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Abstract The second task group is the placement of sensors at de-
sired positions. We can achieve stereo reconstruction by plac-
To relate measurements made by a sensor mounted on a mechaniggla camera mounted on a gripper at multiple poses sharing
link to the robot’s coordinate frame, we must first estimate the tranghe same field of view. However, to reconstruct the 3-D poSi-
formation between these two frames. Many algorithms have begions, we must know the relative orientation from the camera
proposed for this so-called hand-eye calibration, butthey do not treafoordinate systems. But the only transformations we know
the relative position and orientation in a unified way. In this paperare in the robot coordinates. The same applies for mount-
we introduce the use of dual quaternions, which are the algebraiag cameras on binocular heads. As the cameras are manu-
counterpart of screws. Then we show how a line transformation cailly mounted, a hand-eye calibration is necessary to align the
be written with the dual-quaternion product. We algebraically prov&gamera coordinate system with the tilt-vergence link.
that if we consider the camera and motor transformations as screws, The usual way to describe the hand-eye calibration is by
then only the line coefficients of the screw axes are relevant regartheans of homogeneous transformation matrices. We denote
ing the hand-eye calibration. The dual-quaternion parameterizatioy X the transformation from camera to gripper, Ay the
facilitates a new simultaneous solution for the hand-eye rotatiotransformation matrix from the camera to the world coordi-
and translation using the singular value decomposition. Real-worlgate system, and b#; the transformation matrix from the
performance is assessed directly in the application of hand-eye irobot base to the gripper at thh pose. Figure 1 illustrates
formation for stereo reconstruction, as well as in the positioning odne of the applications of hand-eye calibration, which con-
cameras. Both real and synthetic experiments show the superioriists of a camera mounted on a gripper. The camera-world

of the approach over two other proposed methods. transformationd; is obtained with the extrinsic calibration
techniques. The robot-base-to-gripper transformaBeris
1. Introduction given by the direct kinematic chain from the joint-angle read-

ings. We see that for one pose we have two transformations

Hand-eye calibration is the computation of the relative POSES unknowns: robot-base-to-world, and the camera-to-gripper

tion and orientation between the robot gripper and a Camesd 14 eliminate the base-to-world transformation, we need

mounted rigidly on the gripper. This problem also concern ne motion (two poses) that yields the well-known hand-eye

all sensors that are rigidly mqunted on mech.anlcal Imksl, SUEYuation first formulated by Shiu and Ahmad (1989) and Tsai
as a camera mounted on a binocular head with mechanical d Lenz (1989)

grees of freedom, as well as a camera mounted on a vehicle.

Although the term “sensor-actuator calibration” is actually

more appropriate, throughout this paper we will use the more AX = XB, 1)
well-known term “hand-eye calibration.”

The hand-eye transformation is required in a number Qfpare 4 — ArA
sensing-acting tasks. Using a camera mounted on a grippey s transform
avehicle, we can estimate the position of atargetto grasp orto
reachin camera coordinates. However, the control commands ( R 1 )

;tandB = B;'B;. As every homoge-
ation matrix has the form

can be expressed only in the coordinate system of the gripper ol 1
or the vehicle. Even if the desired control criterion is given in

camera coordinates, we have to know which is the effect oflaWe use boldface capital letters for matridgsarrowed boldface letters for
robot motion in the camera frame 3-D vectorsy, boldface letters for real quaternianschecked italicized fonts

x for dual scalars, checked arrowed boldface for dual vecﬁomd checked

The International Journal of Robotics Research italicized boldface for dual quaternioss The natural inner product of two
Vol. 18, No. 3, March 1999, pp. 286-298, vectors or quaternions is denoted by y, and the cross-product between
©1999 Sage Publications, Inc. 3-D vectors by x y.
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A4 Hence, with an appropriate change of the unknown, we obtain
X i WORLD eg. (5) which can be solved by all the methods solving eq. (1)
BOT B as well as the one proposed later in this paper.

A
Horaud and Dornaika (1995) were the first to apply a si-
X multaneous nonlinear minimization with respect to the rota-
2N tion quaternion and the translation vector. However, the first
simultaneous consideration of rotation and translation in a
geometric way was presented by Chen (1991), who first in-
troduced the screw theory in the hand-eye calibration.

In this paper, we introduce the algebraic entity for a screw:
the unit dual quaternion. Dual quaternions are an extension
of the real quaternions by means of the dual numbers (Study
i%gl; Blaschke 1960), and were first introduced by Clifford
(1873). Dual numbers and dual quaternions were used earlier
in robotics (Walker 1988; Gu and Luh 1987; Funda and Paul
from eq. (1) follows one matrix and one vector equation ~ 1990), and in computer vision (Walker, Shao, and Volz 1991;

Phong et al. 1993). Based on the dual quaternions, we prove
RARx = RxR3, (2)  that:
(Rya—Dify = Rxitp—1Ia. 3

By

Fig. 1. The transformations between different frames at po
1 and pose 2.

