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stacle detection, convoy following, etc. Researchers real-
Fixation is defined as holding the gaze direction towards the ized that the key for a computationally simple solution is

same environmental point through time. It was proven in the in the selection of the appropriate representation for the
past that fixation reduces the number of unknowns in passive dynamic imagery. Furthermore, active vision involves the
visual navigation from five to four. In this paper, we show control of the degrees of freedom of image acquisition. In
that fixation further simplifies 3D motion estimation because it motion related tasks this could mean the pursuing of a
decouples the motion parameter space. We project the spherical

moving object, the fixation on a stationary point, or evenmotion field in two latitudinal directions with respect to two
keeping the gaze aligned with the heading direction.different poles of the image sphere. The first projection enables

In this study, we are interested in the computationalthe computation of the longitude of the translation direction
advantages of fixation on an environmental point. Thereand the torsion. The second projection gives the angle between

the direction of fixation and translation, as well as the time to is a large amount of work in biological and computer vision
collision to the fixated scene point. Both computational steps research on how fixation is achieved [4–6]. Regarding also
are based on one-dimensional searches along meridians of the the other kinds of eye movements (vergence and opto-
image sphere. The observer may move with all six degrees of kinesis) several approaches studied the image cues guiding
freedom. We do not use the efference copy of the fixational the eye movements as well as the underlying feedback
rotation of the camera. Performance of the algorithm is tested

loops. The evident advantages of overcoming the field ofon real world sequences with fixation accomplished either off-
view, foveal sensing, and reducing the motion blur haveline or during the recording using an active camera. A compre-
been sufficiently, justifying the fixational movements sohensive review of most theories on advantages of fixation clari-
that only sporadic approaches delved into the computa-fies the differences to our approach.  1997 Academic Press

tional advantages of fixation.
We show in this paper that the ability to fixate on a

1. INTRODUCTION stationary point, combined with the appropriate represen-
tation of the motion field, enables the decoupling of the

The ability to perceive the three-dimensional motion 3D motion parameters. We use a spherical image surface
relative to the environment is crucial for every robot acting which can be mapped 1 : 1 to the image plane. We do not
in a dynamically changing world. The estimation of 3D use any information from the motor encoders or from the
motion parameters has been addressed in the past as a input in the fixation feedback loop (called the efference
reconstruction problem: Given a monocular image se- copy in biology). Fixation is formulated only as a constraint
quence the goal was to obtain the relative 3D motion to on the motion field. This constraint reduces the number
every scene component as well as a relative depth map of of unknowns from five to four. The translation direction
the environment. Solutions given suffer under instability

remains unknown (two parameters), but instead of the
problems and require an immense computational effort

angular velocity (three unknowns) we obtain only the tor-which excludes a real time reactive behavior.
sion—rotation about the target direction—and the timeIn the light of behavior-based active vision [1–3] new
to collision to the fixated scene point. The new representa-approaches were proposed that do not try to recover a
tion for the fixated motion field is based on two projections.complete motion and structure description. Instead, they
Assuming that the fixated target point is the pole of thetry to give individual solutions to tasks where motion is
sphere, we show that the latitudinal projection of the mo-involved. Such tasks are the independent motion detection,
tion field has the property of being constant along a merid-ego motion computation, time to collision estimation, ob-
ian. The constant value is equal to the torsion and the
meridian contains the heading direction. Taking as a new
pole the normal to this meridian we again project the* E-mail: kd@informatik.uni-kiel.de.
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flow field in the latitudinal direction and obtain a similar where we can observe the classical decomposition into a
translational component depending on the environmentpattern: a meridian with respect to the new pole where

the new latitudinal projection is constant and equal to (iPi) and the rotational term depending only on the image
position. The spherical motion field vector lies on the tan-the time to impact to the target. This new meridian fully

constrains the heading direction. We are, thus, able to gential plane at point p̂ so that ṗTp̂ 5 0. As we mentioned
at the beginning we suppose that a control algorithm existscompute the heading direction by applying only two

one-dimensional searches. that makes a target point t̂ on the sphere be fixated
which meansWe elaborate the geometry configurations that lead to

ambiguity. In case of a heading direction outside the field
of view we replace the second projection with the solution ṫ 5 0.
of an equation in the two remaining unknowns.

