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Abstract— Mapping an environment with an imaging
sensor becomes very challenging if the environment to be
mapped is unknown and has to be explored. Exploration
involves the planning of views so that the entire environment
is covered. The majority of implemented mapping systems
use a heuristic planning while theoretical approaches regard
only the traveled distance as cost. However, practical range
acquisition systems spend a considerable amount of time
for acquisition. In this paper, we address the problem of
minimizing the cost of looking around a corner, involving
the time spent in traveling as well as the time spent for
reconstruction. Such a local exploration can be used as
a subroutine for global algorithms. We prove competitive
ratios for two online algorithms. Then, we provide two
representations of local exploration as a Markov Decision
Process and apply a known policy iteration algorithm.
Simulation results show that for some distributions the
probabilistic approach outperforms deterministic strategies.

I. Introduction

In robotics, mapping is the recovery of environmental
layouts from measurements obtained by sensors mounted
on mobile robots. Mapping is a very active research
area and a recent survey of the state of the art can be
found in [18]. The task becomes very challenging when
the environment is unknown and when robot pose has
to be estimated from the same measurements used for
the mapping (simultaneous localization and mapping).
An additional challenge in unknown environments is
the issue of visual coverage or better known as visual
exploration. We emphasize the visual aspect of coverage
(as in [10], [17]) as opposed to area coverage meant
either as producing a roadmap [7] or sweeping of space,
for example in the case of vacuum cleaners or landmine
detection. Usually many of the general exploration algo-
rithms produce a redundant visual coverage and are thus
inefficient if visual coverage and mapping is the main
purpose.

Visual exploration is a planning problem facing the
issues of completeness (see everything) and optimality
(in minimal time). Usually optimality is estimated in
terms of traveled distance but such an estimation assumes
that range acquisition can be performed in minimal time
and on the fly. This is not the case with laser scanners
where the robot has first to stay stationary and obtain
a range map before deciding where to go or for stereo
vision systems where computation cannot be pipelined

with image grabbing.

The novelty of this paper is in addressing the problem
of spending time in range acquisition which has not
been accounted for in previous exploration approaches.
The number of reconstructions is implicitly considered
in view planning and in particular in the best next view
problem [15], however, without any optimality claims.

In this paper we consider the specific problem of
finding a view planning strategy so that an occluded
edge becomes visible under the minimal time spent for
reconstruction and traveling. Our algorithm can be used
as a subroutine by a greedy planner (for e.g. as in
[13]), which tries to see the “next” invisible edge of a
polygonal environment in order to reduce the total time
of reconstruction and traveling.

The closest related algorithms are the competitive
exploration algorithms we will refer to in the next subsec-
tion. The cost of reconstruction is addressed by Rekleitis
et al. [14] who use two robots for visual exploration
where one robot employs the function of range acqui-
sition while the other remains in line of sight and its
measurement plan the next view of the former robot. Zlot
et al. [19] present a multi-robot approach for exploration
trying to maximize information gain with minimizing
incurring costs. Burgard et al. [6] assign a new target
point for each of a group of robots so that the cost of
reaching these points is minimized and the amount of
already explored area is simultaneously maximized.

A. Online algorithms and competitive analysis

Traditional algorithms typically operate on the entire
input. In online problems [2] the input is not known
in advance but presented to the online algorithm during
its operation instead. One way of measuring the perfor-
mance of online algorithms is competitive analysis [5]. In
competitive analysis, we compare the performance of an
online algorithm against the performance of the optimal
offline algorithm and consider the worst case ratio. Let
costA(σ) be the cost incurred by an online algorithmA
on the input sequenceσ. Let OPT be the optimal offline
algorithm and letcostOPT (σ) be the cost incurred by
the optimal offline algorithm on inputσ. We say that
the online algorithmA is c-competitive, if there exits a



constantb such that on every input sequenceσ,

costA(σ) ≤ c · costOPT (σ) + b

The competitive ratiois the infimum overc such that
A is c-competitive. We say that an algorithm is com-
petitive, if it has a constant competitive ratio. In robotics,
competitive analysis has been used for various navigation
problems as a measure of efficiency [4], [9], [1], [12],
[8], [11]. In the context of exploration, the competitive
ratio gives us the worst case deviation of the cost of an
exploration algorithm from the cost incurred by a robot
who has a prior model of the environment and still wants
to build a map.