1. the hand-eye transformation is independent of the angle

The majority of the approaches regards the rotation estimation and(;[he p||tch o;thl_e camera and hafng motions, and de-
in eq. (2) decoupled from the translation estimation, the latter ~ P€" Ison yonthe l:ne para(TgtershO 1 elrscrfew ers_a
following the former. At least two rotations containing mo- result geometrically proved by Chen (1991); an .
. . . . 2. the unknown screw parameters, including both rotation
tions with nonparallel rotation axes are required to solve the ) . )
. and translation, can be simultaneously recovered using
problem (Tsai and Lenz 1989). Several approaches have been ) "
S o the singular value decomposition (SVD).
proposed for the estimation &y from eq (2): using the ro-
tation axis and angle (Tsai and Lenz 1989; Shiu and Ahmad This is the first algorithm in the literature simultaneously
1989), quaternions (Chou and Kamel 1991), and canonicsdlving for rotation and translation without nonlinear min-
matrix representation (Li and Betsis 1995) (a survey is pramization. The algorithm was implemented and compared
vided by Wang 1992). with a two-step algorithm that separately solvesRoand¢,
Horaud and Dornaika (1995) emphasize the fact that tl#lowing its superior performance. The performance with real
computation of the extrinsic calibration matricgsgiven the data is tested directly in an application. We judge the quality
projection matricesM; from world to pixel coordinates is of the obtained hand-eye information on the task of stereo
an unstable problem. Therefore, they propose the followirmrgconstruction using the motor-encoder readings of an active
alternative: assume that the matrix of intrinsic paramefers camera.
remains constant during motion. Then the projection matrix The next section gives an exposition on the properties of
reads dual numbers and dual quaternions. Then, we describe how
- a line transformation is expressed with dual quaternions, and
M;=CA;=( CRy Ciy ). (4)  how we obtain a dual quaternion from th, 7) representa-
. . - tion. The dual quaternion is given as a function of the screw
We introduceN; = CRy; andi; = Cty;. Letus assume parameters, and then we prove the independence result. We

that one extrinsic calibratiod; is known, and replac® =  yescribe our solution via SVD, and end with experimental
A1Y. The unknown is now the world-gripper transformation g its.

Y. Equation (1) can be rewritten as
AY = A1YB or A7*AY =YB, (5) 2. Dual Quaternions

which is just a new homogeneous transform equation. Howhis section outlines briefly the dual quaternions. Firstquater-
ever, if we writeA; *A; as a function of the projection pa- nions are explained, followed by a short description of dual
rameters, we find thaélIlAg is independent of the intrinsic numbers. Finally, the dual quaternions and their relevant
parameter€’: properties are introduced.
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2.1. Quaternions 2.3. Dual Quaternions

Invented by Hamilton (Blaschke 1960), quaternions are dpual quate[nions are defined in asimila[ way to real quater-
extension of the complex numbers.®f. Among other for- nions a<(, ¢) wheres is a dual number anglis a dual vector.
malisms, one definition of quaternionsis as pairsy), where  The operations have the same definitions:
s € R andg € R3. The following operations . .
g1+4q2=(51+52.41+q2). (12)
41+‘£2 = (Sl+i2,¢?1+¢72), (7) )VL(E,(?) — ():E,ké), (13)
A(s, q) (As, Aq), (8)

.. e Wy S .3 %%
4192 = (5152 — 4192, 5142 + 5241 + 41 X q2). (14)

wherex € R make the quaternions a vector space OVer thfyg first two, eqs. (12) and (13), make the dual quaternions a

reals.—_welwill call #—with thg Zero eI9m§n¢0, (_))' The A-module. Addition (12) and multiplication (14) make them
multiplication between quaternions, which is defined as a non-Abelian ring with unit elemett, 0). All three opera-

tions make them an associative algebra. Dual vedtaran

be written as dual quaterniong, Z}’), and their multiplication
possesses the nice property

T - - - -
9192 = (5152 — 4192, 5192 + 5241 + 41 X q2),  (9)

has a unit elementl, 0), and is associative but not commu-
tative. Therefore, the quaternions are an associative algebra,
and since they do not contain zero divisors, they are a division

algebra. The norm of a quatemion is definedigé = 44, e 1o of a dual quaternion is defined|@42 = ¢4, and
whereq is the conjugate quaternids, —q). A subgroup of is a dual number with a positive real part. If the norm has a

](’_regardmg_ only -the multiplication operation '”C'”d?s th%onvanishing real part, then the dual quaternion has an inverse
unit quaternions with norm equal one. For every rotation (el-—1 ~La

PN . q = |ql~"q. If the norm is equal to one, then an inverse
emrrent ofnSdCi)n(S))r?iltaout ?n”?ims(ﬂnn _91) V:':Q an ?(ri‘sgtleihgt element exists and is equal to the conjugate quaternion. If
coIrespo ¢ gu Rﬁ‘:ati qn_t (C?SQ_’)S_ ah) exists q = q + €q’, then the unity conditiogq = 1 can be written
maps a vector e o the vectoiy (0, x)q.

