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Abstract— We introduce a novel approach to shape-based
object classification and recognition through the use of a
continuum manipulator. Noticing the fact that when a con-
tinuum manipulator wraps around an object in a whole-arm
grasping, its own shape is indicative of the shape of the
object, our approach enables learning and recognition of object
classes based on the shapes of continuum wraps. It offers the
following advantages: (1) recognition of objects that are not
easily detected by vision, such as transparent objects, and (2)
highly efficient recognition of such objects of varied sizes due
to high-level and rich shape information in each wrap, unlike
recognition based on tactile sensing via conventional grasping.
Simulation and experiments demonstrate the effectiveness of
our approach.

I. INTRODUCTION

Object classification and recognition is a key requirement
for many autonomous robot systems. Over the years, ob-
ject classification has seen major progress from approaches
mainly relying on visual and depth information of object
appearance. However, vision-based approaches can be ren-
dered ineffective due to poor illumination, transparent object
surfaces, and heavy occlusion. Tactile sensing is used as a
complementary means to object recognition.

In this paper, we address the problem of automatic object
recognition based on shape information obtained with a
continuum manipulator guided by tactile and vision sensing.
Humans and animals often rely on touching an object and
exploring its shape to recognize it when vision cannot be
effective. There exists research on detecting and identifying
objects through grasping with tactile sensors attached to a
robotic hand or gripper, but it usually requires a lot of grasps
to capture the shape information of an object [1]. With a
continuum manipulator, whole-arm grasping or wrapping of
an object can be conducted to capture more contact points
at once, and when the continuum manipulator wraps around
an object, its own shape, being compliant to the shape of the
object, is indicative of the shape of the object.

Hence, our study is focused on using continuum robot ma-
nipulation for shape-based object modeling and recognition,
which has not been studied before. We introduce a strategy
to enable a continuum manipulator wrap around a target
object based on sensed contact points between the continuum
manipulator and the object (Fig. 1), interleaving contact
sensing and manipulator motion planning and execution.
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Fig. 1: A continuum robot wraps a cylindrical object.

Once a whole-arm wrapping of the target object is
achieved by the continuum manipulator, the shape of the
manipulator is captured and encoded as a shape feature of
the object. That is, our strategy uses the continuum arm as
a tool to “measure” the object shape. Such a strategy has
the advantage of capturing shapes of objects that are hardly
visible, such as transparent objects, as long as the continuum
manipulator itself is visible. We further present an algorithm
to systematically generate whole-arm wraps of objects and
train a support vector machine (SVM) for classification of
object categories based on the shape information of the
wraps.

For object recognition, we introduce an active algorithm
of conducting wrappings of a target object selectively by
maximizing the probability of recognition and minimizing
the movement cost of the continuum robot. Simulation
and real experiments demonstrate the effectiveness of our
approach.

Section II reviews literature related to continuum manip-
ulation and sensing for object modeling and recognition.
Section III describes the research objective and the problem.
Section IV describes the proposed methods. Simulation and
real robot experiment results are presented in Section V.
Section VI concludes the paper.

II. RELATED WORK

We provide a review of related work in continuum manip-
ulation and shape-based object classification and recognition.

Due to the inherent compliance in a continuum manipula-
tor [2]–[6], it can wrap around an object in a whole-arm grasp
and deform its shape to comply to the object shape. There
exist several autonomous algorithms of generating continuum
graspings [7]–[9] and conducting task-constrained inspection
tasks [10] of known objects in known environments. More



recently, the study in [11] analytically formulates the con-
straints that have to be satisfied to fetch an object in an
unknown cluttered environment perceived through an RGBD
camera on the tip of the continuum manipulator, and in
[12], an approach is introduced to model an unknown object
automatically on-site with an RGBD sensor carried by a
continuum manipulator in a cluttered environment.

Traditionally, object shape has been recognized by vision.
The closest related work to this paper from the vision
literature is [13], which used chords within object contours
to characterize the shape of a 2D object. For the purpose
of manipulation, work has been done in object detection for
grasping [14], grasping by contour [15], grasping unknown
objects by shape [16], [17], object classification from single
grasps [18], and detecting grasping points on novel objects
[19]. A survey explores various vision-based methods for
grasping [20].

Touch sensing has been shown to be effective in exploring
the shape of an object. There is work on guiding compliant
motion of a robot finger or end-effector by tracking tactile
features [21], [22] and for grasping unknown objects [23].
There is also work on recognition and reconstruction of
curved surface patches through touch [24], [25].

