
Trinocular Stereo for Non-Parallel Configurations

Jane Mulligan and Kostas Daniilidis
GRASP Laboratory,

University of Pennsylvania,
Philadelphia, PA, USA

Abstract

The constraint of a third camera in stereo vision is a use-
ful tool for reducing ambiguity in matching. Most of the
systems using trinocular stereo to date however, have used
configurations where the image planes of all three cam-
eras are coplanar, or can be rectified to be so. In this pa-
per we explore the computation of dense trinocular dispar-
ity maps for non-planar camera configurations which arise
when cameras surround the object to be modeled. Our
approach rectifies the cameras as two independent stereo
pairs. We start with an exhaustive lookup scheme and then
consider retaining only a list ofN disparities per pixel with
maximal correlation values for the right and left pairs. Ex-
perimental results and comparisons demonstrate that both
methods reduce outliers over binocular stereo, and that the
N–hypothesis system trades large lookup tables for some-
what lower density of valid matches.

1. Introduction

Reconstructions from a single stereo pair often have er-
rors and extreme outliers due to ambiguity in matches along
the epipolar line. For applications such as building de-
tailed object models or creating models of humans for vir-
tual environments, identifying and eliminating such points
or patches is critical, but often difficult and expensive. One
well known constraint for reducing these ambiguities is to
add a third camera to verify hypothesized matches. How-
ever, most trinocular systems proposed in the literature ex-
ploit a right triangular [5, 1, 3, 4] and/or parallel [6] camera
triple configuration. The close range scanning tasks we are
interested in are better served by a surround configuration
of cameras, which disallows the triple rectification methods
which simplify these parallel camera approaches.

The trinocular epipolar constraint in stereo vision is
based on the fact that for a hypothesized match[u; v; d]
in a pair of images, there is a unique location we can pre-
dict in the third camera image where we expect to find evi-
dence of the same world point [2]. A hypothesis is correct if
the epipolar lines in the third camera image for the original
point [u; v] and the hypothesized match[u�d; v], intersect.
For edge based systems this means checking a series of rel-

atively sparse hypothesized matching edge points to deter-
mine which are consistent [7, 1, 3]. This correspondence
and verification is simplified if the cameras are aligned or
rectified in an up-down/left-right parallel right triangle con-
figuration, where epipolar lines are made parallel to the hor-
izontal and vertical scanlines [1]. For dense disparity calcu-
lation, Okutomi and Kanade [6] used a linear parallel con-
figuration of cameras in their multibaseline system. They
exploited a third view by summing pairwise SSD values re-
ferred to common1
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Figure 1. Trinocular camera triple.

The configurations we are interested in are similar to
that depicted in Figure 1, where a sequence of cameras sur-
rounds an object to be modeled or a user interacting with
an augmented reality system. To obtain the accuracy we
require for these tasks as well as facilitate merging and
registering of multiple views, we use a fixed strongly cal-
ibrated camera rig. To generate dense accurate depth maps
in such a scenario we implemented 2 trinocular stereo al-
gorithms. Both treat the cameras as 2 independent pairs,
left and centre and centre and right. The first algorithm
combines correlation values from the two pairs by pre-
computing correlation images for ranges of disparity in the
left camera pair, then the computed correlation for each
tested[uR; vR; dR] is added to that precomputed for the
corresponding[uL; vL; dL]. This results in large correla-
tion lookup tables for the left image pair. As an alternative
we tested an algorithm which computes correlations over a
range of disparities independently for both image pairs. It
retains only theN highest correlation values for each lo-
cation in each pair. Much like the edge match hypotheses



from the literature, these can be cross checked to see which
are valid and have the highest correlation total. In the fol-
lowing sections we describe the two algorithms in detail and
experimentally demonstrate and compare their results.

2. Full Calculation

We begin by independently rectifying the left and centre
cameras (L andCL) and the centre and right cameras (CR
andR), so that their epipolar lines are parallel respectively.
For the right rectified camera pair every disparitydR to be
searched represents a plane with constantZ, which can be
projected into theL andCL images to compute the corre-
sponding[uL; vL; dL] for each[uR; vR; dR]. This straight-
forward application of the trinocular constraint is illustrated
in Figure 1.

Of course for anyZ-plane constructed fromdR, a range
of dL will be required to match points in the left pair. For
example for the images used later, the right rangeDR =
[�90; 10] corresponds to a left rangeDL = [�74; 67]. Also
because the two pairs are independently rectified, corre-
sponding points in the left pair will not necessarily have
vL = vR, thus all ofuL, vL, anddL depend on[uR; vR; dR].
The calculation is simplified slightly by the fact thatCL
andCR are derived from the same imageC and are re-
lated by the a priori rectification rotationsRCL andRCR.
We can thus precompute a lookup table of locations inCL
equivalent to those inCR by precalculating[uCL; vCL; s] =
RCLR

�1

CR[uCR; vCR; 1]
T , for all image locations.