= = 5Ty 3 X
(0,410,492 = (4192, 91 X q2)- (15)

gg=1 and ¢q'+q'q=0. (16)

2.2. Dual Numbers As we shall describe in the following unit, dual quaternions

. . represent general motions of lines and the expreggsigrthat
Dual numbers were invented by Clifford (1873), and furthefs \ 5jq for the rotation of points in the case of real quaternions

developed by Study (1891) in the last century. Adual numbL 5154 trye for the general motion of lines in the case of dual
is defined as quaternions.

f=a+eb with €=0. (10) , . _ ,
3. Line Transformations with Unit Dual
The operations addition and multiplication make them aRuaternions
Abelian ring calledA, but not a field, because only dual num- _ - _
bers with real part not zero possess an inverse element. Af is already known, the rotation of a poip}, to a point
important property is associated with the derivatives of fung2« ¢an t_’e W”ttf!n by means of a unit quatermgmas_the
tions with dual arguments. Since all powersafreater than Productp, = ¢p,q. This form allows the concatenation of

one vanish, a Taylor expansion yields rotations to be represented by a simple quaternion product.
Unfortunately, no such quaternion representation exists for a
f(a+eb) = f(a) + ebf'(a). (11) general rigid transformation that includes translation. We will

explain in this section that the introduction of dual quaternions

Dual vectors are defined in3; with the addition and the ex- allowsar.lgld-transformauon rul_e as simple as the one for pure
rotations; however, not for a point but for a line.

ternal multiplication with a dual number, they make a module o _ N Cw

over the ringA. Dual vectors with orthogonal real and dual A line in spacg with d|rect|0r1_ tTrOUQh a eo!ntp can
parts are a representation of lines®? known as Pliicker be represented with the six-tuplg, i), wherem is called
coordinates. The real part is the direction of the line, and tiiBe line moment and is equal @ x I. The line moment
dual part is its moment. The inner product between two sud# normal to the plane through the line and the origin, with
dual vectors is equal to the cosine of a dual aﬁgieg +ed, magnitude equal to the distance from the line to the origin.
which has a nice geometric interpretatighis the angle be- The constraint3|i|| —landiTim =0 guarantee that the
tween the two space lines, adds their distance. degrees of freedom of an arbitrary line in space are four.
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We next give an answer to the following problem. nondual quaternions, it is sufficient to enforce that the scalar
nondual part be positive to eliminate this ambiguity.

PROB_LEM 1. Aline glyen b)i 't_s dual quat?r”"m =la+ Conversely, the translation can be recovered from the
em, is transformed with(R, ¢) into a linel,. Show thata g 4 quaternion as

unit dual quaternion exists such that= ¢l,q.

Applying a rotationR and a translationto a line(Z,, i), t=29'q. (22)
we obtain the transformed lin@, . m,): The unit dual quaterniog can be written as the concate-
- - nation of a pure translational unit dual quaternion and a pure
la = Rlp, - - (A7) rotational guaternion with dual part equal to zero; i.e.,
my Py x1ly=(Rp,+1t) x Rl, ;
R(p, x 1) + 1 x RI,, §=ex)q.
= Rimy+1 x R, (18)

4. Unit Dual Quaternions and Screws

We change fror_n.vector to quaternion notatlon., Whlc_h MEaMhis section shows that the scalar and the vector parts of the
that the vectot is represented by a quaternion with zerqy a1 quaternion have specific meanings which relate them
scalar parl = (0,). The terms containing rotation cang the kinematic notion of a screw. According to Chasles’s

be easily written with quaternions. The difficulty with theihegrem (Chen 1991), a rigid transformation can be modeled

cross-product is tackled with the identity as a rotatiorwith the same anglabout an axis not through
1 the origin and a translation along this axis. As the screw
0, x §) = E(qi +tq), (19) axisis a line in space, it depends on four parameters which

together with the rotation angke and the translation along
thed (pitch) axis constitute the six degrees of freedom of a
rigid transformation.

We solve the following problem.

wheret is the translation quaternidg, 1), andg istherotation
quaternion(0, g). Using the identity eq. (19), we obtain

la = 4qlg, . PROBLEM 2. Given a rotationR about an axis through the
m, = qmpq+ =(qlpgit + tqlyq). (20) origin an(;i a .translatl.on, f:om.pute the pitcld as vggllas the
2 screw axis given by its direction and moment p@inn).

We define a new quaterniapi = 3¢¢ and a dual quaternion  The directionl is parallel to the rotation axis. The pitch
d = q+eq’. Itcan be easily shown that eq. (20) is equivalerny is the projection of translation on the rotation axis, and is
to therefore equal t8 7I. The not-mentioned anglé, is the
same in both theéR, 7) and the screw representation. To
recover the momenk, we introduce a poing on the screw
axis as the projection of the origin on the axis (Fig. 2).

The coordinate system is shifted to this point and then
transformed. The resulting translation is thin: (I — R)é.

I, +em, = (q +eq)Up + emp) (G + €q'). (21)

Denoting also the lines by dual quaterniagsand?),, we
obtain

I, = glyg.

This formula resembles the rotation of points witr
guaternions.