In order to ensure a complete coverage of a target area
by touch, a grid is often used to enumerate the poses for a
robotic hand equipped with tactile sensors to visit the target
area [1], [26], [27]. However, these methods do not take
advantage of the adjacency information of contacts.

In [28], dynamic potential fields are used to guide touch-
based exploration of an object to build an object model as
a contact point cloud. Initialized as a uniformly attractive
grid, the field is updated as the sensed contacts increase and
generate repulsive forces to drive the robotic hand to explore
unvisited areas.

To deal with the noise and non-uniform distribution of
tactile data, filtering based on Gaussian Process (GP) [29]
is effective in active tactile exploration to reject any mea-
surements that do not reduce the uncertainty significantly.
Originated from GP, a probabilistic model of uncertainty
based on Gaussian Process Implicit Surfaces (GPIS) [30]
is used in [31]–[33] to guide the haptic exploration towards
high uncertainty.

In contrast to greedy exploration approaches, [34] used a
lookahead policy to predict a sequence of actions optimal
for high recognition certainty and low cost in a few future
steps. It used a triangle histogram descriptor [1] for tactile
recognition.

III. RESEARCH OBJECTIVE AND PROBLEM
FORMULATION

Our goal is to recognize the category of an object by
conducting just a few continuum wraps around the object.
For training, we systematically let the continuum arm wrap
around each object in many different ways, and we use a
chord histogram to describe the shape of the continuum
arm wrapping around the object each time. For testing,
given an object of unknown category, we actively select

continuum wraps to collect its shape information until the
object category can be recognized with high confidence.

We consider a continuum arm with a fixed base and n-
sections. Each section seci, i = 1, . . . , n is a circular arc
when intact, which can be described by three controllable
variables: length si, curvature κi, and orientation φi. Each
section is bounded by its base point and end point. A frame is
attached to the base point of seci with the z axis tangential
to seci as illustrated in Fig. 2. The arm configuration of
an n-section continuum manipulator can be represented as
{(s1, κ1, φ1), ...., (sn, κn, φn)} [4], [9].

We assume that the continuum arm is covered by tactile
sensors to detect the contact made with an object. A contact
region is denoted as contact = {p,n, t,b}, where p is its
center position, n, t, and b are the normal, tangential, and
binormal unit vectors respectively. In simulation, contacts
between a continuum manipulator and an object represented
in polygonal mesh can be efficiently detected using the
algorithm presented in [35].

Fig. 2: Illustration of the frame of seci and the control
variables si, κi and φi [11].

The target objects considered in this paper are mostly
rigid objects (represented in meshes) with sizes that can be
partially wrapped around by the continuum manipulator with
a fixed base. However, the approach can be extended to a
continuum manipulator with a mobile base.

IV. METHODOLOGY

In this section, we present our approaches in detail.

A. Touch-driven Whole Arm Wrapping

We use a progressive strategy to generate a whole arm
wrap of an unknown object based on touch. The arm is
initially placed near the target unknown object in a straight-
line configuration (see Fig. 6 for an example). This strategy
then alternates between generating two types of motion in
small steps: enclosing and advancing, to start and gradually
deepen the wrap around the object until the arm conforms to
the shape of the object sufficiently. Our algorithm is outlined
in Algorithm 1.

For enclosing, the arm tries to make contact with the target
object by curving its section(s). First, sec1 is curved through
increasing its curvature κ1 by a small amount ∆κ (if sec1
is not at its curvature limit). As the result, if the arm is
in contact with the object at d locations, the set of contact
regions is saved as C = {contact1, . . . , contactd}. Next, if
seci (1 < i ≤ n) is the arm section immediately after the



current furthest contact (i.e., closer to the arm tip than the
furthest contact), seci is also curved in order to form more
contacts until it is either stopped by a contact or reaches its
curvature limit, and the process repeats until either secn is
in contact or reaches its curvature limit. Note that in curving
a section, the section length s is also increased by a small
amount ∆s to reach further as the curvature κ is increased.
By curving and extending the arm sections, the arm closes
in upon the object until it contacts the object as much as
possible.