In addition to the new algorithm this paper provides a From (2) follows that
comprehensive review of previously published results on
fixation for egomotion estimation. Before we turn to the

2
v 3 t̂
iT i

1 v is parallel to t̂,review we will first precisely state the problem at hand,
and then establish connections to relevant approaches. We
then present the novel solution for estimating egomotion where iT i is the distance to the target scene point. Hence,
in the most general case. We finish the paper with the angular velocity in case of fixation reads
experiments on simulated fixated motion fields as well
as optical flow fields obtained from fixated real world se-
quences. v 5 ct̂ 1

v 3 t̂
iT i

. (3)

2. PROBLEM STATEMENT It is constrained to be a function of the linear velocity and
possesses only one degree of freedom c: the torsion around

We assume that the imaging surface is a sphere with the target point t̂. Thus, after fixation the flow field contains
unit radius. We denote by p̂ the points on this sphere three components (Fig. 1): a translational one due to v, a
resulting from the projection p̂ 5 P/iPi. The mapping of fixational equal to the second term v 3 t̂/iT i of (3), and
the planar imaging surface to a spherical surface is one to a torsional component ct̂.
one. Let x 5 P/ẑTP be a point on the image plane Z 5 1 After inserting the fixation angular velocity (3) into (2)
with the optical axis parallel to the Z-axis with unit vector the spherical motion field of a point p̂ different from the
ẑ. If ẋ is the motion field on that plane then it can be easily target reads
proved that the spherical motion field reads

ṗ 5 p̂ 3 Sv 3 S p̂
iPi

2
t̂

iT iDD1 c(t̂ 3 p̂). (4)
ṗ 5

1
ixi

( p̂ 3 (ẋ 3 p̂)). (1)

After eliminating the structure information iPi by taking
the scalar product with v 3 p̂ we obtain the ‘‘epipolar’’Most of the authors assume that for a small field of view
equation for the fixated motion fieldthe two fields are approximately equal. However, for a

large field of view the above equation should be used.
Special care should be taken in the mapping of the planar

(v 3 p̂)T Sṗ 2
t̂

iT i
p̂Tv 2 c(t̂ 3 p̂)D5 0 (5)discretization noise onto the sphere, a problem fully de-

scribed in [7].
We assume that the observer is moving with instanta- which corresponds to the instantaneous version of epipolar

neous linear velocity v and angular velocity v relative to equation for general motion,
the environment so that the velocity of a scene point P
can be written as Ṗ 5 v 1 v 3 P. In case of pure ego

(v 3 p̂)T( ṗ 2 v 3 p̂) 5 0. (6)
motion all equations are valid with the opposite sign for
the velocities v and v.

We see that the depth-free equation (5) contains threeThe spherical motion field reads
unknowns for the scaled linear velocity v/iT i plus one
unknown for the torsion c around the target. Furthermore,
Eq. (5) is quadratic in the components of v and bilinearṗ 5

1
iPi

( p̂ 3 (v 3 p̂)) 1 v 3 p̂, (2)
in (v, c).
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FIG. 1. The three components of a fixated motion field.