Lines can thus be rigidly transformed using a single ope
ation (multiplying left and right sides with the conjugate) in
the non-Abelian ring of dual quaternions. The norm

§1? =

44§ =q3+¢qq +4'9
qq +¢€/2(qqt +tqq) =1,

hencegq is a unit dual quaternion. The above relations als
explicitly give the transformation fromi, 7)tog +¢q’. The )
dual partg’ = %tq and the quaterniog can be obtained Fig. 2. The geometry of a screw: every motion can be moﬂdeled
from the rotation matrix by finding the axis and the angle ofS a rotation with anglé about an axis &, with directionl
rotation. If§ is a solution, then-¢ is also a solution. As in and a subsequent translatidlong the axis.
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The so-called pitcle readsd = 177, Using the Rodrigues Itis now straightforward to see that a dual quaternion can also
formula, be written as

RE =& +sin@) x &+ (1—coshl x (I x &), - cog 54 27)
R sin( DA +em) |-
and¢ Tl = 0, it follows that _ o o _
This representation is very powerful since it algebraically sep-
- 1. e 0- - arates the angle and pitch information from the line informa-
€= E(t @i+ COtEI X ). (23) tion characterizing the pose of the screw axis. Moreover, writ-

This pointZ and hence the screw axis is not defined if thd'9 the dualanglé = 6 +ed and the dual vectdr= [ +em,
angled is either 0 or 180, Otherwise the moment vector eq. (27) becomes equivalent to the pure rotation of the nondual
then reads eg. (25). We can easily verify that

- - =4 1-. - - - - 9 v= b4 :’. x
m:cxl:E(txl+lx(txl)c0t§). (24) q = (C0s9/2,1sind/2)

. , _is a unit quaterniogg = 1.
We proceed with the computation of the corresponding

?huea:;rrr;éosnp:ogi:\é(ianngtzi:lc ;igt[;?;%mnemsd’l’m)’compme 5. Hand-Eye Transformation with Unit Dual

The quaternion derived from the rotation matixeads ~Quaternions

- 6 . 0> The concatenation of two rigid displacements or screws can be
(0. g) = (€0S7, Sin El)’ (25)  written as the product of two dual quaternions. &etenote
the screw of a camera motion, adddenote the screw of
hence the moment eq. (24) can be written the motor motion. Motor (hand) and camera (eye) are rigidly
attached to each other. The rigid transformation between them
0. 1. . - e . o : :
sin-m = - (t x g + qot —cos-( " t)]). is unknown, and it will be denoted by the unit dual quaternion
2 2 2 q. The screw concatenation then yields
Using (I 7%) = d and rewriting i =gbg., (28)
singﬂz + ﬂ cosgf _ }(; x § + qof) which is the most compact equation for the hand-eye relation-
2 2 2 ship since the dual quaternion components are 8 and not 12

like in the homogeneous matrices of eq. (1). The scalar part

hichis th t t of the dual partof the dual ter-
(whichis the vector part of the dual partof the dual quater of a dual quaternio# is (a + a)/2, hence

nionq), applying eq. (25), and using = %tq, we obtain

v 1 v < 1 vYS vY3 1 v ¥ .3
i = ( 90 ) < . j%"ft i ) _ < c.osg%- ) Scla) = s@+a)= E(qbq +qbq) = Eq(b+b)q (29)
q 3(qof +1 x §) sin5l = §ScB)§ = Scb) §4 = Sc(b).
_dgjpt
€ R sz . . According to eq. (27), the scalar parts are equal to the cosine
sinm + 4 cosl :
2 2 2 of the respective dual angles:
(26)
coslateda) _ Oy + edy)
Every functionf of the dual numbers obeys the rule 2 2 ’
which is equivalent to
fla+eb) = f(a) +ebf (@), a
6 6 .6, N
hence cosE” = cosEb and d,sin E“ =dp smEb.
cos(e + ed) _ cosg _ g sing Hence, the angle and the pitch of the motor screw are equal
o 2 € 2 2’ to the angle and the pitch of the camera screw; therefore the

angle and the pitch remain invariant under coordinate transfor-
mations. Thisis also known as the screw congruence theorem
0+ ed 9 d 6 (Chen 1991), its proof without dual unit quaternions is, how-
) = smé + 65 COSE- ever, considerably longer than the one-line proof in eq. (29).

and

sin(
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The fundamental equatian= §b4 consists of four dual
equations. Since the scalar parts are equal, only the vector
components contribute to the computation of the unkngwn ag—qb = 0,
. . . (a'q —qb") + (ag' —q'b) = O
in% 0,d) = §(0 sine—bf;f —sine—b“(o Iz;);
sin 2 ©.a) =40, 2= 2 1504 We keep in mind that from each of the two equations above
the scalar part is redundant, because they are equivalent to
eg. (30). Hence, we have in total six equations with eight
unknowns, which can be written in matrix form as follows.
Leta = (0,a) anda’ = (0,a’), as well ash = (0, b) and
b = (0, 5/). The quaternion equations above can then be

which is nothing other than the motion of the lines of the screWritten as a matrix vector equation
axes. - -
Thus, (ja—b [a+blx O3x1  Osxs )( q )—O
-/ -/ -/ -/ - - - - ’ — U,
1. the hand-eye estimation is independent of the angle an @—b la+blc a=b la+b]x 1
the pitch of the camera and the motor motions, and (31)
2. the . hand-gye 'callbratlon S equwalept o the 3'vahere the matrix—we will call itS—is a 6 x 8 matrix, and
motion-estimation problem from 3-D line correspon-, T T~ . .
) the vector of unknowngg’ , ¢’*) is 8-dimensional. We de-
dences, where the lines are the screw axes of the motors, "~ . . . .
note with[a], the antisymmetric matrix corresponding to the
and the cameras. .
cross-product witla.
We should note here that all other hand-eye calibration Recall that we haye two constra_ints on the unknowns so
methods make use of the rotation angle and the pitch, at le#i3#t the result is a unit dual quaternion
at the translation-estimation step of eq. (3), which turns out
in eq. (30) to be unnecessary. Having shown that the problem

is equivalent to the 3-D motion problem, we already know . . . .
from computer vision (Sabata and Aggarwal 1991) that thive could think that six equations pLus two constraints would

minimum requirement is two nonparallel lines. Hence, théuffice; however, the vectois andb are unit vectors and