Next, for advancing the arm, our algorithm finds a new
arm configuration that moves the robot a small step forward.
It first finds new positions for the endpoints of the arm
sections using the following strategy. For all the m contacts
that happen on secn (last section), the position of the secn’s
endpoint (arm tip) is extrapolated m times along the direction
of (ni + ti + bi), i = 1, . . . ,m by a small distance δ each
time. The obtained new position will enable the robot arm
move forward to facilitate the further motion of enclosing.
Similarly, we use the contact points that happen on other
sections of the arm to extrapolate the positions of the section
endpoints closest to them. If there are endpoints whose
positions are not modified based on the contact information,
their new positions are obtained by moving the current
endpoint position by a small amount δ along the tangential
direction of the section arc at this endpoint, i.e., along the
z-axis of the local frame at the endpoint. Note that always
using the contacts on secn to obtain the new position of the
arm tip prevents the arm tip from penetrating into the object,
which could happen if the tip’s position is simply extended
along the tip’s z-axis.

Once the new positions of all section endpoints are
obtained, the corresponding new arm configuration can be
solved by constrained inverse kinematics [10]. The robot is
then moved to the new arm configuration, preparing itself
for the next enclosing motion step.

Algorithm 1 terminates when the z-axis of the tip frame
has rotated more than a threshold θ from the initial direction
zs to its current direction or when it fails to solve the whole
arm configuration due to the robot’s physical limits. θ can
be used to control how much coverage of the object surface
is needed in a wrap of the object.

B. Chord Histogram Descriptor

We use a chord histogram to characterize the shape of
the continuum manipulator when it wraps around an object
in some way. The chord histogram we propose is inspired
by chordiograms [13] used for object recognition in 2D
images. Chordiogram is a histogram computed from geomet-
ric relationships described by chords, which are segments
connecting point pairs on the contour of an object. It had
been extended to 3D tactile recognition in [1], which used
3D triangles instead of planar 2D chords – the disadvantage
is that the surface normals are dropped from the original
chordiogram. However, without normals, the lengths and
angles used in [1] can only capture the size and shape,
and not surface curvature. As we believe that the curvature

Algorithm 1: Touch-driven Whole Arm Wrapping

1 tipRotatedAngle = 0;
2 while tipRotatedAngle < θ do
3 Contacts = ∅; Pnew = ∅; i = 1; k = 0;

// enclosing motion step
4 repeat
5 if seci is not at curvature limit then
6 Curve seci by increasing κi by ∆κ;
7 end
8 else if i < n then
9 i = i+ 1;

10 end
11 if seci is not at length limit then
12 Extend seci by increasing si by ∆s;
13 end
14 if arm is in contact with the object at

C = {contact1, . . . , contactd} then
15 Contacts← Contacts ∪ C;
16 if secj is the closest in-contact sec to the

tip and j < n then
17 i = j + 1;
18 end
19 end
20 until secn is in contact with the object or reaches

its curvature limit;
// advancing motion step

21 while k < |Contacts| do
22 if contactk is on secn then
23 m← n;
24 end
25 else
26 m← index of the section endpoint closest

to contactk;
27 end
28 P← the position of the ith endpoint;
29 Pm ← P + δ(nk + tk + bk);
30 Pnew ← Pnew ∪Pm; k = k + 1;
31 end
32 for each remaining section endpoint do
33 m← its section index;
34 P← its current position;
35 z← the z axis at the endpoint; Pm ← P + δz ;
36 Pnew ← Pnew ∪Pm;
37 end
38 armConfig = constrainedIK(Pnew);
39 if Failed to find a valid armConfig then
40 Set Flag “No IK found” and exit;
41 end
42 else
43 Move the arm to armConfig;
44 tipRotatedAngle← the angle from the initial

zs to the current z axis at the tip;
45 end
46 end



information is an important feature, we extend the 2D
chordiograms into 3D Chord historgrams in this paper.

In our 3D extension, we use the length, endpoint angles,
and endpoint surface normals of the 3D chords. We param-
eterize each chord as (l, cθ, cφ, n0θ, n0φ, n1θ, n1φ). l is the
length of a chord. c, n0, n1 are the chord and the normals at
its two endpoints. (θ, φ) parameterizes an angle on a sphere,
represented as polar coordinates for the fewest parameters.

At each wrap, a set of points are sampled along the medial
axis of the continuum arm contacting the object, and each
pair of points makes a chord. Fig. 3 shows chords collected
on example wraps. The sampling density of points cannot be
too low to lose information of the arm shape and cannot be
too high to introduce redundancy in the chords. In practice,
we filter the chords that are too similar to other chords.

