively a rotation
around thez-axis by� radians and a rotation around they-
axis by� radians. For anyg 2 SO(3) and functionf(�),
we define the rotation off(�) with the operator�g such
that

�gf(�) = f(g�1�)

We also define the integration of a functionf(�) 2 L2(S2)
as Z

�2S2

f(�)d�

where d� = sin �d�d� is the rotation-invariant volume
measure on the sphere.

Having introduced the notation for the integration and
rotation of a functionf(�) 2 L2(S2), we proceed to intro-
duce the expansion of functions on the sphere.

In traditional Fourier analysis, a basis for all functions
on the line is generated by examining the eigenfunctions
of the Laplacian restricted to the circle. Similarly, on the
sphere, the eigenfunctions of the spherical Laplacian (the
laplacian inR3 restricted to the sphere) are the spherical
harmonic functionsYlm : S2 7! C . These eigenfunctions
form an eigenspace of harmonic homogeneous polynomials
which have dimension2L+ 1. Thus, the2L+ 1 spherical
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harmonics for eachL � 0 form a basis for anyf(�) 2 S2.
The(2l + 1) spherical harmonics of degreel are given as

Y l
m(�; �) = (�1)m

s
(2l + 1)(l �m)!

4�(l +m)!
P l
m(cos �)eim�

whereP l
m are the associated Legendre Functions

P l
m(x) =

(1� x2)
m

2

2ll!

dl+m

dxl+m
(x2 � 1)l:

and the normalization factor is chosen to satisfy the orthog-
onality relationZ

�2S2

Ylm(�)Yl0m0(�)d� = Æmm0Æll0 ;

whereÆab is the Kronecker delta function.
Since spherical harmonics provide an orthonormal basis

for L2(S2), any functionf(�) 2 L2(S2) can be expanded
in this basis:

f(�; �) =
X
l2N

X
jmj�l

f̂(l;m)Y m
l (�; �)

f̂(l;m) =

Z
�2S2

f(�) �Y m
l (�)d�

Theflm are commonly referred to as the spherical harmonic
coefficients off(�).

2.1 The Shift Theorem

The shift theorem for functions on the line examines the
effect on the Fourier space of translations in the function
space. Analogously, forf(�) 2 L2(S2), we would like to
study what effect a rotation in the function space has on the
function’s representation in the frequency space. We first
note that a rotated spherical harmonic of degreel can be
written as a linear combination of spherical harmonics of
the same degree:

�gYlm(�) =
X
jnj�l

U l
mn(g)Yln(�);

where theU l
mn are the irreducible unitary representations

of the rotation groupSO(3):

U l
mn(g(; �; �)) = e�imP l

mn(cos(�))e
�in�:

TheP l
mn are generalized associated Legendre polynomials

which can be calculated efficiently using recurrence rela-
tions.

Each spherical harmonic coefficientfglm of a rotated
function�gf(�) is a linear combination of the coefficients

of the original functionf(�):

�g f̂lm =

Z
�02S2

f(�0) �Ylm(g�0)d(�0); �0 = g�1�

=

Z
�02S2

f(�0)
X
jpj�l

U l
mp(g

�1) �Ylp(�
0)d(�0)

=
X
jpj�l

U l
mp(g

�1)

Z
�02S2

f(�0) �Ylp(�
0)d(�0)

=
X
jpj�l

f̂lpU
l
pm(g):

Suppose we are given two spherical images,If andIg ,
whereIg is related toIf by some unknown rotationR 2
SO(3). We can use equation (1) to solve forR.

2.2 Image Invariants

We would like to recognize properties of functions that
remain invariant under rotations. Specifically, we would
like to identify real-valued functionsK(f(�)) such that
K(f(�)) = K(�gf(�)) for any g 2 SO(3). The shift
theorem allows us to easily identify image invariants. We
define the invariant functionKl(f(�) as

Kl(f(�)) =
X
jmj�l

�flmflm

whereflm are the coefficients off(�). If we let fl be the
(2l + 1) � 1 column vector of all coefficients of degreel
we easily verify thatK(f(�)) is indeed invariant under ro-
tations off(�):

Kl(�gf(�)) =
X
jmj�l

��gflm�gflm

=
X
jmj�l

(
X
jpj�l

�flp �U
l
pm)(

X
jpj�l

flpU
l
pm)

= ( �fl)
T �U l(U l)T fl

= K(f(�))

3. Simplifying rotation estimation
Image invariants offer an efficient and accurate technique
to determine if any two functions on the sphere are rotated
relative to each other. Once it has been verified that two
functionsf(�); h(�) 2 L2(S2) are indeed related by a ro-
tation (9g 2 SO(3) such thatf = �gh), we would like
to obtain the Euler angles of the rotation. The method we
present here is to utilize the shift theorem (1) in order to
retrieve the parameters of the rotation.