- -/ . - -
minimal data for hand-eye calibration are two motions witfihe vectorsa’ andb are perpendicular té andb, so that
nonparallel rotation axes. two equations are redundant. This is nothing new, since it is

well known that at least two lines are necessary so that 3-D
motion can be estimated from their correspondences (Sabata
and Aggarwal 1991). Thus, we need at least two motions of
pe hand-eye system to get two lines from the corresponding
crews. Chen (1991) also recognized this fact, and analyzed
he unigueness of the problem. He geometrically proved that
even in the case of two parallel rotation axes we can compute

Ifthe angle®, , are not 0 or 369, the sines can be simplified,
yielding

0,d) = (0, b)q. (30)

qTqg =1, and ¢7¢ =0. (32)

6. Estimation of the Hand-Eye Screw with SVD

Although we showed in the last section that only the vectcg
part of the dual quaternions is relevant for the estimation
the unknown hand-eye unit dual quaternigret us keep the

same notatio@ andb for (0, b) and (0, é), respectively. all parameters up to the pitch.
We split the fundamental eq. (28) into the nondual and dual Suppose now that > 2 motions are given. We construct
parts, and we obtain the 61 x 8 matrix
a = qbg T=(SI sy ... sT)", (33)
a' = qbg' +qb'q+q'bq.

which in the noise-free case has rank 6. Since in the noise-
Multiplying on the right withg and applying the identity free case the equations arise from natural constraints, the null
-, space contains at least the solutigng’). Itis trivial to see
99 +49=0 that an additional orthogonal solution (84«1, ¢). Hence,
in the first term of the right-hand side of the first equatiofne matrix is maximally of rank 6. If all axdsare mutually
yields parallel, then the rank of the matrix is 5. The proof is quite
lengthy and will not be given here; however, it is plausible
aq = qb, that in this case a three-parameter family of solutions cannot
be constrained by the two conditions of eq. (32).
We compute the singular value decompositin =
which may be rewritten as UX VT, whereX is a diagonal matrix with the singular values,

aq = —aq +qb +q'b,
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the columns o/ are the left-singular vectors, and the columns 1. Givenn motor motions(d;, b;) and the corresponding
of V are the right-singular vectors. If the rank is 6, then the camera motionsa;, a;), check if the scalar parts are

last two right-singular vectors; and vg—corresponding to equal. Then extract the line directions and moments of
the two vanishing singular values—span the null space of  the screw axes and construct the maWiin eq. (33).
T. We write them as being composed of twx4l vectors, 2. Compute the SVD dI' and check if only two singular
3" = @@i,9)) anddg’ = (iis,v5). Avector(g”,q'T) values are almost equal to zero (due to noise, we ap-
satisfyingT (g7, ¢'7)T = 0 must be a linear combination of ply a threshold). Take the corresponding right-singular
v7 andvg. Hence vectorsv; andvg.
- - 3. Compute the coefficients of eq. (35) and solve it, finding
< ‘I/ ) =A1< ui )+k2< uz ) two solutions fors.
q V1 v2 4. Forthese two values @fcomputazﬁ{ﬁ1+2sﬁ{ﬁ2+
ii5 ii2, and choose the largest of them to computand

The two degrees of freedom are fixed by the constraints of eq.

(32), which imply two quadratic equations;in andiy: thenis.

5. The result is.1v7 + Apvs.
A2ii1 fiy + 20qhoil) lip 4+ Miigiiy = 1, (34)
22al By + Aaho(il B + iih 91) + A3 v, = 0.(35) 7. Experiments

SinceX; and X, never both vanish, assume without loss offo experimentally test the dual-quaternion method, we per-
generality thaﬁ{il # 0, so thathp # 0. Settings = A1/A> formed simulations and a real experiment. To compare its
we first solve eq. (35), obtaining two solutions forinserting performance and experimentally substantiate the theoretical

A1 = sz in eq. (34) yields differences, we implemented two additional methods from
the literature. The first one is similar to the method proposed
A3(s2ii] fiq + 2sii; lip + lyiiz) = 1, (36) by Horaud and Dornaika (1995), and is based (like ours) on

the simultaneous computation of rotation and translation. Its

which has two real solutions of opposite sign, because it ca@presentation consists of quaternions for the rotations and
be easily proved that the trinomial vectors for the translations. Equations (2) and (3) are com-
2T Te T bined additively into the following objective function:

(suquy 4 2suqup + upup)
. " (g, 7x) = llag — gbII” + |(Ra — Dix +1a)q — qis|?,
is always positive or zero. Indeed, the second-order coef- (37)
ficient ﬁ{ﬁl is positive, and the discriminant(a{ﬁz)2 —
4(12{121)(175172) is always negative or equal to zero due to theo be minimized with respect gpandf x subjectto|q||2 = 1.
Schwartz inequality. We can easily prove that in the noisgfter expressing the quaternion in spherical coordinates, we
free case the discriminant is equal to zero ands axists apply the Levenberg-Marquardt minimization in its NETLIB
that makes the left side of eq. (36) vanish: (4f', ¢'7) is  Fortran implementation. This method makes use of all of the
a solution, thenOs.1, ¢) belongs to the kernel of the ma- information in the camera and motor motions, including the
trix T. Hence, A1 and A, exist so thatiiu; + A2 = angles and the pitches, which are not used in the dual quater-
0: that meansiy andi; are parallel and the discriminant nion method. Like every iterative nonlinear minimization, it