(a) Too few chords. (b) Too many chords.

Fig. 3: Chords collected on example wraps are shown in
blue. The normals at the sampled points are shown in green.

After an object is wrapped around several times, the sets
of chords collected are binned into a 7D histogram. Each
dimension of the histogram represents a parameter. Principal
Component Analysis (PCA) is applied to the data to reduce
redundancy.

C. Shape-based Classification of Object Classes

We train a support vector machine (SVM) [36] to classify
object classes based on the shapes of the continuum robot
when it wraps around each object, represented as chord
histograms.

During training, each object is placed in the workspace
of the arm. A number of touch-driven whole arm wraps are
conducted to capture the object shape. Each of them is a wrap
on a certain plane, and it captures the shape of the object
cross section cut by this plane. Different planes for wrapping
are systematically enumerated in the robot workspace to
capture the object shape as completely as necessary. Each
plane is determined by rotating the tabletop plane by α
angle about the x-axis and y-axis respectively (Fig. 4). Angle
α can be used to determine how densely these planes are
enumerated. Note that a wrap is only generated if the cross
section of the object shape cut by the plane is not empty.

At the end of each wrap, a set of chords formed by pairs
of points on the arm is recorded as an observation, later used
for active guidance of object recognition. After all wraps are
conducted on an object, the chords are used to obtain the
chord histogram, one per object.

(a) The robot wraps in
clockwise directions to
capture one side of the
object geometry.

(b) The robot wraps
in counter-clockwise
directions to capture the
other side of the object
geometry.

Fig. 4: A few planes for a bottle are shown, which are
generated by rotating from the tabletop plane every α angle
about x-axis (subfigure (a)) or y-axis (subfigure (b)) until α
reaches 90 degs(black planes). These planes all pass through
the robot base frame since the robot base is fixed.

D. Object Recognition with Active Guidance

Given a new object, object recognition can be conducted
by having the continuum robot wrap around the object to
obtain chord histograms and supplying the chord histograms
to the trained SVM classifier. One important question is how
to conduct the wrapping and how many wraps are needed
for recognition. We propose a strategy to actively guide the
process of determining wraps of the object for recognition.

1) Active Formulation: The core idea is that observations
of an object’s shape and the actions taken to wrap around the
object are related. In contrast to popular greedy approaches,
we choose to optimize an objective function that trades off
between minimum movement cost and maximum recognition
certainty (Eqn. 1). A similar formulation has been used for
a different descriptor and robot platform [34].

The difference of our approach from information gain
approaches is that the latter is greedy and optimizes the
best short-term move, which can miss beneficial features that
may not be immediately rewarding. For example, a feature
that is the most discriminating in the short term can be a
strenuous pose for the robot, costing a large movement cost
before and after. Compare it with a feature that is the second-
most discriminating but minimal-cost movement. A greedy
approach would select the first feature, while our approach
would prefer the second.

We formulate the problem as a Markov Decision Process
(MDP), which searches for a policy π, or a sequence of
actions, that minimizes the objective:

min
π
CT (π) ,

λ

T
E

[
T−1∑
t=0

cm(π(xt))

]
+(1−λ)P(ŷT 6= y) (1)

The first term is the movement cost, and the second is
the cost for incorrect recognition. Minimizing both trades off
between the two terms. In the first term, cm is the movement
cost, calculated on an action returned by some policy π. xt
is the current state, which we define as the chord histogram
ht computed from all observations so far up to time t. T is
the total number of time steps.



In the second term, ŷT is the predicted class, y is the true
class. P(ŷT 6= y) is the probability of misclassification, or
one minus the confidence in the predicted class, which is
simply the maximum probability from a classifier.

2) Test Stage: The observations of all objects from train-
ing (Section IV-C) are loaded. The chords are discretized
to allow for repeatability across different objects, thereby
creating a probability distribution. The discretization step
is each histogram bin center, which exists for all objects.
This discretized observation z is later used to compute
the probability relating two consecutive observations to an
action, which is defined as a movement between two wraps.

To find the policy in the objective function (1), we use
the Monte Carlo tree search [37]. Tree search is a lookahead
policy, which in contrast to greedy policies, explicitly for-
mulates future information and future cost [38]. The Monte
Carlo approximation enables practical lookahead search time,
which would otherwise be expensive.