3. LITERATURE REVIEW to introduce the difference between the rotation that the
observer undergoes independent of fixation (vobs) and the

We will now turn to relevant work and will relate, where control rotation of the camera necessary to obtain fixation
possible, the underlying equations used in the problem (vf). The sum of the two rotations is the rotation that
statement above. The first and most important result ob- gives the rotational component of the motion field under
tained by Bandopadhay and Ballard [8] and by Aloimonos fixation. That is,
et al. [9] was that fixation reduces the number of unknowns
from five to four. Their fixation constraint was that v 5 v 5 vobs 1 vf . (10)
(vy , 2vx , c) which is a direct implication of (3) if we set
the target parallel to the optical axis: t̂ 5 ẑ. The flow on If the flow in the center is
the image plane can be written as

ẋ 5 U/Z 1 gy , ẏ 5 V/Z 2 gx (11)
ẋ 5

1
Z

(ẑ 3 (v 3 x)) 1 (ẑ 3 (x 3 (x 3 v))), (7)
and the control rotation vf 5 (cx , cy , 0) is such that it
introduces the opposite flow at the center then

with x 5 (x, y, 1) a point on the image plane Z 5 1. After
elimination of the depth Z we obtain the epipolar equation

2cy 5 U/Z 1 gy , cx 5 V/Z 2 gx . (12)for the image plane,

Since the pair of equations have five unknowns, they as-(v 3 x)T(ẋ 2 v 3 x) 5 0, (8)
sume that these variables remain constant at two time
instants at which the control rotation is known, therebywhich is identical to the spherical case (6) if we replace
obtaining U/V as( p̂, ṗ) with (x, ẋ). Let the components of v be denoted by

(A, B, c). Introducing the fixation constraint A 5 vy , B 5
2vx in (8) we obtain U/V 5

cy,2 2 cy,1

cx,1 2 cx,2
. (13)

u 1 Axy 2 B(x2 1 1) 1 cy
v 1 A(1 1 y2) 2 Bxy 2 cx

5 2
B 1 xW 9

A 2 yW 9
, (9)

This approach makes use of the control signals of the
camera movements (cx , cy , 0) and makes the assumption
that translation direction is almost constant despite fixa-which is found in [8, Eq. (12); 9, Eq. (5.11)]. The above

equation is identical to our epipolar constraint in the fixa- tion. It should be noticed that the stepwise compensation
of the translation in our algorithm can also be found astion case (5) if we replace (vx , vy) by (2B, A).

In the work of Fermüller and Aloimonos [10, 11] fixation the process of detranslation in [11, 12].
The equation of fixational motion field (4) is used byis exploited to compute the line on the image which passes

through the FOE. Using only normal flow the location of Taalebinezhaad [13]. The flow field in the brightness
change constraint equation (BCCE) is substituted by thethe FOE on this line is found by matching patterns to the

repeatedly detranslated flow. The line containing the FOE fixational motion field. As the BCCE at every pixel intro-
duces a new unknown (depth) an additional assumptionpasses through the fixated origin and has slope (U/V) if

v 5 (U, V, W). In order to pursue their analysis we need of minimal variation of depth near the fixation point is
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added. To convert the resulting minimization into an eigen- imizing the lateral translational components by means of
a task function.value problem it is further assumed that the torsion c is

already computed in a preceding step. This step is solved,
assuming local frontoparallel patches. However, this as- 4. PROJECTIONS OF THE FIXATED MOTION FIELD
sumption enables a local and linear computation of rota-

We proceed by projecting the fixated spherical motiontion and translation without fixation [14].
field (4) into two different orthogonal basis systems of theRaviv and Herman [15] study the surfaces in the world
tangential plane at an arbitrary point on the sphere. Thethat produce constant flow in the image. In case of rotation
first projection assumes that the target direction t̂ is theaxis perpendicular to translation they regard the rotation
pole of the sphere defining thus a latitudinal and a longitu-axis as the sphere pole. Then they show that the level
dinal unit vectorsets of equal latitudinal flow are cylinders and that the

longitudinal flow is zero along two planes. The intersection
of these planes with the cylinder corresponds to the points f̂1 5

t̂ 3 p̂
i t̂ 3 p̂i

, û1 5 f̂1 3 p̂,
in the world that produce zero flow. The equal flow circles
can be used to analyze the space around the fixation point respectively, lying in the tangential plane of point p̂.
and to predict the optical flow in case of fixation. The second projection assumes as a pole the unit vector

