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Abstract

Images produced by catadioptric sensors contain a sig-
nificant amount of radial distortion and variation in inher-
ent scale. Blind application of conventional shift-invariant
operators or optical flow estimators yields erroneous re-
sults. One could argue that given a calibration of such a
sensor we would always be able to remove distortions and
apply any operator in a local perspective plane. In addition
to the inefficiency of such an approach, interpolation effects
during warping have undesired results in filtering. In this
paper, we propose to use the sphere as the underlying do-
main of image processing in central catadioptric systems.
This does not mean that we will warp the catadioptric im-
age into a spherical image. Instead, we will formulate all
the operations on the sphere but use the samples from the
original catadioptric plane. As an example, we study con-
volution with the Gaussian and its derivatives as well as the
computation of optical flow in image sequences acquired
with a parabolic catadioptric sensor.

1 Introduction

Catadioptric sensors are systems consisting of a convex
mirror and lens. They can be attached to conventional cam-
eras (CCD or CMOS or film) producing usually an image
with a hemi-spherical field of view. While catadioptric
devices have long been used in telescopes, only recently
they gained in popularity together with other omnidirec-
tional vision systems based on fish-eye lenses or clusters
of outwards-looking cameras. For an overview of the sub-
ject the reader is referred to a recent textbook [2], a review
article [14], and the site for omnidirectional vision1.

Images obtained by omnidirectional sensors suffer under
significant deformations. An exception is the sensor con-
structed by Hicks [8] which however does not capture an

1http://www.cis.upenn.edu/˜kostas/omni.html

entire hemi-sphere. If the equator of a hemi-spherical field
of view is captured then necessarily the image has to be de-
formed. It is worth noticing that deformations appear also
in cylindrical panoramas like concentric mosaics [7].

The deformation has a continuous component - that
means it would appear also on a continuous imaging sur-
face - and a discrete component which is due to the deci-
mation induced by sampling. It helps to keep these two as-
pects separate. This makes deformations in omnidirectional
sensors different than deformations in space-variant sensors
like log-polar retinas where the deformation is based on the
non-uniform sampling.

With a few exceptions of appearance-based methods [9],
most approaches analyzing omnidirectional imagery apply
image operators “blindly”, which means they apply the
same operators they would apply on non-deformed carte-
sian images. A simple example is template matching or
matched filtering where we usually search for a match of a
translated/rotated/scaled or in general an affinely deformed
pattern in a conventional image. Obviously, these are not
the local deformations that will appear in an omnidirec-
tional image. The same applies for a filter kernel with a
particular orientation or scale. Neighborhood operators like
the local structure tensorΣ∇I∇IT [11, 3] whereI is the
image do not indicate the local orientation distribution any-
more. As far as computation of optical flow is concerned,
assumptions about constancy in a local support are not valid
in the catadioptric plane.

The argument against “blind” application of classical im-
age operators is that the underlying assumptions for the ap-
plication of these operators were done on the perspective
image plane. One might argue, that with proper calibration
we can always remove the distortion and work on local vir-
tual projective planes. However, this is a computationally
very expensive and inaccurate approach since the virtual
prospective planes contain artificially interpolated intensi-
ties.

We argue that signal processing has to take place in



the originally sampled values. We need to find another
non-deformed space where the old assumptions hold, then
write the image operations in that domain, and finally with
variable substitution perform the operation in the catadiop-
tric plane. We could choose a frontoparallel image plane
as the non-deformed plane and map it to the catadioptric
plane. Unfortunately, this mapping does not provide any
pre-image for the horizon mapped in most catadioptric im-
ages. Even if the horizon could be excluded, the region next
to it is mapped to such distant positions in the frontoparallel
plane that it suffers from extreme perspective projection.

A natural choice of a non-deformed domain for a hemi-
spherical field of view is the hemi-sphere. Such a choice
is also mathematically grounded in the case of catadiop-
tric systems with a unique effective viewpoint [12] and is
described in section 2. Given a map from catadioptric im-
age coordinates(u, v) to spherical coordinates(θ, φ) we can
transform the catadioptric image plane (Fig. 1, left) back to
the sphere (Fig. 1, right) if we know the principal point of
the catadioptric plane and the sphere radius corresponding
to the coupled scaling factor of the orthographic lens and
the focal length of the mirror.