B. Competitive analysis in robot exploration

A 2-competitive algorithm for rectilinear polygons
with bounded number of obstacles has been presented
in [8]. For simple polygons without obstacles, a 26.5-
competitive algorithm has recently been proposed [11].
For polygons with an arbitrary number of obstacles, it has
been shown that there is no competitive strategy [1]. For
the local problem of how to look around a corner, which
is addressed in this paper, a1.21-competitive algorithm
has been presented [12].

All above algorithms make the continuous visibility
assumption that the robot can continuously acquire a 3D
view of the environment without any stop or cost for
this acquisition. This assumption is violated for range
scanners where the robot has to stop and acquire the
locally visible 3D-view. It does not apply for omnidirec-
tional visual stereo reconstruction either, because current
acquisition times do not allow on the fly computation:
the robot can only decide where to move after acquiring
the map.

C. New problem statement

In this paper, we address local exploration strategies
which can arise in global exploration strategies. We make
the following assumptions:

• The 3D-environment consists of vertical edges and
walls and thus can be modeled as a polygon in the
flatland.

• We assume that the robot can localize itself with
respect to an acquired view and that it can register
these views in the same coordinate system. In this
paper, we start with the case of no uncertainty in the
robot’s position estimate.

• We assume that the robot has an omnidirectional
range acquisition system, which means no restric-
tions in the field of view.

• We assume that the robot does not move during
range acquisition.

• We assume that the circle defined by robot’s current
position and the vertex adjacent to the edge to be
explored (figure 1) is free of obstacles.
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Fig. 1. The problem description: The robot, located atx, can see the
edgeE but notE′, the next edge.E′ makes an angle ofθ with the line
passing throughx and the cornery. The optimal offline strategy isP1,
going directly to the extension ofE′ whenθ < π

2
and to go directly to

y otherwise. When robot has continuous vision, by followingP2 along
the circle whose diameter isxy, the robot guarantees a competitive ratio
of π

2
.

In this setup, we consider a robot, located atx, seeing
the edgeE but notE′, the next edge (see figure 1). Edge
E′ makes an angle ofθ with the line passing throughx
and the cornery. The optimal offline strategy is to follow
pathP1, going directly to the extension ofE′ whenθ < π

2
and to go directly toy otherwise. In the online setting it is
not possible to followP1, because its orientation depends
on E′ which has not been seen by the robot yet. When
the robot has continuous vision, by followingP2 along
the circle whose diameter isxy, the robot guarantees a
competitive ratio ofπ2 . This strategy was used in [11] as
a part of the global exploration strategy assuming on the
fly acquisition.

Here, we introduce a new cost measure for the time it
takes to see the next occluded edge as the sum of the time
spent in reconstructions plus the time spent in traveling:

costA(σ) = τN +
d

v
, (1.1)

where τ is the time it takes to make a reconstruction,
N is the number of reconstructions made until next edge
is seen,d is the distance traveled, andv is the velocity
of the robot. The inputσ consists of robot’s positionx,
the position of the corner vertexy, and the angleθ the
next edge makes with the robot’s line of sight (see figure
1). Note that our cost model assumes constant velocity,
however it is possible to incorporate more complicated
dynamics into equation 1.1.

The contribution of this paper is two-fold:

• In a deterministic set-up with no knowledge about
the occluded edge, we present two competitive
strategies.

• Assuming a belief about the occluded edge, we
propose two formalizations in terms of a Markov
Decision Process (MDP) and solve for optimal poli-
cies that maximize the overall expected reward.



In simulations, we compare the four algorithms and we
find out that the MDP policies outperform the determin-
istic algorithms when the beliefs are close to the reality.
The paper is written in the just described order: com-
petitive algorithms, MDP framework, and experimental
analysis.

II. Competitive Algorithms

Let x be robot’s position,y be the corner,D be the
distance from the robot’s current position to the corner,
v be the speed of the robot, andτ be the time it takes
to make a reconstruction. LetεD

v = τ . That is, the time
it takes to make a reconstruction isε times the time it
takes to reach the corner. LettOPT > 0 be the time it
takes the optimal algorithm to reach the point it can see
the next edge (traversingP1 in Fig. 1).

If ε ≥ 1, then the robot goes straight to the corner.
Since D

v ≤ τ , the competitive ratio becomes

τ + D
v

τ + tOPT
≤ 2τ

τ + tOPT
≤ 2.