The first part in [16] is identical to the work by Raviv in the direction of v 3 t̂ yielding a latitudinal and a longitu-
and Herman [15]. They derive the equal flow cylinders and dinal unit vector
planes. However, Thomas et al. [16] apply their findings
of zero longitudinal flow to determine the angle between

f̂2 5
(v 3 t̂) 3 p̂

i(v 3 t̂) 3 p̂i
, û2 5 f̂2 3 p̂,the target and the velocity v. This plane always appears in

the image as a line, provided that the FOV is 1808. These
respectively. Through the course of exposition the readerresults are tested using a novel 1808 field of view camera.
may consult Fig. 2, where the projections are illustrated.The original idea of using the entire spherical field of

The latitudinal projection using the target direction t̂ asview to recover 3D motion is attributed to Nelson and
a pole readsAloimonos [17].

Raviv and Ozery [18] assume a restricted motion model:
the rotation axis is orthogonal to the optical axis, the rela- ṗTf̂1 5

1
i t̂ 3 p̂i

vT(t̂ 3 p̂) S 1
iPi

2
p̂Tt̂
iT iD1 ci t̂ 3 p̂i.

tive motion of the camera with respect to the object is
purely rotational about the fixation point, and the rotation

Because the angle between the target t̂ and the consideredrate is constant. They assume further scaled orthographic
point is known we divide by its sine which is equal toprojection. Under these limiting assumptions, they deter-
i t̂ 3 p̂i:mine the magnitude of angular velocity from the image

positions of two distinct points at two time instances.
In [19] fixation is combined with the log-polar transfor- ṗTf̂1

i t̂ 3 p̂i
2 c 5

1
i t̂ 3 p̂i2 vT(t̂ 3 p̂) S 1

iPi
2

p̂Tt̂
iT iD . (14)

mation. Using the second-order spatial derivatives of the
fixated log-polar field it is shown that the time to collision

We see that the latitudinal component minus the torsioncan be computed using only the radial component of the
vanishes if the considered point lies on the plane spannedvelocity. Advantages of the polar transformation in case
by the target and the translation direction. Thus, we areof fixation are also shown in [20], where the heading direc-
able to constrain the translation direction if we find thetion is computed using two specific lines through the center
meridian with longitude h, where the term ṗTf̂1/i t̂ 3 p̂iof the image.
is constant, independent of the latitude i t̂ 3 p̂i. Unfortu-The work of Barth and Tsuji [21] addresses the issue of
nately this is not the only case where this term becomes

how to fixate in the direction of the translation. Their
constant. Suppose that a part of the environment is planar.

technique is based on the following heuristic. They group Let the equation of the plane be N̂TX 5 d and assume
the flow vectors near the point of fixation into two groups: that the target is on the optical axis. If the plane normal
positive and negative flows. The difference in the average reads N̂ 5 (cos a sin b, sin a sin b, cos b) then it can be
of the flow values at these groups indicates the direction easily proved that
of translation with respect to the current fixation direction.
Based on this value the robot is controlled to turn toward 1

i t̂ 3 p̂i2 vT(t̂ 3 p̂) S 1
iPi

2
p̂Tt̂
iT iD5

1
d

vT f̂1 sin b cos(a 2 h),the direction of translation. The same issue is addressed
in [22] using an affine model for the optical flow field.
Servoing toward the heading direction is achieved by min- (15)
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FIG. 2. The meridians with respect to the target pole t̂ are drawn on the left sphere. The spherical flow ṗ is projected on the latitudinal direction.
The first step of the algorithm is a 1D search for the meridian with constant ṗTf̂1/i t̂ 3 p̂i. In the second step (see the right sphere) the pole is n̂1

perpendicular to the meridian found in the first step. The flow without torsion ṗ9 5 ṗ 2 c(t̂ 3 p̂) is projected on the new latitudinal directions. A
1D search among the meridians with respect to pole n̂1 for the meridian with constant ṗ9Tf̂2/i t̂ 3 n̂1i yields a second big circle. The intersection
of the big circles found in the two steps gives the solution for the desired translation direction v.