                        

Figure 1. On the left a parabolic catadioptric
image; on the right its 1:1 mapping to a hemi-
sphere.

We choose the sphere as the domain where we will be
making assumptions about the parameters of our filter and
as the domain where operators will be shift-invariant. Con-
volution with a kernelGs(θ, φ) will be defined on the spher-
ical imageIS(θ, φ) giving a responseRS(θ, φ) (see Fig. 2).
We will introduce the Gaussian function on the sphere and
compute the derivatives on the sphere by convolving with its
spatiotemporal derivatives. We will keep the derivatives on
the sphere for the computation of the optical flow, however,
sampled on the catadioptric plane.

We will proceed with the computation of optical flow
on the sphere. The computation of optical flow presumes a
preservation principle, namely that either the gray-value or
the response to a gray-value function is preserved. If we as-
sume gray-value preservation we can easily derive the well-
known Brightness Change Constraint Equation (BCCE)

Iuu̇ + Iv v̇ + It = 0

where(Iu, Iv) andIt are respectively the gradient and the

Inverse Stereographic Projection

I(u, v) R(u, v)

IS(θ, φ) RS(θ, φ)GS(θ, φ)

Figure 2. The original image I on the catadiop-
tric plane is mapped through inverse stereo-
graphic projection to IS on the sphere and
subsequently convolved on the sphere with
a kernel GS yielding a response RS which is
stereographically projected to R on the plane.
The stereographic mappings do never take
place as warpings, instead the convolution is
performed on the sphere sampling mapped
from a uniform sampling on the catadioptric
plane. In optical flow computation, we actu-
ally use RS instead of R.

temporal derivative of the intensity functionI(u, v). The
BCCE equation reveals one main indeterminacy in comput-
ing optical flow: it is impossible to estimate the flow com-
ponent perpendicular to the gradient of the image. To over-
come this aperture problem we have to make an assump-
tion, for example, that locally the flow variation is negli-
gible. The aperture problem is overcome as soon as more
than one orientations are included in the support window
- observe for example the circular aperture on the left of
Fig. 3.

Figure 3. The images of a checker board part
on a conventional image plane (left) and as
obtained by a catadioptric system (right) . Al-
though it is not obvious the circular aperture
of the right image contains a curvilinear edge.

Let us turn our attention to the image obtained by a
parabolic catadioptric system - see an excerpt in Fig. 3
(right). Although it is only slightly observable in this Figure
we know from the geometric properties that the line is now
a circular arc. A solution based on sampling the BCCE in
a neighborhood [10] will lead to a system of full rank. The



polar deformation from the mirror appears to be eliminat-
ing the aperture problem. Of course this is not true. What
really happens in a catadioptric image sequence is that an
assumption about the local constancy of the flow in the new
coordinate system for the same 3D-motion and geometry
does not hold.

To proceed with this central idea of analyzing a signal
mapped to another domain, we have been inspired by the
exponential chirp transform introduced in [4]. However, in
that paper the mapping is from cartesian to the logarithmic
polar plane. Here, the mapping is from the sphere to the
catadioptric plane. While signal processing in the cartesian
plane is textbook material, signal processing on the sphere
is an ongoing research problem which we study in section
3 after justifying the introduction of the sphere in section
2. We define the Gaussian on the sphere and describe how
we perform convolution on the sphere. In section 4 we in-
troduce a new technique for the computation of the optical
flow in catadioptric planes. We conclude with experimental
verification in real omnidirectional video in section 5.

2 The projection model

Catadioptric systems with a unique effective viewpoint
have been proven to be convex reflective surfaces of revolu-
tion with a parabolic or hyperbolic profile. Geyer and Dani-
ilidis [6] showed that such projections are equivalent with
a projection on the sphere followed by a projection from a
point on the sphere axis to the plane. Here, we will elabo-
rate on the parabolic case, in which we will also present our
new signal processing approach. In Fig. 4, left, we show
a parabolic mirror and an image plane through the mirror
focus. The effective viewpoint is the mirror focus and the
second center of projection is at infinity yielding a parallel
projection onto the image plane. The position of the im-
age plane is thus irrelevant, it only has to be perpendicular
to the mirror axis. In [6] it is proven that exactly the same
image can be obtained by first projecting on a sphere and
then stereographically projecting from the north-pole to the
equator plane - Fig. 4, right.