Otherwise, we propose two algorithms as described in
Table I.

UNIREC(τ, v, x, y)
D← dist(x, y)
C ← circle(x, y)
δ ← τv

D
If δ > 1 go to x
Otherwise

i = 1
Until the next edge is seen

Visit iδ
Reconstruct
i← i + 1

EXPREC(τ, v, x, y)
D← dist(x, y)
C ← circle(x, y)
δ ← τv

D
If δ > 1 go to x
Otherwise

i = 1
Until the next edge is seen

Visit iδ
Reconstruct
i← 2i

TABLE I

THE INPUT x IS THE ROBOT’ S POSITION, y IS THE LOCATION OF THE

CORNER, v IS ROBOT’ S SPEED, AND τ IS THE TIME IT TAKES TO

MAKE A RECONSTRUCTION. THE COMMAND ReconstructDENOTES

THE OPERATION OF AN OMNIDIRECTIONAL RANGE ACQUISITION

AND circle(x, y) IS THE CIRCLE THAT PASSES THROUGHx AND y

AND HAS A DIAMETER dist(x, y). ALGORITHM UNIREC HAS A

COMPETITIVE RATIO OFπ AND ALGORITHM EXPRECHAS A

COMPETITIVE RATIO OF2.23.

A. Algorithm UNIREC

Let C be the circle whose diameter is the line segment
that joins the robot to the corner (i.ex to y). Suppose in
Fig. 1, that during timeτ the robot travels to positionz on
C without leaving the circle. Letδ = ∠xyz = τv

D . Note
that ε = δ. The robot will go to the points onC defined
by δ, 2δ, 3δ, . . . until it sees the next edge without leaving

the circle 1. Let θ ∈ [0, π
2 ] be the actual angle (Fig. 1

between the edge and the line that passes through the
robot’s position and the corner). The competitive ratio of
this algorithm reads:

C =
d θ

δ eτ + d θ
θ eθ D

v

τ + D
v sin θ

Since D
v = τ

δ we obtain

C =
d θ

δ eτ + d θ
δ eδ τ

δ

τ + τ
δ sin θ

=
2d θ

δ e
1 + sin θ

δ

≤ 2( θ
δ + 1)

1 + sin θ
δ

which is increasing withθ. Hence, the worst case is
achieved whenθ = π/2:

C ≤ 2( π
2δ + 1)
1 + 1

δ

=
2δ + π

δ + 1

Sinceδ < 1, the worst case is achieved asδ → 0 and the
ratio becomesπ.

B. Algorithm EXPREC

It is possible to improve this ratio by modifying
the strategy as follows: Instead of visitingδ, 2δ, 3δ, . . .,
the robot increases exponentially its steps and visits
δ, 2δ, 4δ, . . . , 2iδ. Note that during theith-step robot
traverses an angle of2i−1δ and the total angle traversed
so far is(2i − 1)δ. If θ is the actual angle, the robot sees
the next edge as soon as it takesi = dlog( θ

δ + 1)e steps.
The competitive ratio reads:

C =
iτ + δ(2i − 1)D

v

τ + D
v sin θ

The worst case of the ratio of EXPREC is thus 2.2214.
We present the details of this straightforward but lengthy
derivation in the appendix.

III. Probabilistic framework

In most environments, we expect that the robot has
some expectation about the angles formed by vertices
in polygonal environments. For example, most angles
in man-made environments are rectilinear or in case
of doors 180 degrees. In this section, we present a
framework that allows us to represent robot’s belief about
the environment as a probability distribution and show
how to solve for optimal strategies when such beliefs are
available.

A finite state Markov Decision Process (MDP) is given
by a finite set of statesS, a finite set of actionsA,

1The reader may wonder why we do not take the short cuts instead,
which means computeδ and go straight to the point(D cos δ, D sin δ)
and continue with updatingD ← D cos δ. Even though this might
perform better for some values ofτ , it does not improve the competitive
ratio for smallδ: D cos δ ≈ D andD sin δ ≈ Dδ



transition probabilitiesP (r|s, a) of arriving at stater
when actiona is taken from states, and rewardsRa

s,r

from arriving at stater from states via actiona. A policy
π is a function that takes a state-action pair(s, a) and
returns a real number in [0,1], indicating the probability
of taking actiona when in states. An optimal policy is
a policy whose expected return from each state is greater
than any other policy for all states. Given a finite MDP
it is possible to find an optimal policy using dynamic
programming or its variants such as Policy Iteration. A
comprehensive introduction to MDP can be found in [16],
[3].