Our underlying matching measure is modified normal-
ized cross correlation (MNCC) of the form:

MNCC =
2[N
P

ILIR � (
P

IL)(
P

IR)]

(N
P

I2L � (
P

IL)2) + (N
P

I2R � (
P

IR)2)

for an image pair(IL; IR), where sums are over a correla-
tion window of sizeN .

Borrowing from Okutomi and Kanade’s [6] insight that
we need to select matches based on minima (or maxima in
the case of correlation) of the combined matching measure
with respect to depth, we sum the MNCC values for corre-
sponding[uR; vR; dR] and[uL; vL; dL] to obtain a correla-
tion measure which now varies between�2 and+2.

Given the intrinsic and extrinsic camera parameters, and
rectification matrices we can precalculateDL the range of
dl generated by the plane implied by the currentdR. We
calculate and store the right to left (CL to L) correlation
for the left pair, for alldL 2 DL. This gives us a setcL
of k = jDLj planes of correlation values for the left centre
image.

To evaluate a match at[uR; vR; dR], first we calculate
cr = MNCC(CR; R; dR). For the left pair we calculate
the location(uLL; vLL) of points on the depth plane in the
left rectified imageL. Using the precomputed lookup ta-
ble we find the coordinates(uCL; vCL) and finally we can
calculate the disparitydL = uLL � uCL for each point.
Given the corresponding[uCL; vCL; dL] for each point in
the centre right image, we can look up the correlation value

cL at the specified location in the computed left correlation
planes. We can now calculate our overall correspondence
by Scorr = cL + cR.

To summarize the algorithm:
Full Calculation:
Step 1: Precompute lookup table forCL locations cor-

responding toCR locations, and the rangeDL for
eachdR

Step 2: Update the left correlation lookup tablecL to in-
clude alldL 2 DL required for currentdR.

Step 3: Project world points defined by[uCR; vCR; dR]
in the centre right image into the left imageL to
give (uLL; vLL) and lookup(uCL; vCL).

Step 4: Compute sum of correlations:

Scorr(uCR; vCR; dR) = cL[uCL; vCL; uLL � uCL]
+MNCC(uCR; vCR; dR):

Step 5: If Scorr(uCR; vCR; dR) is a peak in the correla-
tion function setDmap(uCR; vCR) = dR.

Step 6: Goto 2

We could also precompute lookup tables for the left dis-
parity maps corresponding to eachdr but for images with
P = m�n pixels this would expand the demands on mem-
ory to an additionalP � (dmaxR � dminR ). What this system
can provide is a baseline of how well our stereo reconstruc-
tion system can perform under the trinocular constraint.

3.N -MAX

We can make two observations about the large lookup
tables of correlation values for the left pair: 1) many of the
correlation values are likely to be low, 2) the correct match
of an image point should be positively and relatively highly
correlated, although it may not be at a peak in the corre-
lation function. Based on these two insights we propose
maintaining a sorted set of the highest correlation values
and their disparities for the right and left image pairs.

We proceed as for usual correlation stereo, calculating
the correlation function over rangesDL andDR for each
pair respectively. Instead of maintaining only a single peak
correlation value and its disparity however we maintainN
disparity planesDi

map andN correlation planesci. D1

map

andc1 will contain the disparity map and maximum corre-
lation values corresponding to the output of the usual corre-
lation stereo.Di

map; i > 1 represents disparities in order of
decreasing correlation value.

After performing correlation on both pairs, we exam-
ine the correlation and disparity maps. For points in
each right disparity planeDi

map;R we predict the cor-
responding,[uL; vL; dL], then we examine the values in
Di
map;L to determine if the predicted values also achieved

a high correlation value and were retained. The valid pair
(Di

map;L(uL; vL); D
j
map;R(uR; vR)) with the highest sum

of correlations valueScorr = cLi(uL; vL)+ cRj(uR; vR) is
selected.



Figure 2. Three camera views.

The algorithm proceeds as follows:
N -MAX:
Step 1: Precompute lookup table forCL locations cor-

responding toCR locations, and the rangeDL cor-
responding toDR

Step 2: For all dL 2 DL calculate MNCC(L;CL; dL),
updateDmap;L andcL.

Step 3: For alldR 2 DR calculate MNCC(CR; R; dR),
updateDmap;R andcR.

Step 4: For j = 1; N

Project world points defined by[uCR; vCR; dR] 2
D
j
map;R into the left imageL to give (uLL; vLL)

and lookup(uCL; vCL).