If we examine (1), we see that the Euler angle corre-
sponding to a rotation about they-axis, �, is contained
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within the generalized associated Legendre polynomials
P l
mn. For the purposes of estimation, the nature of these

polynomials will make it quite computationally difficult
to accurately extract�. First, we recognize that any
g 2 SO(3) can be written asg(�; �; ) = g1(� +
�
2 ;

�
2 ; 0)g2(� + �; �2 ;  + �

2 ). The unitarity of the repre-
sentationsU l gives

U l
mn(g1g2) =

X
jpj�l

U l
mp(g1)U

l
pn(g2)

We can rewrite (1) as

�g(�;�;)flm =
X
jpj�l

flp
X
jkj�l

U l
pk(g1(� +

�

2
;
�

2
; 0)) �

U l
km(g2(� + �;

�

2
;  +

�

2
))

to obtain the following:

Corollary 1 If flm andfglm are coefficients before and af-
ter theSO(3) actiong, they are related as follows

fglm = e�im(+�
2
)
X
jpj�l

e�ip(�+
�

2
)flp �

X
jkj�l

P l
pk(0)P

l
km(0)e�ik(�+�)flp

It is important to note that the polynomialsP l
mn(0) can now

be calculated easily, and that all three Euler angles now ap-
pear only in exponential terms. We can take advantage of
this corollary to produce the following lemma:

Lemma 2 If flm andfglm are coefficients before and after
theSO(3) actiong, then for anyl > 0, l even, we can write
a linear system of the formAx = b in terms of exponentials
of the Euler angle�.

Proof: We rewrite Corollary 1 as

�gflm =
X
jpj�l

e�ip�Cl
mp

Cl
mp = e�im(+�

2
) �

(
X
jlj�l

e�ik(�+
�

2
)flkP

l
kp(0)P

l
pm(0)e�ik�)

Notice that for an evenl, we have if jmj odd, jpj even,
thenCl

mp = �Cl
(�m)p. If jmj even,jpj even, thenCl

mp =

Cl
(�m)p. With this we can reduce the size of our equations

to get

fglm+(�1)mfg
l(�m) =

X
jpj�l;podd

e�ip�(Cl
mp+(�1)mCl

(�m)p

The number of terms in the summation isl, and so if we
create such an equation for each1 � m � l, we are left
with a linear system of the traditional formAx = b, where
A is anl�l matrix independent of�, x is a vector dependent
only on the exponentials of�, andb is a vector dependent
only on the rotated coefficients. Remark:A is full-rank
if there is sufficient spatial orientation in the images. An
aperture theorem would inform us of the conditions on the
orientations that would lead to singularities inA.

3.1 Estimation Algorithm

We introduce a method for estimating the rotationg be-
tween any pair of functionsf(�), h(�) 2 L2(S2). We begin
by solving a few simple cases first.

3.1.1 Rotation aboutZ

The first case we will examine is one where the second Eu-
ler angle� is zero. This is equivalent to having only a rota-
tion around theZ-axis, and so without loss of generality we
can also assume� is zero and thus we only need to estimate
. We can rewrite Corollary 1 as

�gflm = e�im(+�
2
)Clm

Clm =
X
jpj�l

e�ip(
�

2
)flp �

X
jkj�l

P l
pk(0)P

l
km(0)e�ik(�)flp

Since we have only one unknown, we clearly have an over-
constrained problem in. So, for anyl � 1 we choose, we
have the following minimization problem:X

1�p�l

X
0�m�l

(e�im(+�
2
)Cpm � �gfpm)2 = 0

This system can be minimized easily using nonlinear tech-
niques such as a quasi-newton approach like Broyden’s
method. This method can also be trivially adapted to the
case where� and� are known.

3.1.2 Estimating�

The next case we study is one where only the rotation
around theY -axis needs to be estimated. In this case, we
assume� and are known. However, Lemma 2 presents
us with a system that is linear in exponentials of�, so we
can simply use a non-linear minimization technique as de-
scribed earlier to form an estimate for�.