which is independent of the latitude i t̂ 3 p̂i. Hence, all we fixate on the translation direction or if translation does
not exist at all.meridians that are projections of lines on planes in the

scene will have a constant latitudinal projection indepen-
Suppose now that the unit vector n̂1 in the directiondent of the colatitude angle. Furthermore, the right-hand

v 3 t̂ is given and let it be the new pole. The new poleside of (14) will vanish on the meridians that are projections
introduces new meridians and latitudes. Since torsion canof infinite depths (1/iPi 5 0) and on the entire field of
be computed in the first projection above we consider theview if the translation is parallel to the target direction:
latitudinal projection of the torsion-free flow,v 3 t̂ 5 0.

To summarize the defeating configurations:

1. There may exist meridians with constant latitudinal ( ṗ 2 c(t̂ 3 p̂))Tf̂2 5
1

iPi i(v 3 t̂) 3 p̂iprojection if these meridians are projections of planar parts
of the environment or of scene points at infinity.

( p̂ 3 (v 3 p̂))T((v 3 t̂) 3 p̂) 1
iv 3 t̂i

iT i
ip̂ 3 n̂1i,

2. The latitudinal projection is everywhere constant if

FIG. 3. The error in the x-angle as a function of the translation direction for a field of view of 908 and two values of torsion: 0 (left) and 0.005
(right). The motion field is corrupted by gaussian relative error with standard deviation of 10% and 20%.
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FIG. 4. The inverse of the time to collision l 5 ivi/iT i as a function of the translation direction for a field of view of 908 and two values of
torsion: 0 (left) and 0.005 (right). The motion field is corrupted by gaussian relative error with standard deviation of 10% and 20%. The ground
truth value of l is 0.0065.

where n̂1 is the unit vector v 3 t̂/iv 3 t̂i known from the
n̂2 5

v 3 (v̂ 3 t̂)
iv̂ 3 t̂ifirst projection. Hence, we can divide the left-hand side

and rewrite the right-hand side as

allows the full computation of the translation direction
( ṗ 2 c(t̂ 3 p̂))Tf̂2

ip̂ 3 n̂1i
5

1
iPi i(v 3 t̂) 3 p̂i

p̂T(v 3 (v 3 t̂))
v̂ 5 n̂1 3 n̂2 .

1
ivi iv̂ 3 t̂i

iT i
. Having obtained the heading direction we know the sine

of the angle between the heading direction and the target
iv̂ 3 t̂i. The remaining constant after the vanishing of the

Considering now meridians through the pole v 3 t̂ we first term in (4) yields l 5 ivi/iT i which is the fourth and
obtain the following cases, where the torsion-free latitudi- last unknown of the motion problem in case of fixation.
nal component will be constant: The inverse of it can be interpreted as the time to collision

to an object at the same distance as the target in the mo-1. On the meridian with normal v 3 (v 3 t̂).
tion direction.2. On the meridians containing points with infinite

To find meridians of constant value in the first and thedepth.
second latitudinal projections we compute for every merid-
ian the mean and the variance over the latitude. Then, weThe detection of the meridian with normal

FIG. 5. The error in the x-angle (left) and the inverse of the time to collision l 5 ivi/iT i as computed by the alternative to the second step.
The field of view is 458 and the relative error in the optical flow is 10%.
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FIG. 6. The 1st and the 12th images of the ‘‘marbled block’’ sequence (above), the original flow field (bottom left), and the fixated flow field
(bottom right).

search for the meridians on which this variance is mini- second search with a procedure as follows. The first step
constrains the translational velocity to the plane with nor-mized. The means on these meridians yield the torsion and

the inverse of the time to collision, in the first and second mal n̂1 . Thus, we can write
projections, respectively.