A tree representing an MDP is similar to a Markov chain,
with actions added to the edges. The purpose of a tree search
is to generate the nodes and edges of a tree using known data,
and finding an optimal sequence of edges from the root to a
leaf.

We define our tree with a node representing each state xt,
and an edge representing each action at+1. Since xt is a
histogram, directly estimating the state space would be high
dimensional and slow. Instead, we only estimate and store
the raw data, observation zt, which is the collection of chords
that compose the histogram, at each node. In addition, zt is
directly sampled from training data, eliminating the need to
model it in a high-dimensional (7D chords) space. To do this,
we will formulate a probability independent of the state and
only depends on the observations and actions.

Action a is defined as a movement between two cross
section planes for wraps. A plane can be represented by a
unit vector normal to the plane, and the movement to change
one plane to the other can be represented by the rotational
transformation between the two unit vectors, which defines
the movement cost in Eqn. (1). ht is the chord histogram
computed from observations z1:t up to time t. h0 is initialized
to empty.

A state has multiple possible outgoing actions, each as-
sociated with a reward Cta . The root is at time step t = 0
and leaves are at t = T (a defined horizon). During the tree
search, each simulation starts at the root, and at each node,
an action edge and child node must be chosen (and created
if they do not yet exist) to continue downward traversal until
the horizon, where reward is computed and backpropagated.

At each node, the next best action at+1, i.e., the move
to the next best wrap, is chosen by the upper confidence
bound for trees (UCT) [39], which addresses the exploration-
exploitation dilemma of which action to visit when multiple
actions are available:

at+1 = arg max
a

(
(1− Cta) + c

√
2 lnN

Na

)
(2)

where Cta is the objective cost in Eqn. (1) computed in a

previous simulation and stored in the node, N is the number
of visits to a tree node, Na is the number of visits to the
outgoing action a from the node, and c is a constant to
balance between the exploration and exploitation terms.

After the next action at+1 is chosen, it is created as a child
edge, leading to a child node. The child node is created by
selecting the next observation zt+1 that follows from the next
action, given the observation zt at the current node.

We define the core probability that relates two con-
secutive observations and the action between them as
p(zt+1|zt, at+1, y). It is computed by sampling directly from
the tallies stored during training stage. Each pair of wraps
in training yield an action a, and the observations at the two
wraps are assigned as zt and zt+1. Given n wraps, n2 such
relationships can be defined.

To select the observation zt+1 for the next node, we
sample from the core probability, marginalized over class
y as the true y is unknown:

zt+1 ∼ p(zt+1|zt, at+1) =
∑
y

p(zt+1|zt, at+1, y)p(y|ht)

(3)
In each simulation of the action selection process, the

traversal starts at the root, and the node- and edge-selection
process is repeated until a given horizon tree depth. When
the traversal reaches a dead end with no more child nodes
before the horizon, a new node is created using the at+1

and zt+1 selection process. One new node is created in each
simulation. The remaining path from the new node to the
horizon is traversed by a rollout policy, which randomly
chooses an action a at each node and does not store the
new nodes.

At the end of a simulation, the reward 1−Cta is calculated
at the leaf at the horizon and backpropagated up to the root
of the tree. The backpropagation is done in the form of
discounted rewards at each node, to keep each node updated
with the newly seen edges and their reward yields. Each
node’s rewards account for the rewards in all the nodes on
its child subpath. Backpropagation and discounted rewards
are standard parts of policy search in MDP and reinforcement
learning, and we refer the reader to [37].

For each tree search, we define a number of simulations.
The more simulations, the more thoroughly the tree is
searched, and the more bushy. At the end of all simulations,
we look up the optimal path from the root to the leaf, by
taking the maximum-reward action edge at each node. We
call each tree search an iteration, as multiple iterations may
be needed.

V. EXPERIMENTS

We implemented our algorithms in C++ and Python under
ROS on a 3.4GHz CPU, and tested them on a 3-section
continuum manipulator. We use the dataset from [1]. In
total, there are 185 objects from 10 categories: 12 apples,
6 bananas, 51 bottles, 21 bowls, 10 cups, 10 donuts, 28
hammers, 32 mugs, 6 teapots and 9 toilet paper rolls. Each
object has the same relative pose to the robot base in the
training and testing stage.