3.1.3 Estimating�, �, and

If all three Euler angles are unknown, we will use a full non-
linear global minimization approach. One simplification we
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will take is that we will not minimize with respect to all
three unknowns simultaneously.

The first step is to minimize for� and�. For any co-
efficientflm with m = 0, we see that Corollary 1 has no
dependence on. Thus, we have an overconstrained system
in the two unknowns� and�. We form this system from
all equations (derived from Corollary 1) forfgp0, p � l, for
somel > 1. We can use Broyden’s method to minimize for
� and�. Once we have estimates for� and�, the second
step is to estimate. This method was described in section
3.1.1

4 Experiments

In this section we present some results obtained from the
implementation of our rotation estimation algorithms. In
the case where all three Euler angles are estimated, we use
an optical-flow based technique for comparison purposes.

4.1 Spherical Images

Catadioptric systems with a unique effective viewpoint have
been proven to be convex reflective surfaces of revolution
with a parabolic or hyperbolic profile. Geyer and Dani-
ilidis [14] showed that such projections are equivalent with
a projection on the sphere followed by a projection from a
point on the sphere axis to the plane. In the parabolic case,
the second projection is a stereographic projection from the
sphere to the catadioptric plane (also the image plane):

u = cot
�

2
cos�

v = cot
�

2
sin�:

Given a calibrated camera and catadioptric imageI(u; v)
we define its inverse stereographic mapping onto the sphere
as

IS(�; �)
def
= I(cot

�

2
cos�; cot

�

2
sin�):

This mapping allows us to interpolate an image on the
sphere given a catadioptric image. The range of this map-
ping is only limited by the field of view of the original cata-
dioptric system, and so to fully image the sphere a 360Æ

field of view catadioptric system would be required.

4.2 Image generation

To obtain our spherical images, we used a catadioptric sys-
tem consisting of a Nikon Coolpix 995 digital camera along
with a parabolic mirror attachment produced by Remote Re-
ality. The field of view of the mirror used is 212Æ. The size
of the original catadioptric images was 2048�1536 pixels

without compression, and the parabolic mirror filled up a re-
gion of approximately 1400�1400 pixels. The images are
mapped to the sphere by interpolating onto the�-� plane,
where sampling is uniform. Figure 1 shows a sample cata-
dioptric image obtained from a parabolic mirror and its cor-
responding projection onto the sphere.

                                    

Figure 1: On the left is a parabolic catadioptric image. In the
middle is the spherical image represented on the�-� plane, and on
the right is the image displayed on the sphere.

4.3 Discrete Spherical Harmonic Transform

Suppose we are given samples of a functionf(�). We
would still like to be able to calculate the Spherical Har-
monic coefficients of the original function using only the
samples. Driscoll and Healy have shown that if a band-
limited functionf(�) has band limitb (flm = 0; l > b),
then the function can be recovered exactly from the sam-
ples, provided the samples are uniform in� and� and there
are at least2b samples in each. This is important because
it allows us to compute the Spherical Harmonic coefficients
using only the samples of the original function:

flm =
�2

2b2

2bX
j=0

2b�1X
k=0

f(�jk) �Ylm(�jk); l � b and jmj � l

where�jk = �(�j ; �k), and�j = �j
2b , �k = �k

b
. These

coefficients can be computed efficiently (with an FFT along
�). For more information, readers are referred to Driscoll
and Healy [10, 1].

4.4 Comparison method

We also implement a rotation-estimation based on optical
flow for comparison purposes. To calculate the flow on the
sphere, we use the technique described in [8]. The flow
equation is

I� _p� +
1

sin �
I� _p� = �It;

whereI�, I�, andIt are the spatial (in the�,� directions),
and temporal image derivates. The flow vector on the plane
tangent to the sphere is( _p�; _p�; 0)T . If p is a point on the
sphere and_p is the flow at pointp in cartesian coordinates,
then we have_p = ! � p, where! is the angular velocity
about the rotation axis. After calculating the flow on the
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sphere, we have an overconstrained system for the unknown
!. If we assume the the flow is small, we haveR = I + !̂,
whereR = g(�; �; ) and!̂ is the skew-symmetric matrix
corresponding to!.