Although in the first projection all meridians—or sectors v̂ 5 cos xt̂ 1 sin x(n̂1 3 t̂), (16)
of them—were contained in the field of view this is not
the case in the second projection, where the meridians are where x is the remaining degree of freedom of the transla-

tion direction or, in the terms of the formulation above,with respect to the new pole n̂1 . It is very easy to imagine
this case if, for example, n̂1 5 (0, 1, 0). We will see in the the longitude of the searched meridian in the second step.

We rewrite (5) asexperiments that in such a case the variance of the second
latitudinal projection gets its minimum at the border of
the field of view. A corrective saccade can then shift the (v̂ 3 p̂)T( ṗ9 2 lt̂ p̂Tv̂) 5 0, (17)
focus of expansion inside the field of view and the process
can be continued with a refixation on a new point. If we where ṗ9 5 ṗ 2 c(t̂ 3 p̂) is known from the second step

and l 5 ivi/iT i is the inverse of the time to collision.want to avoid a corrective saccade we must replace the
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FIG. 7. The variance (top left) and the mean (top right) of the first latitudinal projection for the ‘‘marbled block’’ sequence. The minimum of
the variance gives the angle h and the mean for this h gives the torsion. The variance of the second latitudinal projection has its minimum at the
left bound of x indicating a focus of expansion outside the field of view.

FIG. 8. The 1st and the 14th images of the Yosemite sequence (above), the original flow field (bottom left), and the fixated flow field (bottom
right).
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FIG. 9. The variance (top left) and the mean (top right) of the first latitudinal projection for the Yosemite sequence. The minimum of the
variance gives the angle h and the mean for this h gives the torsion. The variance of the second latitudinal projection has its minimum at the right
bound of x indicating a focus of expansion outside the field of view.

If we insert v̂ from (16) in (17) in the above equation respect to the new pole n̂1 and group the vectors with
the same x. Compute for every group the mean and thewe obtain
variance of

cos x(t̂ 3 p̂)Tṗ9 1 sin x((n̂1 3 t̂) 3 p̂)Tṗ9
(18)

5 l sin xp̂Tn̂1(cos xp̂Tt̂ 1 sin x(n̂1 3 t̂)Tp̂). ( ṗ 2 c(t̂ 3 p̂))Tf̂2

ip̂ 3 n̂1i
This is a nonlinear equation in the two unknowns x and
l which can be solved numerically with nonlinear minimi-

and search for the minimum xmin of the variance. Dividezation.
the mean by iv̂ 3 t̂i in order to obtain the inverse of theTo summarize, we present the algorithmic steps of our
time to collision ivi/iT i. If xmin is near the border of themethod:
field of view then either carry out a saccade towards xmin

1. Choose a sampling step for the longitude angle h with or apply the nonlinear minimization described above.
respect to pole t̂—in reality being always the optical axis
if we fixate on the center. Divide the optical flow field in 5. EXPERIMENTAL RESULTS
groups with the same longitude h corresponding to meridi-
ans. Compute for every group the mean and the variance of We tested the proposed algorithms with synthetic as well

as real data. Real data experiments were carried out using
sequences recorded by passive as well as active cameras.ṗTf̂1

i t̂ 3 p̂i
.

In the nonfixated sequences we emulated the fixation by
appropriately rotating the optical flow field. The fixated

Carry out an 1D-search for the minimum hmin of the vari- sequences were recorded using the TRC binocular camera
ance. The new pole n̂1 reads (sin hmin , 2 cos hmin , 0) if t̂ mount. In all the experiments, the 1D search of the first
is the optical axis. step runs over 45 samples of the 1808 h-range. The sampling

interval for x in the 1D search of the second step is 18. If2. Compute for all points the longitude angle x with
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FIG. 10. The 1st and the 10th of the real fixated sequences (above) and the computed optical flow field (below).