If the equation of the paraboloidal mirror is

z = −f +
x2 + y2

4f

then the projection of a point(x, y, z) in the scene to a point
(u, v) in the catadioptric plane reads

u =
2fx

−z +
√

x2 + y2 + z2

v =
2fy

−z +
√

x2 + y2 + z2
.

The radius of the sphere in Fig. 4 is equal to the latus rectum
of the parabola and thus equal to2f . The stereographic

projection from the sphere to the catadioptric plane reads

u = cot
θ

2
cosφ

v = cot
θ

2
sin φ.

By assuming the catadioptric plane to be the plane contain-
ing the equator in Fig. 4, the catadioptric image is mapped
onto the lower hemisphere in the same figure.

3 Filtering in catadioptric planes

Given a catadioptric imageI(u, v) we define its inverse
stereographic mapping onto the sphere as

IS(θ, φ)
def
= I(cot

θ

2
cosφ, cot

θ

2
sin φ).

Given a kernel (impulse response of a filter)GS(θ, φ) de-
fined on the sphere, we callRS(θ, φ) the result of the con-
tinuous convolution

RS(θ, φ) = (IS ∗ GS)(θ, φ)

on the sphere. We callR(u, v) the response on the cata-
dioptric plane which is the stereographic mapping of the
responseRS on the sphere.

To realize the convolution on the sphere we have to pro-
pose a sampling scheme for the sphere. Since one of the
main premises in this paper is to avoid any resampling op-
eration, we will keep the sampling of the catadioptric plane.
We assume that a discrete image on the catadioptric plane
has been obtained by uniform sampling (at least in the cases
using a conventional CCD camera):

I[m, n] =
∞∑

m=−∞

∞∑
n=−∞

I(u, v)δ(u − mδu, v − nδv).

The discrete response reads then

R[m, n] =
∞∑

m=−∞

∞∑
n=−∞

δ(u − mδu, v − nδv)

∫∫
(u′, v′)K(u, v, u′, v′)du′ dv′.

whereK(u, v, u′, v′) is the kernel on the sphere expressed
in coordinates of the catadioptric plane. We will see that
it can not be written as a shift and that it will have a vary-
ing form dependent on the corresponding position on the
sphere. Hence, filtering on the catadioptric plane is not
a shift-invariant operation and thus a computationally ex-
pensive operation. It is also worth to note that the inverse
stereographic projection of the uniform samples in the plane
yields a non-uniform distribution on the sphere becoming
denser towards the equator.
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Figure 4. On the left, a sketch of a parabolic catadioptric camera with the two centers of projection F1

and F2 [6]. In the middle, the projection of a point P on the parabolic profile with subsequent parallel
projection to Q in the catadioptric plane. On the right, the projection of a point P on the sphere with
subsequent stereographic projection to Q′ on the catadioptric plane, for a proof of Q = Q′ see [6]

3.1 Definition of a Gaussian on the sphere

Definition of filter kernels on the sphere is not trivial.
Imagine defining a Gaussian function with(θ, φ) as an ar-
gument. In addition to the singularity at the north-pole, the
function would not be periodic, which is a natural prop-
erty of functions defined on the sphere. In this paper, we
use as a filtering example the computation of spatial deriva-
tives on the sphere. We will not delve into the discussion of
the derivative definition on the sphere, which involves the
spherical harmonics of the sphere, at this point. Let us as-
sume that a “good” derivative estimator on the sphere is the
response to the first Gaussian derivative on the sphere.

We introduce the Gaussian function on the sphere as fol-
lows [1]: We start with the definition of a Gaussian on a
plane tangent at the south-pole of the sphere. We map it by
inverse stereographic projection from the north-pole to the
south hemisphere. The line at infinity is thus mapped to the
north-pole at which we define the value of the inverse map-
ping to be zero. The Gaussian with offset at the south-pole
reads then

Gs(θ, φ) =
1

2πσ2
e−

1
2σ2 cot2 θ

2 . (1)

It is just a coincidence that we use stereographic projec-
tion in our catadioptric model as well as in the definition of
the Gaussian. The reader should be aware that to perform
the convolution we rotate the Gaussian with offset at the
south-pole to the specified(θ, φ). Because it is a rotation,
the operation is shift-invariant and thus a convolution on the
sphere. This is different than first shifting on the cartesian
plane and then projecting on the sphere which would yield a
shift-variant operation on the sphere. In [5], it is shown how
to define the Gauss function as the solution of the diffusion
PDE on the sphere.