4.5 Results

We first present the results of our estimation algorithm ap-
plied to artificially rotated spherical images. Figure 2 gives
an example of a spherical image and its synthetically rotated
counterpart. The first test we perform is the estimation of
all thee Euler angles using the technique described in sec-
tion 3.1.3. In this case the rotation is known, and so we can
easily verify the accuracy of our estimation. We tested the
algorithm with three different degrees of Spherical Harmon-
ics (i.e. the system minimized only consisted of harmonics
up to a certain degree). Table 1 presents the estimated rota-
tion angles.

                        

Figure 2: Rotated Images. On the left is the spherical image
generated by the catadioptric system. On the right is the same
image synthetically rotated byg(�; �; ) = g(60Æ; 45Æ; 270Æ).

Angle l � 5 l � 8 l � 16

� = 60Æ 60:12Æ 59:98Æ 60:22Æ

� = 45Æ 45:06Æ 45:03Æ 45:13Æ

 = 25Æ 24:91Æ 25:12Æ 25:10Æ

Table 1: Results from running non-linear minimization over all
three angles for artificially rotated images.l value implies that no
coefficients with degree greater thanl were used.

We now examine the effect on our estimation technique
when we violate the assumption of appearance persistence,
which is modeled with clutter in the scene. Figure 3 shows
two similar images, with the only difference being a human
being has entered the scene in the cluttered image. We at-
tempt to estimate the rotation between the original reference
frame and a cluttered image which has been rotated relative
to the reference frame. Table 2 displays some results for
different amounts of clutter in the images.

In addition to clutter, we also study the estimation
method’s response to scalings of the image. Table 3 shows
how accurately the rotation is estimated when the scale fac-
tor of 10% is used.

                        

Figure 3:Clutter Images. On the left is a reference frame, and on
the right is the same image with a human in the scene.

                                    

6% 10% 13%

Figure 4:Clutter images thresholded to display quantity of clut-
ter. Percentages refer to the number of pixels affected.

We now present some results from images generated by
physical rotations of the mirror. Since the parabolic mirror
does not image an entire sphere, rotations of the mirror nat-
urally reflect appearance of clutter in the scene. Rotating
the mirror about its optical axis is equivalent to having only
one non-zero Euler angle (Figure 5). We estimate this sin-
gle angle using the technique described in section 3.1.1, and
some results are shown in Table 4.

                        

Figure 5:Rotated Images. Two spherical images from a sequence
of catadioptric images rotated relatively about the mirror’s optical
axis.

We now attempt to estimate all three Euler angles
from rotated image generated by physical rotations of the
parabolic mirror. We use directly the technique explained
in section 3.1.1. Ground truth was calculated with physical
measurements and verified by fitting the global rotation to
images. Results are in Table 5.

It is important to note that for a small rotation in real
data, the Euler angle representing a rotation about theY -
axis (�) is underestimated. We can attribute this in part to
the nature of the catadioptric camera setup. The bar that
fixes the camera to the parabolic mirror is coincident with
the camera’s optical axis. This results in a black region
around the north pole in all catadioptric images. For any
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Angle l � 8 l � 16 Flow l � 8 l � 16 Flow l � 8 l � 16 Flow

� = 15Æ 14:96Æ 14:96Æ 14:88Æ 14:57Æ 14:83Æ 14:76Æ 14:19Æ 14:19Æ 14:45Æ

� = 13:8Æ 13:87Æ 14:03Æ 13:88 13:87Æ 13:81Æ 13:90 13:96Æ 13:96Æ 13:98
 = 12:8Æ 13:01Æ 12:89Æ 12:94Æ 13:11Æ 13:11Æ 13:41Æ 13:74Æ 13:68 13:50

Table 2: Results from clutter estimation. The first column is the ground truth. Columns 2-4 are results of each technique for the first
cluttered image (6% clutter). Columns 5-8 are for 10% clutter, and the remaining columns are the results on the image with 13% clutter.

Angle l � 5 l � 8 l � 16

� = 18Æ 18:64Æ 18:46Æ 18:91Æ

� = 16:3Æ 17:61Æ 17:00Æ 17:15Æ

 = 15Æ 14:63Æ 14:89Æ 14:77Æ

Table 3: Results from running non-linear minimization over all
three angles for images with scale variation.