Suppose we have the distributionP θ(θ) for the dis-
tribution of the corner angles. For example, one can
express the belief that the environment is rectilinear by
choosingP θ(θ) to be a truncated gaussian with mean
90 degrees and a variance representing the uncertainty of
this belief. Another possibility is to keep the histogram
of the angles already observed during the exploration and
to use this histogram as an approximation forP θ(θ). Yet
another possibility is to use Monte Carlo Methods [16]
for reinforcement learning to incorporate the learning of
P θ(θ) into the exploration process. Even though obtain-
ing P θ(θ) is an interesting problem on its own, from
now on we assume that it is given as an input. One way
to model the edge exploration problem is to discretize
the circle whose diameter is the line segment joining the
robot and the vertex using a resolution parameterδ. Let
n = π

2δ and let us double use the notationδ, 2δ, 3δ, . . .nδ
for both the stops on the circle as well as the angles whose
apex is at the vertex.

An MDP model, we will call MDP1, is presented in
figure 2. Statesi represents the state of the robot when
it is located atiδ and has not made a reconstruction
yet. At eachsi it can either decide to move tosi+1 or
make a reconstruction. When it makes a reconstruction
it either sees the next edge in which case it goes to
the stateF and remains there or cannot see it yet. The
latter case is represented by the states′i. From s′i the
only reasonable action is to move. Note that we chose
to discretize the circle defined by the robots location and
the corner, instead of discretizing the whole plane. The
advantage of this approach is the drastic reduction in the
number of states which means a reduction in the memory
requirements and running time of the algorithm.

The actions areRec andMov for reconstruct and move
respectively. The transition probabilities are determined
by the distributionP θ(θ):

P (F|si, Rec) = P θ(θ ≤ iδ)
P (s′i|si, Rec) = P θ(θ > iδ)

P (si+1|si, Mov) = 1
P (si+1|s′i, Mov) = 1

.......MOVE

MOVE

MOVE
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s1 s2 sn−1 sn

s′1 s′2 s′n−1

F

Fig. 2. MDP1 has 2n states wheren = π
2δ

that depends on the
sampling parameterδ and F is the final state. Being ins′i (resp.
si) means that the robot is atδi and has just (resp. not) made a
reconstruction.

All other probabilities are zero. Note that even though we
assumed that the robot has complete control of its motion
by letting P (si+1,j |si,j , Mov) = 1, one can easily
incorporate uncertainty in motion using an appropriate
uncertainty model.

The rewards,Ra
si,sj

, represent the immediate reward
received upon arriving statesj from statesi as a result of
actiona. Since we are dealing with costs, we use negative
costs as rewards we want to maximize.

RMov
si,si+1

= −δD

v

RMov
s′

i,si+1
= −δD

v
RRec

si,s′
i

= −τ

RRec
si,F = −τ

Given a distributionP θ, we compute the optimal policy
that maximizes the expected reward using the well known
policy iteration algorithm [16, pp98]. Policy iteration is
known for its fast convergence properties in practice and
this was indeed the case for our problem. For MDP1,
we observed that the optimal policies move until enough
probability is accumulated and start reconstructing af-
terwards. For example, ifP θ = N (µ, σ), the optimal
algorithm turns out to move an angle ofµ + σ and then
to reconstruct at each step afterwards.

It is possible to obtain a better performance by remem-
bering the last reconstruction made. Letsij represent the
information that the robot is standing atiδ and the last
reconstruction it made was atjδ. Figure 3 illustrates the
transitions for statesi,j . The transition probabilities and
rewards for this new MDP, which we call MDP2, are
given by:
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Fig. 3. MDP2 has n(n+1)
2

states wheren = π
2δ

that depends on the
sampling parameterδ. F is the final state. Being in statesi,j means
that the robot is atiδ on the circle and the last reconstruction was at
jδ.

P (F|si,j , Rec) = P θ(jδ ≤ θ ≤ iδ)
P (si,i|si,j , Rec) = 1 − P (F|si, Rec)

P (si+1,j |si,j , Mov) = 1

All other probabilities are zero.