A. Capturing Object Shape

Table I shows the average number of wraps and chords
conducted per object in each category for training the clas-
sifier. Each object requires only 10 or fewer wraps, and
depending on the object dimension, there can be 1, 500 to
3, 000 chords to describe the shapes of the wraps of each
object in our dataset. Some objects, which are flat (such as
donuts), typically need fewer wraps, while objects that are
tall, such as hammers, need more wraps. We use a bin size
7 in constructing the 7D chordiogram. PCA extracted 101
principal components out of 77 to cover 95% of variance,
which further reduces the redundancy in the chordiogram
and speeds up the computation. The time for each wrapping
motion, which involves planning and collision checking for
detecting contacts, is typically about a few hundreds ms.

In contrast, using a conventional robotic hand to capture
the shape of an object through touch requires 364 − 760
wrist poses per object [1] and an average of 20 mins to
perform grasping from those poses to collect contact points
in physical simulation, not including the time necessary for
grasp planning to enable a manipulator reach those desired
wrist poses around each object. Clearly, the introduced novel
method with a continuum manipulator is far more efficient
in capturing shape information of an object due to the
rich information content of each wrap and the efficient
planning algorithm for wrapping. The classifier training time
is significantly smaller with our approach.

Fig. 5 shows some wraps achieved using Algorithm 1
to capture the object shape in different cross sections. For
some objects, such as apples and bowls, the wraps are
closely conformed to the object contour, and for some others,
the wraps also successfully encode the shapes of critical
part information (such as the handle in cups, mugs and
teapots). Fig. 6 shows the snapshots of a few example robot
motions from the initial configuration to the final wrapping
configuration. Each row shows a wrap. Note that in the last
row, the wrap actually stopped inside the mug, which may
capture that the mug is hollow. The parameters in Algorithm
1 used are: θ = 270 degrees, ∆k = 1e − 3 (1/cm) ,
∆s = 1e − 4 cm, δ = 0.1 cm. Animated robot motion can
also be found in the attached video.

TABLE I: The average number of chords and wraps used
per object in each category for training the classifier, and the
average time Twrap per wrap for motion planning + collision
detection.

Category average # chords average # wraps Twrap(ms)
apple 2676 10 400

banana 1816 9.7 190
bottle 1760 10 130
bowl 2090 9.6 230
cup 2317 10 540

donut 1365 5.1 200
hammer 1711 10 110

mug 2557 10 530
teapot 2350 9.8 1200

toilet paper 2944 10 260

Fig. 5: Example wraps used to encode object cross section
shape into the arm shape. Each category has two example
wraps (from top left to lower right): apple, banana, bottle,
bowl, cup, donut, hammer, mug, teapot, toilet paper rolls.

Fig. 6: Snapshots of example motions of wrapping. Each
row shows one wrap from the initial configuration (left sub-
figure) to the final wrapping configuration (right sub-figure).



B. Classification Performance

The average classification accuracy across 100 random
splits of 50% training and 50% testing set is 75.9% using a
linear SVM. The accuracy is slightly higher than the 74.7%
reported in [1], where a triangle histogram is built from
many contacts sampled on the object using a conventional
robotic hand. As shown from the confusion matrix in Fig. 7,
the classifier does well on classifying apples, bottles, bowls,
donuts, hammers, and mugs. However, it does poorly on
bananas, cups, teapots and toilet paper rolls, which is likely
due to the lack of enough training objects in those categories.

Fig. 7: SVM confusion matrix.

C. Recognition with Active Guidance

Five objects (a bottle, a hammer, a cup, a bowl, and a mug)
are used to test our active recognition algorithm. The results
are summarized in Table II. Since we used a maximum of 10
wraps per object during training, we set the horizon to be 5
at testing. The top 3 predictions sorted by their probabilities
are reported.

For each object, each iteration is a new tree search and
outputs a sequence of wrapping planes for the robot. After
the robot conducts wrapping of the object along each of the
plane, the chords describing the shape of the arm in the final
wrap are collected. A histogram is built with all the chords
collected and fed to the classifier to make the prediction. If
the prediction is strong, i.e., the probability for the predicted
category is more than 0.5 and at least 3 times higher than
the probability of the next category, the recognition process
is terminated. Otherwise, a new tree search is conducted
in the next iteration. The search results guide the robot to
conduct additional wraps, and the corresponding new chords
are added to the existing histogram to make a new prediction,
i.e., the histogram is accumulated in iterations. This process
is repeated until a strong prediction is made.

As the histogram becomes more filled in with more itera-
tions, the recognition probability also increases. For objects
that the classifier does well, such as hammers and bowls,
they may be recognized correctly as soon as iteration 1.
The results from 3 iterations for all the tested objects are
presented.