The computation of the spatial derivatives inθ andφ is
also obtained from the inverse stereographic projection and

rotation of a Gaussian first derivative with respect tou. Re-
call that the all derivatives are smoothed in the orthogonal
directions including the temporal derivatives which are 0th
order Gaussians on the sphere.

3.2 Convolution on the sphere

To perform convolution on the sphere, we define a func-
tion at either the north-pole or the south-pole and we rotate
the pole to the new position. The reader might have already
realized (1) that this cannot be written with a shift in theθ
andφ angles.

We embed the sphere inR3 and write an elementη ∈ S2

asη:

η = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)).

We will write a functionIS(θ, φ) asiS(η).
Rotations inR3 will be parameterized by Euler angles

such that anyg ∈ SO(3) will be written as

g(γ, β, α) = Rz(γ)Ry(β)Rz(α), (2)

whereRy andRz denote rotation about the y-, and z-axis,
respectively. A rotation of a function to a new position can
be formulated as the action of the operatorΛ(g) which is
defined by

Λ(g)f(η) := f(g−1η). (3)

In our case, we constrain the rotations to the subgroup
g(γ, β, α) = Rz(γ)Ry(β). The convolution will be defined
as

(IS ∗ RS)(β, γ) =
∫

η∈S2
iS(η)rS(g−1η)dη (4)

whereg = Rz(γ)Ry(β) anddη = sin θdθdφ.



4 Optical Flow Computation

The central assumption in optical flow computation is
that the projection of a scene point will generate the same
grey-value in each image of the motion sequence. If we
assume this grey-value preservation, we can easily derive
the well known Brightness Change Constraint Equation
(BCCE)

Ixu̇ + Iv v̇ + It = 0

where(Iu, Iv) andIt are respectively the gradient and the
temporal derivative of the intensity functionI(u, v). The
optical flow vector is denoted by(u̇, v̇). To overcome this
aperture problem we have to make an assumption, for ex-
ample, that locally the flow variation is negligible. This
allows us to use the flow constraints from a neighborhood
of pixels to estimate the flow at a single location. We can
then estimate the flow using a weighted least squares es-
timation technique. To find the flow vector at any point
p0 = (u0, v0), we minimize the function

∑
(p)∈N(p0)

W (p)(Iu(p)u̇0 +

Iv(p)v̇0 + It(p))2

whereW (p) is a normalized neighborhood weighting func-
tion andN(p0) is a neighborhood region surroundingp0.
This minimization problem can be solved using singular
value decomposition. This method for estimating the op-
tical flow was first described by Lucas and Kanade [10].

Theoretically, the orientation variation can be studied
with a differentiation of the BCCE above [11, 13] yielding,
including the BCCE itself, three equations

Iuu̇ + Iv v̇ + It = 0
Iuuu̇ + Iuv v̇ + Iut = 0
Iuvu̇ + Ivv v̇ + Ivt = 0

Assuming that the gradient does not vanish, the indeter-
minacy of this system clearly depends on the rank of the
Hessian of the intensity functionI(u, v) which depends on
whether there is more than one local orientation in the in-
tensity function.

If we examine the Hessian of the intensity function on
the catadioptric plane, we realize that it might be full rank
even if the corresponding Hessian on the sphere or a Hes-
sian in a perspective image are rank deficient.

Let us now examine the optical flow equation on the
sphere. If we define the signal on the sphere asIS(θ, φ),
then the optical flow equation on the sphere is assumed to
be:

1
sin θ

∂IS

∂φ
ṗφ +

∂IS

∂θ
ṗθ + It = 0 (5)

wherep = (sin θ cosφ, sin θ sin φ, cos θ) is a sphere point
and(ṗθ, ṗφ, 0) is the flow vector in the tangential coordinate
system. Given the projection model from before, we can
define:

IS(θ, φ) = I(u(θ, φ), v(θ, φ))
∂IS

∂θ
=

∂I

∂u

∂u

∂θ
+

∂I

∂v

∂v

∂θ
∂IS

∂φ
=

∂I

∂u

∂u

∂φ
+

∂I

∂v

∂v

∂φ

We add the extra assumption that the optical flow field be
locally constant. To find the flow vector at any pointp0 on
the sphere, we minimize the function