RMov
si,j ,si+1,j

= −δD

v
RRecsij , si,i = −τ

RRecsi,j ,F = −τ

j

i

The values for state
i,j
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Fig. 4. LEFT: The optimal policy for MDP2. The sampling value
δ used was 5 degrees, therefore the locationi, j in the image above
represents the action when the robot is atiδ and the last reconstruction
it made was atjδ. The vertical column isi and the horizontal columns is
j. The blue upper right half illustrates the inaccessible states. The green
values at the lower right correspond to RECONSTRUCT actions and
the red region in between correspond to MOVE action. The distribution
P θ is according to the distribution on theRIGHT .

The drawback of this approach is the increase in the
number of states, and hence the running time of the
algorithm. The former policy based on MDP1 requires2n
states, whereas the number of states for MDP2 isn(n+1)

2 .
Note that statessij with i < j are not well defined.
The power of MDP2 is illustrated in figure 4, where the
figure on the left illustrates the optimal policy for the

bimodal distributionP θ on the right. Based on MDP1,
in contrast, the robot moves until enough probability
accumulates and reconstructs afterwards and does not
exploit the low probability region as MDP2. We further
illustrate the optimal policies for MDP1 and MDP2 for
various distributions in the simulations section.

IV. Simulation Results

In this section we compare the four algorithms we
describe in this paper.UNIREC and EXPREC are the
two competitive algorithms described in table I. We will
refer to the optimal policy of MDP1 summarized in
figure 2 asPOLICY1 and the optimal policy of MDP2
summarized in figure 3 asPOLICY2 .

A. The underlying distribution is known

The algorithmsUNIREC and EXPREC have per-
formance guarantees regardless of the distributionP θ.
In this section, we try to answer the question: Is it
really worth solving for optimal policies, even whenP θ

is available? The answer turns out to be yes, as the
following experiments show.

We compare the results for MDPs built using the exact
distribution ofθ with the competitive algorithms. In other
words, the instances of the simulations were generated
from the distributions in figure 5 and same distributions
were used to build the MDPs. The sampling parameter
for all the MDPs we used is 5 degrees which is equal to
the bucket sizes of the distributions.

In the following experiment, summarized in table II,
the robot stands on the wall, 10m away from the corner.
This aligns the line of sight of robot with the visible edge,
allowing us to use the full range of[0, π] for θ. Hence,
D = 10m. Each reconstruction takes 2 seconds and the
robot moves with a speed of0.5m/s. The time it takes
to reach the corner is 20 seconds, thereforeδ = 0.1 for
algorithms UNIREC and EXPREC.

P θ UNIREC EXPREC POLICY1 POLICY2
1 43.98 39.40 26.72 28.93
2 57.22 39.42 41.77 35.16
3 48.17 34.88 48.53 34.82
4 43.06 37.63 37.69 27.39

TABLE II

THE RESULTS WHEN THE UNDERLYING DISTRIBUTIONS MATCH THE

BELIEFS ABOUT THE DISTRIBUTION. 1000SAMPLES WERE DRAWN

FROM THE DISTRIBUTIONS IN FIGURE5 (COLUMN1). REST OF THE

COLUMNS PRESENT THE AVERAGE TIME TO SEE THE NEXT EDGE

FOR THE FOUR ALGORITHMS PRESENTED IN THIS PAPER.

Note that Distribution 3, which is uniform in[0, π],
represents the case when there is no apriori information
about the environment. The policies for this case are
presented in figure 6. In this case, all MDP1 can do is
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Fig. 5. The distributions used for experiments: Each bucket represents 5 degrees.Left: Distribution 1 is generated using a gaussian with mean 60
degrees and variance 5 degrees.Middle Left: Distribution 2 is uniform betweenπ

4
and 3π

4
. Middle Right: Distribution 3 is uniform between0 and

π. Right: A bimodal distribution obtained by adding up two gaussians with meansπ
6

and π
2

and a variance of 3 degrees.

to move until enough probability is accumulated and to
reconstruct at every step afterwards, as it has no memory
of the previous reconstruction. MDP2, in contrast, prefers
to move further after a recent reconstruction.
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Fig. 6. Optimal policies for MDP1 and MDP2 for Distribution 3 in
figure 5. Left: The probability of making a reconstruction for MDP1
Right: The policy for MDP2

The next experiment is the same as the previous one
other than the reconstruction timeτ = 10 seconds and
thereforeδ = 0.5 and the results are presented in table III.