the focus of expansion lies outside the field of view we is corrupted by Gaussian noise with relative standard devi-
ation of 10% and 20%. We tested for two torsion valuesreplace the second step with the alternative nonlinear mini-

mization method. This is done with the Levenberg– 0 and 0.005, shown in the left and right sides of Fig. 3,
respectively. We observe that the error increases with theMarquardt method as implemented in the routine LMDER

of the Netlib library. deviation of the translation from the target direction and
its behavior is not smooth in the presence of torsion. TheWe produce synthetic motion fields assuming a scene

looking like a corridor. In the first experiment we assume same qualitative behavior is observed for the inverse of
the time to collision l 5 ivi/iT i in Fig. 4.a wide field of view of 908 and we apply translations v 5

(sin xgt , 0, cos xgt), where xgt is the ground truth angle The second synthetic experiment concerns a smaller field
of view (458) in the presence of torsion and relative opticalbetween translation and target direction. The latter is as-

sumed to coincide with the optical axis. In this as well as flow error of 10%. Since the second step can be applied
only for x , 208 in all steps we applied the nonlinearall subsequent simulations it turns out that the error in the

azimuthal angle h of the translation direction was under minimization with respect to x and l. The results (Fig. 5)
are significantly better than the 1D search for even a larger28 and the relative error in the torsion c is under 3%.

Therefore, we will plot only the error in the x angle and field of view (see above) but with the additional cost of
an iterative method. The same initial values were used inthe inverse of the time to collision l. In Fig. 3 we show

the error in the angle x for translation directions deviating the nonlinear minimization for all translation directions.
In the following image sequences we computed the opti-from 5 to 408 from the target direction. The motion field
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FIG. 11. The variance (top left) and the mean (top right) of the first latitudinal projection for the real fixated sequence. The minimum of the
variance gives the angle h and the mean for this h gives the torsion. The variance (bottom left) and the mean (top right) of the second latitudinal
projection for the real fixated sequence giving the angle x at the minimum of the variance and the inverse of the time to collision, respectively.

cal flow with a standard differential method [23] which contains both translation with ground truth (h 5 908,
x 5 29.848) and rotation with ground truth v 5 (0.00023,assumes a constant flow field in the local neighborhood of

every pixel. The spatiotemporal derivatives are computed 0.00162, 0.00028). The original and the fixated flow field
(Fig. 8) are computed only for the part of the image thatwith binomial kernels which are approximations of the first

derivative of a Gaussian. The computed flow field is first contains ego motion (the clouds area is excluded). The
minimum of the variance of the first latitudinal projectionmapped to the plane Z 5 1 using the intrinsic parameters

and then transformed to a spherical flow field using (1). (Fig. 9, top) gives an h estimate of 97.378 and a torsion
estimate of 20.00063 (the opposite sign is due to our for-The first sequence is the pure translational ‘‘marbled

block’’ sequence [24] (Fig. 6). Fixation is achieved by add- mulation of scene motion). Since the minimum of the vari-
ance of the second latitudinal projection (Fig. 9, bottom)ing a rotational flow field so that the flow in the image

center vanishes (Fig. 6, bottom). We should note that the is at the limit of the field of view we again apply the
nonlinear minimization for the second step and obtainimage center is given by the intrinsic calibration and does

not coincide with the apparent center in the figure. The x 5 25.96 and l 5 0.00145.
The last sequence is already fixated during its recordingfirst step of our algorithm (Fig. 7, top) gives an h estimate

of 68 and a torsion of 0.00032. The second step (Fig. 7, with an active camera (Fig. 10). Up to the fixational move-
ment the motion of the observer is pure translational withbottom) gives a minimum of the variance of the second

latitudinal projection at the right limit of the interval, indi- ground truth measured manually (hgt 5 08 and xgt 5 9.28).
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are h 5 78 and x 5 358. We emphasize here that no special effort was applied
on optimizing the estimation process. In particular, noThe second sequence is the well-known synthetic Yo-

semite sequence (courtesy of Lynn Quam at SRI) which smoothing or weighting with measurement variances was
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