4(&{&2)2 - 4(17{171)(11;;72) vanishes. Then, the double so-must be provided with starting values.

lution ofﬁﬁ{ﬁl + zsa{az + a;,;z for s is —||al/|dz]l. It The second aIt_ernative method we applied was a two—;tep
can be easily proved that it is also one of the solutions of efiethod as described by Chou and Kamel (1991). The first
(35) forry = sz if ity = piiy: step solves for the rotation by minimizing
520} By + siiy (b2 + ub1) + pil; 92 = 0 lag — qb||* with respectto ¢ subjectto  |g[* = 1.
=T, = - . .
= (s +wuy(sv1+v2) =0. which can be reduced to an eigenvector problem. The second

. A . , step solves the linear system of eq. (3) for the translation
In the presence of noise, to avoid this solutionsfeesulting P 4 a3

to (O4x1. ¢), we always choose from the twesolutions the (Ry— Dix = Ryfp — 4.
one that gives the largest value i&ﬁfﬁl + Zsﬁ{ﬁz +ﬁ£ﬁ2.

The sign variation in the solution for, in eq. (36) is due In the following experiments and graphs, we denote our dual
to the sign invariance of the solution: both”, ¢'") and quaternion method by “DUAL,” the nonlinear simultaneous
(—qT, —q'") satisfy the motion equations and the constraintsolution for rotation and translation by “NLIN,” and the sep-

The computation algorithm consists of the following stepsarate solution by “SEPA.”
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7.1. Synthetic Experiments (SEPA): the smaller the variance in the direction of rotation

_axes, the higher is the estimation error. In the limiting case

The intent of the synthetic experiments is to test the l?ehawagot shown in the diagram) when all rotation axes are parallel
of the above three methods under controllably varying fa?ﬁe problem becomes singular. However, this is not an intrin-

tors. The simulation is conducted as follows: we establlsgC property of the hand-eye calibration problem. We observe

N hand motiong R, £5) in a realistic setup similar to the :E(f striking phenomenon that the rotation error in both the

real experiment of the next section. We add Gaussian noise nlinear and the dual quaternion approaches is invariant to

. - 0 .
rela(;[ve sta:/?/dard deV|at|ch1n O(; 1% correspogdmg to the;’mgfﬁis variation. Thisis nota surprise, butis a main advantage of
readings. vve assume a ﬁn h—eye sletup 33 comp_utet € CfHB'approaches solving simultaneously for rotation and trans-
era motions(R 4, £4), to which we also add Gaussian n0iSq i, - rotation cannot be recovered from eq. (2) if all rotation

of varying standard deviation, because this is the main SOUrgeas are parallel. However, if both eq. (2) and eq. (3) are con-

of errorowing to the sensitive step of camera cahprauon_ T dered, a unique solution for rotation exists but the translation
noise is added as absolute value to the unit rotational quatgfy, possesses one degree of freedom (Chen 1991)

nion, and as relative value to the translation. For every noise |\ .| o the simulations, we observe the superior perfor-

setting, each algorithm runs 1,000 times and outputs the @8z -6 of the dual quaternion algorithm. The nonlinear mini-

timated rotation quaterniofi and the estimated translation mizer could perform better if we could guarantee that it would
between the gripper and the camera. To qualify the resulisnverge to the global minimum, independent of the starting
we take the RMS of the errors in the rotation unit quaterniovalue. We experimentally showed that total ill-conditioning

lg — g1l and the RMS of the relative errors in the translatiomiue to insufficient variation of the rotation axes is not an in-

If — £1l/1Z]. These are customary error metrics also usd@insic property of the problem.
by Tsai and Lenz (1989) and Horaud and Dornaika (1995).

However, the reader should be aware that thAe Frobenius norm

of the diffe_renge of the r.otation matricg® — R|| applied in 7.2, Real Experiments