∑
p∈N(p0)

W (p)(
1

sin θ

∂IS

∂φ
(p)ṗ0φ +

∂IS

∂θ
(p)ṗ0θ +

∂IS

∂t
(p))2

(6)
whereW (p) is a normalized neighborhood weighting func-
tion andN(p0) is a neighborhood region surroundingp0.
Note that during implementation,p is a stereographically
projected point from an already discretized catadioptric
plane. This minimization problem can again be solved us-
ing SVD. Observe that the final result of this minimization
is the optical flow on the sphere. Depending on the task at
hand, we can use it directly for egomotion computation or
stereographically map it on the catadioptric plane.

We will test two methods based on this technique in the
following section. One method will calculate image deriva-
tives using a shift-invariant gaussian defined on the sphere
(Sec. 3) and the other will use the same gaussian kernel
scaled with a shift-variantσ.

5 Experiments

In this section, we compare the results of our new ap-
proach described in last section with a conventional ap-
proach [10] based on the same principle but applied on the
catadioptric image as if it were a conventional cartesian im-
age. We denote our approach bySI (for shift-invariant) and
the conventional byLK (Lucas and Kanade [10]). Recall
that the new approach assumes that the computation of the
spatiotemporal derivatives on the sphere is shift-invariant,
which means the filter support on the sphere is independent
of the sphere position. However, this results to an effec-
tive support on the catadioptric plane increasing towards
the periphery. As we will observe in the real sequences, in
many occasions the periphery contains high-frequency im-
age variation because of the projection of distant objects. To
aleviate blurring this region, we introduced a modification
of the new approach, denoted bySIσ, where we assume that
the support is constant on the fronto-parallel plane instead
of the sphere. Let us defineσx as the shift-invariant scale



factor on the fronto-parallel plane. We look for aσ on the
sphere, denoted byσs, corresponding to the shift-invariant
σx. If x is a point on the fronto-parallel line, andθ is the
corresponding point on the unit circle, then we can define
the relationship (in one dimension) to be:

tan(θ + σs) = x + σx.

Solving forσs:

tan(σs) =
σx

(1 + x2 + xσx)
.

As the corresponding point on the fronto-parallel moves fur-
ther away from the origin,σs decreases. To successfully
implement this technique, you must put a limit on the min-
imum value allowable forσs (here started equal to 3) de-
termined by the minimum region of neighborhood support
you would like. The temporal support of the derivatives is
7 frames (σ = 1). The spatial support for the derivatives
in LK is σ = 2 (17x17). The same was the support for the
Gaussian used inSI before its inverse stereographic projec-
tion to the sphere.

Each method was tested on two greyscale image se-
quences. All images were taken using a digital camera
(Nikon 995), with a parabolic mirror attachment (Remote
Reality OneShot360). The motion between captures was
generated by moving the camera one-half inch along a
slider apparatus, ensuring purely translational motion. Each
sequence consists of eight images having a resolution of
700x700 pixels. In the first image sequence, most of the
texture can be found in regions of large scene depth. The
second sequence was taken from inside a small room, re-
sulting in images containing only small scene depth (see
Figure 5).

To evaluate the three approaches, we use two measures:
The first is the location of the focus of expansiont (or trans-
lation direction) on the sphere obtained from the epipolar
constrainttT (p × ṗ) = 0. The second measure is the dis-
tribution of the flow for a given flow density, which means
using thresholds that yield the same percentage in all three
approaches.

Examining Figure 6 we can see that all three methods
pick up stronger flow at the periphery because that is where
large scene depth, high-frequency content is located. In par-
ticular, SIσ detects far more flow in the outer region than
the middle region relative to the other methods. This is ex-
pected becauseσ is being scaled and so the derivative filter
becomes more sensitive asθ increases. Also note that at the
density of 75%,SIσ picks up much noise, especially in the
untextured, small scene depth region.

As we can see from Table 1,SI andSIσ both outper-
form LK up to the 50% threshold. However, at the 75%
threshold,SIσ is the least accurate. This is due to the sensi-
tivity of the method which is more easily affected by noise
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Figure 5. Images taken using a parabolic mir-
ror attachment. On the left is an image from
the first sequence (significant depth varia-
tion). On the right is am image from the sec-
ond sequence (small room, less depth varia-
tion).