P θ UNIREC EXPREC POLICY1 POLICY2
1 53.96 40.94 36.99 37.43
2 68.64 46.49 47.86 53.63
3 61.30 40.82 76.21 46.95
4 56.92 35.24 68.25 43.16

TABLE III

THE RESULTS WHEN THE UNDERLYING DISTRIBUTIONS MATCH THE

BELIEFS ABOUT THE DISTRIBUTION. 1000SAMPLES WERE DRAWN

FROM THE DISTRIBUTIONS IN FIGURE5 (COLUMN1). REST OF THE

COLUMNS PRESENT THE RESULTS FOR RUNNING THE FOUR

ALGORITHMS PRESENTED IN THIS PAPER.

Comparing results in table II and table III we see that
if the underlying distribution is available, the optimal
policies outperform the competitive algorithms. Another
observation is that when the reconstruction is costly
(τ = 2 vs τ = 10) the number of reconstructions become
really significant and POLICY2 outperforms POLICY1.
To illustrate this further we ran simulations that keep the
distribution constant but vary the reconstruction time and
the results are shown in figure 7.
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Fig. 7. P θ(θ) = N (60, 5), but τ varies according to the values in
the horizontal axis. POLICY2 outperforms POLICY1 asτ increases.

B. When the beliefs are wrong

In order to illustrate what happens when the robot’s
beliefs do not match the environment, we use a different
distribution to draw samples for the experiment than the
one we use to find the optimal policies for the MDPs.
For example, forµ = 40 in the left plot of figure 8, we
computed the optimal policies forN (40, 5) and then used
1000 samples fromN (60, 5) for simulations, in order to
create a discrepancy between the robot’s beliefs and the
state of the world.

As in the previous section, in the following experiments
the robot stands on the wall, 10m away from the corner.
Each reconstruction takes 2 seconds and the speed of the
robot is0.5m/s. The time it takes to reach the corner is
20 seconds, thereforeδ = 0.1 for algorithms UNIREC
and EXPREC.

UNIREC EXPREC POLICY1 POLICY2
47.44 34.43 38.16 50.87

TABLE IV

ROBOT THINKS THE WORLD ISN (60, 5) BUT IN FACT THE SAMPLES

ARE DRAWN FROM UNIFORMLY FROM[0, π].

As expected, when the beliefs are wrong, the perfor-
mance of the algorithms UNIREC and EXPREC do not
get affected, since they do not assume any distribution for
the input. However, the results in figure 8 and table IV
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suggest that MDP2 is more sensitive to errors in the
underlying beliefs than MDP1. This is because MDP2
has a more specialized policy than MDP1.

V. Conclusion

We have studied the problem of how to look around a
corner in a polygonal environment given that we want
to minimize the time spent in traveling as well as in
reconstruction. We addressed local optimality regarding
the visibility of the next occluded edge. In this sense, we
differ from Best Next View algorithms which guarantee
visibility without minimizing the cost of achieving it.
Our strategy can accelerate heuristic planning for global
exploration.

Our contribution is in the competitive analysis of the
problem and its formalization as a Markov Decision
Process. In our future work we plan the following thrusts:
to incorporate uncertainty in the position estimates of the
robot, to relax the circle discretization and search for a
more efficient state-action tessellation of the plane, to
study the local problem in 3D by generalizing the form
of the occluding contour, and finally to formulate global
exploration as an MDP.
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Appendix: The competitive ratio of EXPREC

In this section we derive the competitive ratio for
the algorithm EXPREC. Recall that instead of visiting
δ, 2δ, 3δ, . . ., the robot takes exponential jumps and visits

δ, 2δ, 4δ, . . . , 2iδ. During theith step robot traverses an
angle of δ2i−1 and the total angle traversed so far is
δ(2i − 1). Therefore ifθ is the real angle, the robot sees
the next edge as soon as it takesi = dlog( θ

δ + 1)e steps.
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Which achieves its maximum value of 2.2214 when
δ → 0 andθ = π

4 .
Case 2: π

4 ≤ θ ≤ π
2

If θ is slightly larger thanπ
4 , the robot takes a huge

last step and goes all the way to the corner following the



entire half circle. The competitive ratio is:
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As δ → 0, the first term vanishes and the competitive
ratio becomesπ/2

sin π
4

= 2.2214
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