these studies is much higher than the quaternionic error norm

llg — ¢l (2v/2 times larger if the axes are the same and thne real experiments were conducetith a Robosoft Pan-
error is only in the angle). ~Tilt unit TO30 mounted on a controllable slider. The exper-
In the first experiment, we tested a standard configuratifental configuration is illustrated in Figure 6. The axes of
of 20 hand motions under different noise levels in the camefge camera coordinate system, y, z.) are parallel to the
poses. In Figure 3 we compare our algorithm (DUAL) Withaxes(xm, ym. zm) Of the motor coordinate system. There is
the nonlinear (NLIN) and the two-step (SEPA) algorithmsg re|ative translation between the two coordinate systems in
The dual-quaternion approach exhibits the best behavior, fele y- andz-directions. To avoid introducing new terms, in
lowed by the nonlinear minimizer. The reason for this disge following we refer to the motor coordinate system as the
crepancy is the convergence of the nonlinear method to log&nd or the gripper.
minima in a subset of the 1,000 runs for each noise level, gjnce the ground truth is unknown, we assess the perfor-
as well as the use of the angles and pitches in the nonlingaance of hand-eye calibration with two task-dependent meth-
method. ods. The firstone—whichis also applied in the classical paper
In the second experiment, we keep the noise level at 1§y Tsaj and Lenz (1989)—is the ability to predict the camera
and we vary the number of motions from 2 to 20. We obseergOse by using only the motor-motion data. This is very im-
(Fig. 4) the same behavior inthe simultaneous and the separﬁgﬁtam for all tasks involving view planning or the opposite
solutions in the case of just two motions. This is pIausibIepromem of gripper-pose planning. The second assessment is
since the number of unknowns is equal to the number of indgsconstruction by motion stereo using one camera: the cam-
_pe_ndent constraints in the pure rotational equations, makigg, is calibrated only once and then moved to new positions
it irrelevant whether we solve separately or not. For a feyhere it is not calibrated again, as would be the case in using
motions, the nonlinear algorithm does not converge properlg.|eft_right camera stereo system.
The dual quaternion algorithmis superior in multiple motions. | the first assessment, the camera was moved to 25 lo-
In the third experiment, we varied the variance of the incations with different pan and tilt angles as well as different
terstation rotation axes. According to work by Tsai and '—e?fositions along the slider. The translation along the slider var-
(1989), this is the most critical factor in the accuracy of handaq petween 50 and 900 mm, and the calibration object was at
eye calibration. Again we keep the noise level at 1%, angh approximate distance of 1,000 mm. The camera was cali-
choose 20 rotation axes from a varying area on the unit sphgjfigted with the ellipse-based method (Tarel and Vzien 1996),
characterized by the polar angle. Thaxis inthe plotof Fig- \yhich includes the computation of the3} projective matrix
ure 5 represents the inverse of this area or the inverse of the

axes’ direction variance. The behavior is expla_ined by '_I'Sg_l The image and motor recordings are courtesy of Jean-Philippe Tarel, SYN-
and Lenz (1989) for the two-step separate solution algorithmm Project, INRIA Rocquencourt.
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Fig. 3. Behavior of the dual quaternion (DUAL), the nonlinear (NLIN), and the two-step (SEPA) algorithms with variation in
noise. The RMS rotation error is shown on the left; the RMS relative translation error is on the right.
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Fig. 4. The RMS error in rotation (left) and the RMS relative error in translation (right) as a function of the number of hand
and camera motions.
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Fig. 5. The RMS error in rotation (left) and the RMS relative error in translation (right) as a function of the inverse of the
rotation axes variation. The horizontal axis is proportional to the inverse of an area on the unit sphere inside where the rotation
axes are distributed.
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Fig. 6. The panftilt from a top view is shown on the left. The axes of the camera and the motor coordinate systems are parallel.
The origins of the two coordinate systems differ jpyandz-offsets. On the right, we show the experimental setup with the
slider, the panftilt head, and the calibration board.

as well as its decomposition in intrinsic and extrinsic param- The error in the estimation of the hand-eye calibration de-
eters (Faugeras and Toscani 1986). pends on the errors in the camera poses and the motor record-
For N = 11...19 stations, we compute the hand-eye caings. Common sources of observed error in the assessment
ibration by all three methods: the one proposed here usinfall methods are in the extrinsic pose extraction for the ver-
dual quaternions, the nonlinear simultaneous estimation, aifidation stations and the motor recordings in moving to these
the separate estimation of rotation and translation. stations. Translation computation is very sensitive to noise,
We extract the extrinsic parametefs from every projec- due to the limited variation of the rotation axes of the in-
tive camera matrix in eq. (4) and use them together with therstation motions. This variation is constrained in that the
motor posesB; for the computation of the camera-grippercalibration target must always be inside the field of view.
transformationX from N positions. Then we predict the  To obtain a rough perception of the values of the hand-eye
camera pose for the verification statighs- 20...25 fromthe transformation itself, the mapping computed with the dual
motor motionJB,- and the first camera posty guaternion methods using 20 stations was a rotation85f 1
about thex-axis and a relative translatiq@, 125 —146) of
the gripper with respect to the camera (cf. Fig. 6).

. oo The second experiment, motion stereo, assesses the hand-
We compare the predicted camera pdsewith the camera Lo e .
eye calibration by one of each of the applications. Every time

poseA ; extracted from the camera calibration, and avera .
, o ) e have one camera and a controllable motion of a robot,
the errors over the five verification stations. The camera poses

) ) L € can produce a polynocular stereo configuration only if
have an estimation error, but we assume that this is mug\ﬁ P poly 9 y

lower than the error in the predicted pose. This procedure\llvse know the actuator-to-camera transformation. It is also

repeated for a different number of framés= 10...20 used in ?h:'re;;it?jssesc)sfr?ﬁgt\’lviwge ;?risa;snsimae:e %\r/(r)]liJCnhdvf/r:t:r?Oszre
the computation of the hand-eye matiix The results for all P P pace,

three methods for varying are shown in Figure 7, including by d“eS|gn|ng the “cal|brat|on Ob.Je.Ct' In.the first experiment,
. the “ground truth” was not veridical, since the poses com-
the average absolute error for the rotation (left) and the aver- S .
. : . uted after calibration and decomposition were erroneous.

age relative error for the translation (right). The number

verification stations was kept constant. The dual quaternione show n Figure 8 two of the images used for the stereo
econstruction.

method was slightly superior. Both simultaneous methods Stereo reconstruction with respect to a world-centered co-

(dual quaternion and nonlinear) performed better in the trans- .
X dinate system necessitates the feature correspondences as
lation case, where all methods showed an error under 2%. We C : ) .
) .well as two projective matricesM1 and M, as defined in
observed the expected decrease with the number of stations .
(4) for two cameras. The correspondences are given be-

used; however, the decrease was not as steep as expec‘?gd S .
e . . : cause we used the same calibration pattern as an object to
because the variation in the interstation rotation axes was re- : i ;
) . : réconstruct. We applied all three methods described in the
stricted (as explained in the next paragraph).