For i = 1; N

if jDi
map;L(uLL; vLL)� (uLL � uCL)j < 1

^
Scorr(uCR; vCR) < cLi(uLL; vLL) + cRj(uCR; vCR)

Dmap;T (uCR; vCR) = D
j
map;R(uCR; vCR)

Scorr(uCR; vCR) = cLi(uLL; vLL) + cRj(uCR; vCR)

TheN -MAX algorithm has the advantage of reducing
the number of lookup tables to2N , but maintaining the
sorted list of hypothesized correlation and disparity values
will cost as much asP �N � (dmax� dmin) comparisons
or 2P � N � (dmax � dmin) updates. Further the cross
checking of all hypotheses will costN2P subtractions and
additions.

4. Experiments

Figure 2 shows a stereo triple used in our experiments.
The subject is approximately at the vergence point of the
three cameras, 80-90 cm from the image centres. We have
reconstructed the scene using three methods for compari-
son. First we used a basic MNCC 2 camera correlation with
forbidden zone constraint on the centre and right images
(Figure 3). This allows us to evaluate the benefit of adding
the third camera. Second we ran the full calculation ver-
sion of trinocular stereo on the image triple (Figure 4), and
finally we evaluated the N-MAX method (Figure 5) with
varying values ofN . Obviously in the limit for large N, we
will retain the full set of left and right correlation maps and

                        

Figure 3. Disparity map and reconstructed
points for 2 camera stereo.                        

Figure 4. Disparity map and reconstructed
points for full trinocular match.                        

Figure 5. Disparity map and reconstructed
points for multi-hypothesis, N=3.

thus matches available to N-MAX are equivalent to the full
calculation. ForN = 1, N-MAX retains points where 2 in-
dependent stereo correlations agree on depth, and will tend
to be more sparse than either the case where more hypothe-
ses are retained or the single pair stereo.

Figures 3, 4 and 5 show the calculated disparity map and
snapshot from our 3-D viewer showing a rotated view of the
coloured reconstructed points. In all cases matches with low



                                    

Figure 6. Reconstructed views for binocular, full and multi-hypothesis methods rotated
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Figure 7. Match error wrt N. Percentage of
valid matches for full calculation which are
unmatched by N-MAX, wrongly matched or
are matched by N-MAX but not the full calc.

correlation values (< :5 for 2 camera stereo,< 1 for trinoc-
ular) have been discarded. Figure 6 illustrates the quality of
the reconstructed points for the three systems. The improve-
ment resulting from the added constraint of a third camera
is clear from the speckle of matched points in low texture
areas apparent in the stereo pair reconstruction, which has
been eliminated by both trinocular approaches.

The reconstructions from the full and multi-hypothesis
trinocular methods look quite similar. Using the full cal-
culation method as our best approximation of the true scene
disparities, we compared the matches obtained by the multi-
hypothesis system forN = 1; 10. Figure 7 shows a plot
of percentage matching error with respect to number of
hypotheses retainedN . Points matched by the full cal-
culation, but not by N-MAX drop sharply asN increases
from 2 to 6. Points where N-MAX finds a different match
(jdNMAX�dfullj > 1) from the full calculation increase as
N increases, but level off at aboutN = 6. Points matched
by N-MAX but not the full calculation increase slightly, but
remain fairly steady below 5%. These latter are probably
the result of using the forbidden zone constraint for the full
calculation, which cannot be used in the multi-hypothesis
case.

5. Conclusion

Trinocular stereo reduces ambiguous matches and hence
the outliers often observed in 2 camera stereo. Many of the
most efficient approaches to exploiting the trinocular con-

straint however, involve camera configurations which can
be rectified or engineered such that the image planes are par-
allel to the plane of the optical centres. We are interested in
close range reconstruction and modeling of people and ob-
jects by a surround configuration of cameras not amenable
to this type of rectification. In this paper we have explored
two algorithms which exploit the trinocular constraint in
these scenarios. Both rectify and perform correlation on the
left and centre and centre and right camera pairs indepen-
dently. The full calculation method precomputes correlation
planes for the left pair, then uses the trinocular constraint to
lookup the corresponding correlation value for every tested
match[uR; vR; dR]. This method requires large (up to 60
planes) lookup tables of left correspondence values. As an
alternative we proposed a method which computes corre-
lation for a range of disparities for the right and left pairs,
but retains only theN highest correlation values for each
location for each pair. Our experiments showed that out-
liers were significantly reduced over 2 camera correlation
stereo. TheN -MAX hypothesis method reduces outliers
well, but finds fewer valid matches than the full trinocular
calculation. The tradeoff in reducing the retained correla-
tion planes toN then appears to be in losing density of valid
matches, versus the space and time required to manipulate
>> N lookup tables.
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