Angle l � 5 l � 8 l � 16

 = 30Æ 29:96Æ 29:99Æ 30:02Æ

 = 36Æ 36:06Æ 35:93Æ 35:81Æ

 = 45Æ 44:12Æ 44:65Æ 44:71Æ

Table 4:Results from estimating as described in 3.1.1. Three
different rotations were tested.

rotation about theY -axis, this region remains unchanged.
A similar effect occurs also at the border of the mirror. For
example, regardless of rotation, the region imaged on the
sphere does not change, which would not be the case if the
entire sphere were imaged. Also, in comparison, calcula-
tion of the optical flow on the sphere is rather computa-
tionally expensive, whereas very few Spherical Harmonic
coefficients need to be calculated in the approach presented
here.

5. Conclusion
There is significant evidence from biological findings and
in particularly in insects [12, 27] that motion perception
and navigation are based on global matched filters imple-
mented by neurons of almost spherical receptive fields. Our
approach is not a model of such an architecture but pro-
vides the tools for analyzing whether it is possible. In par-
ticularly, it naturally contains the notion of scale in the or-
der of the spherical harmonic coefficients. The results are
very encouraging in particularly regarding the number of
coefficients necessary to recover the unknown attitude. We
might speculate that such coefficients are global encoders
of the image and that rotations can be estimated from a sim-
ple look-up table associating coefficient combinations with
angles.

In this article, we have treated only the pure rotation
case. Though the main apparent motion in omnidirectional

                        

Figure 6:Images of real rotated images on the sphere (small ro-
tation).

Angle l � 5 l � 8 l � 16 Flow

� = �2:4Æ �2:2Æ �2:3Æ �2:2Æ �2:7Æ

� = 9:3Æ 7:2Æ 7:6Æ 7:3Æ 8:1Æ

 = 2:2Æ 2:5Æ 2:4Æ 2:7Æ 1:9Æ

Table 5:Rotation estimates for real data with small rotation.

images is due to rotation and our algorithm is robust to exis-
tence of small translation, it is interesting to extend it to gen-
eral motions which still are group actions. Such ones have
to obey to a global depth description, a good example would
be mappings on the sphere analogous to collineations. We
believe that configurations involving omnicams on air vehi-
cles or mobile robots could thus be covered so that localiza-
tion happens just appearance-based using some reference
views.

A Informal math exposition

This section is not meant as a formal enumeration of the
assumptions we make. It is a rather intuitive description of
what is required to apply the recipe of a generalized Fourier
transform. We assume that the reader is familiar with the
concept of a group. Let us live with an intuitive definition
of aLie groupthat its elements are on smooth manifold and
that the group operation and the inversion are smooth maps
[2]. 1The real line and the circle are Lie groups with respect
to addition and well known matrix Lie groups are the gen-
eral linear group of square invertible matrices, the rotation
groups SO(n), and the Lorentz group.

1The only condition we miss from the formal definition that it has to be
a topological group.
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A groupG is acting ona spaceX when there is a map
G � X ! X such that the identity element of the group
leavesX as is and a composition of two actions has the
same effect as the action of the composition of two group
operations (associativity). For example, the isometry group
SE(2) acts on the planeR2 . The rotation groupSO(3) can
act on the sphereS2. The set of allgx 2 X for anyg 2 G
is called theorbit of x. If the group possesses an orbit, that
means for anya; b 2 X , ga = b for ag 2 G, then the group
action is calledtransitive. For example, there is always a
rotation mapping one point on the sphere to another. If a
subgroupH of G fixes a pointx 2 X thenH is called the
isotropygroup. A typical example of an isotropy group is
the subgroupSO(2) of SO(3) acting on the north-pole of a
sphere.

A spaceX with a transitive Lie group actionG is called
homogeneous space. If the isotropy group isH , it is de-
noted withG=H . The planeR2 is the homogeneous space
SE(2)=SO(2). The sphereS2 is the homogeneous space
SO(3)=SO(2).

Images are usually defined on homogeneous spaces and
their deformations are the group actions. The question
is now, for which groups does a Fourier transform exist?
The answer requires us first to be able to integrate on the
group and on the homogeneous space and second to find
the Fourier basis analogous toeix! on the real line. For the
integration, we ask the group to beunimodular. We are not
going into the issues of Haar measure existence, but we will
just mention the fact that SO(3) is compact and that compact
groups are unimodular. The Fourier series of a group exists
if the group possesses anirreducible unitary representation
where irreducible can be intuitively explained as non having
trivial invariant subspaces [26]. Among other properties, if
considered as a basis it is orthogonal. We are going to use
the irreducible representation ofSO(3) which is the basis
of the generalized Legendre polynomialsP l

mn(cosx).
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