τ LK SI SIσ

10% 1◦ 1◦ 1◦

50% 23◦ 19◦ 17◦

75% 28◦ 24◦ 39◦

Table 1. Azimuth errors for the estimated Fo-
cus of Expansion for the first image set. τ
is the percentage of flow density preserved
before errors were calculated.

at lower thresholds. The reasonSIσ outperforms the other
two methods at higher thresholds can be explained by not-
ing that the images contain high-frequency information at
the outer region.

Examining Figure 7 we notice that the flow is detected
more evenly throughout the image for all methods. This
occurs because the second image sequence contains only
small scene-depth information. There does not exist the
high-frequency content at the periphery as there was in the
first image set. SinceSIσ is sigma-scaled, and since the
scene has little high frequency content, it picks up much
more noise throughout the image than the other two meth-
ods.

τ LK SI SIσ

10% 1◦ 1◦ 2◦

50% 10◦ 8◦ 15◦

75% 15◦ 14◦ 22◦

Table 2. Azimuth errors for the estimated Fo-
cus of Expansion for the second image set.
τ is the percentage of flow density preserved
before errors were calculated.

As we can see from Table 2,SI andSIσ have relatively
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Figure 6. These are the results of each method applied to first image set. The first row displays the
lowest singular values of the linear systems thresholded at the strongest 10%. The densities are
50% and 75% for the second and third row, respectively. The standard deviation used for LK and SI
are the same. The starting standard deviation used in SIσ is σ = 3;

similar accuracies at the three different thresholds, while
SIσ is less effective at all three thresholds. This is assumed
to be the cause of the nature of the scene captured in the
second image set. Comparing results generated for the two
image sets we see that each method performs better when
the scene has smaller depth variation.

6 Conclusion

We have introduced a framework for filtering and flow
computation in catadioptric images. Convolutions take
place on the sphere but their realization is a space-variant
operation on the discrete samples of the original catadiop-
tric image. We have described how a Gaussian function is
defined on the sphere and how the image derivatives neces-
sary for flow computation are estimated. We have reformu-
lated the BCCE on the sphere and solved for the optical flow
on the sphere by assuming that it is locally constant. Results
on real sequences showed that the new approach improves
on the computation of heading direction as well as in the
quality of the flow field for the same field density. In our

future work, we study filter design and optical flow through
the frequency domain of the sphere consisting of the spher-
ical harmonic coefficients. We also search for a fast com-
putation of space-variant filtering in the catadioptric plane.
The proposed methods can be generalized to mutiple other
image modalities whose deformations are well understood.

Acknowledegments

The authors are grateful for support through the follow-
ing grants: NSF-IIS-0083209, NSF-EIA-0218691, NSF-
IIS-0121293, NSF-EIA-9703220, a DARPA/ITO/NGI sub-
contract to UNC, and a Penn Research Foundation grant.

References

[1] J.-P. Antoine and P. Vandergheynst. Wavelets on the 2-
sphere: A group-theoretical approach.Applied and Com-
putational Harmonic Analysis, 7:262–291, 1999.

[2] R. Benosman and S. Kang.Panoramic Vision. Springer-
Verlag, 2000.



MINSV LK SI SIσ

10% 100 200 300 400 500 600 700

100

200

300

400

500

600

700
100 200 300 400 500 600 700

100

200

300

400

500

600

700
100 200 300 400 500 600 700

100

200

300

400

500

600

700

50% 100 200 300 400 500 600 700

100

200

300

400

500

600

700
100 200 300 400 500 600 700

100

200

300

400

500

600

700
100 200 300 400 500 600 700

100

200

300

400

500

600

700

75% 100 200 300 400 500 600 700

100

200

300

400

500

600

700
100 200 300 400 500 600 700

100

200

300

400

500

600

700
100 200 300 400 500 600 700

100

200

300

400

500

600

700

Figure 7. These are the results of each method applied to the second image set. The first row displays
the lowest singular values of the linear systems thresholded at the strongest 10%. The densities are
50% and 75% for the second and third row, respectively. The standard deviation used for LK and SI
are the same. The starting standard deviation used in SIσ is σ = 3.
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