Aj=XxB71x 1Ay
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Fig. 7. The discrepancy between the predicted camera pose and the camera pose computed by camera calibration averaged
over five verification stations. The absolute error for the rotation matrices is on the left, and the relative error in the translation
vectors is on the right.

simulation section in two modes: tlestrinsicmode and the
projectivemode.

In the extrinsic mode, we used the extrinsic camera pos
to compute the interstation camera motietisand the result
was the camera-hand transformati®n Given only the first
extrinsic matrixA; and the motor motiorB, to a second

position, the projection matrices could be computed only l'/m m1 Bl
- - [ -

the intrinsic parameter matri& was known:

."'F|.|1
L T
AT
T TTTT
Flwian
- (R LLLL
TX] 1 LR

Fig. 8. The 1st (left) and the 22nd (right) image of the se-
guences of images used for stereo reconstruction.

Given the correspondences in the first and the second im-

ages and the projection matrick from camera calibration

and M, computed as above, we performed classical stereo ] . )

triangulation. transformatlo'rCX can be subs'tltuted by the image-to-world
The results of the extrinsic mode in all methods (denoted World-to-gripper transformation &X' = M1Y. The nec-

by DUAL, NLIN, and SEPA) are shown in the left side of€SSary second projection matrix reads as follows:

Figure 9. In the same figure, we show the reconstruction

(CAM) using the second projection matrix from calibration

as if we were calibrating in every position. Of course, the lat- M,=M Y By 'y (39)

ter is superior to all motion-stereo methods, because no errors

from the motor encodings, the motor-angle offsets, or hand-

eye calibration were involved. The same computed hand-ey¥¢e observe that the second projection matrix can be written in

transformation was used for all stations of the “second” canterms of the solution of the hand-eye problem without decom-

era. The curves show the absolute error for reconstructipmsing any matrix in intrinsic and extrinsic parameters. The

between the 1st and théth frame, where the baseline is in-results are shown in the right side of Figure 9, and are in most

creasing withV. We observed the reconstruction-error decagf the cases about 25% better than the results in the extrinsic

as the effective baseline increased. The nonregular behaviwode. This error reductionis due to amore-accurate hand-eye

for specific stations was due to erroneous motor recordingsalibration using just projection matrices (eg. (6)) and owing
In the projective mode, we avoided the decomposition ito the fact that no decomposition was used in eq. (39) either.

intrinsic and extrinsic parameters using the trick in eq. (5)he outliers were observed in the same stations, which con-

(Horaud and Dornaika 1995). Equation (5) can be solvditmed our conjectures that they arise due to motor-encoding

using dual quaternions in the same manner as in the filstrors inB,. In both modes we again observe the superi-

experiment. The result is the world-to-gripper transformaerity of the methods solving simultaneously for rotation and

tion Y = AIlX at the first pose. The image-to-grippertranslation.

M;=CXB'x 1A, (38)
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AVERAGE ABSOLUTE ERROR IN STEREO RECONSTRUCTION (EXTRINSIC-MODE) AVEI;QGE ABSOLUTE ERROR IN STEREO RECONSTRUCTION (PROJECTIVE-MODE)
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Fig. 9. The average reconstruction error in mm as a function of the station, which is proportional to the effective baseline (see
also Fig. 6). The approximate depth of the points is about 100 mm. The lowest curve (CAM) shows the error for conventional
reconstruction using projection matrices computed at every frame. The curves show the average error of reconstruction using
the second projection matrix computed from the extrinsic mode (left) and the projective mode (right) of hand-eye calibration.
We denote by DUAL, NLIN, and SEPA the dual-quaternion method, the nonlinear simultaneous method, and the separate
solution, respectively.

8. Conclusion tion, respectively. We elaborate further on the dual quaternion
approach for estimating hand-eye calibration in naturally sin-

Dual quaternions were long ago known in kinematics as the gular configurations where conventional approaches are de-
gebraic representation of screws. In this paper we introduct&ft€d- These include the calibration of cameras mounted
this language to formalize the screw approach to hand-e§8 vehicles. Furthermore, the new repres_e_ntatlon opens new
calibration. We proved the fundamental fact that hand-ey¥2Ys for the solution of many computer-vision problems in-
calibration is a 3-D motion from the 3-D lines problem. The/0IVing line correspondences; for example, the extension of
invariance of the angle and the pitch are straightforward r&2€ @lgorithm presented here to the problem of registration of

sults of the dual quaternion parameterization. This parametérD line sets is trivial.

ization enabled us to establish a linear homogeneous system
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