Note that a tree with depth 5 can output 5 wrapping planes
to be used by the robot at most. We filter the duplicate

planes as they do not provide new shape information. In any
iteration, if all the wrapping planes found have already been
used in the previous iterations, we put a 0 as the number of
wraps, as shown in iteration 3 for object mug.

D. Real Robot Wraps

We tested using the real OctArm robot to wrap two real
objects, one cylindrical and one rectangular, by teleopera-
tion [6], and captured the wraps using a Microsoft Kinect.
We also save the arm configurations of the wraps. Fig. 8
compares the image of a wrap for each object by the real
robot to the corresponding simulated version at the same
arm configuration. Even though each real wrap is slightly
deformed upon contacting the object, the similarity between
the real wrap and the simulated wrap, which does not
consider deformation, is still very high. This means that the
shape descriptor of the simulated wrap is very similar to
that of the real one in capturing the real object shape, which
indicates the real-world feasibility of the introduced method
for object recognition based on continuum arm wraps.

Fig. 8: Comparing real wraps and the corresponding sim-
ulated wraps around a cylindrical object (top) and a rect-
angular object (bottom) respectively. In each row from left
to right: the segmented RGBD point cloud of the OctArm
wrapping the object, segmented OctArm shape, reconstructed
OctArm shape in simulation.

VI. CONCLUSION

In this paper, we present a shape-based object classifi-
cation and recognition approach through continuum manip-
ulation. The main idea is that the shape of an object can
be effectively and efficiently captured by the shapes of a
continuum manipulator wrapping around the object. A real-
time, progressive touch-based motion planning algorithm
enables a continuum manipulator to wrap around an object
based on tactile sensing. The shapes of different continuum
wraps around different objects are used to train an classifier
of object categories very efficiently, and the effectiveness has
been tested with 185 objects of 10 categories. An algorithm
for active guidance of object recognition allows an object to
be recognized with just a few continuum wraps. As the next
step, we plan to conduct more real experiments to further
verify the approach.



TABLE II: Active recognition performance (horizon=5).

Object iteration1 iteration2 iteration3
prediction probability # wraps prediction probability # wraps prediction probability # wraps

bottle
bottle 0.39

3
bottle 0.42

1
bottle 0.7

2mug 0.19 mug 0.14 mug 0.05
banana 0.08 banana 0.1 teapot 0.04

hammer
hammer 0.77

2
hammer 0.81

2
hammer 0.83

1bottle 0.04 bottle 0.03 banana 0.03
cup 0.03 banana 0.03 bottle 0.02

cup
cup 0.51

3
cup 0.56

2
cup 0.57

3mug 0.09 mug 0.11 mug 0.12
bowl 0.08 bowl 0.06 bowl 0.06

bowl
bowl 0.52

5
bowl 0.65

1
bowl 0.75

2apple 0.12 toilet paper 0.09 toilet paper 0.05
toilet paper 0.12 apple 0.07 apple 0.04

mug
mug 0.46

3
mug 0.69

2
mug 0.69

0apple 0.14 cup 0.08 cup 0.08
cup 0.12 teapot 0.07 teapot 0.07
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visual perception of shape through tactile glances,” in IEEE IROS,
pp. 3180–3186, 2013.

[32] J. Ilonen, J. Bohg, and V. Kyrki, “Fusing visual and tactile sensing
for 3-d object reconstruction while grasping,” in IEEE ICRA, 2013.

[33] Z. Yi, R. Calandra, F. Veiga, H. van Hoof, T. Hermans, Y. Zhang, and
J. Peters, “Active tactile object exploration using gaussian processes,”
in IEEE IROS, 2016.

[34] M. M. Zhang, N. Atanasov, and K. Daniilidis, “Active end-effector
pose selection for tactile object recognition through monte carlo tree
search,” to appear at IEEE IROS, 2017.

[35] J. Li and J. Xiao, “An efficient algorithm for real time collision
detection involving a continuum manipulator with multiple uniform-
curvature sections,” Robotica, vol. 34, no. 07, pp. 1566–1586, 2016.

[36] B. Scholkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2001.

[37] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Transactions
on Computational Intelligence and AI in Games, 2012.

[38] W. B. Powell, Approximate Dynamic Programming, ch. 6, pp. 197–
221. John Wiley & Sons, Inc, 2010.
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