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Abstract

The visual perception of semi-transparent objects, such
as drinking glasses, is an open challenging problem. Un-
like opaque objects, semi-transparent objects violate many
of the standard vision assumptions, among them that figure-
ground segmentation contains salient boundaries. More
specifically, reliable motion and stereo cues for segment-
ing semi-transparent objects are not present because of the
infeasibility of establishing correspondence. This paper de-
scribes a new discovery that semi-transparent objects are
salient on the plane-parallax image generated by the in-
verse perspective mapping. A novel cue is introduced that
reveals objects extruding from a planar support surface.
Points on the support plane are consistent with a planar
homography transformation, whereas extruding points from
textured surfaces violate this mapping. Furthermore, ex-
truding semi-transparent objects violate the mapping due to
the refraction of light and strong specularities. The utility of
this new cue is demonstrated in a novel detection and local-
ization approach, where the cue is matched to a database of
3D models of semi-transparent objects. Preliminary empir-
ical results suggest that the presented approach produces
a small set of candidate locations for semi-transparent ob-
jects and yields accurate localization.

1. Introduction
1.1. Motivation

Semi-transparent objects are prevalent in many of the
environments where one desires to employ autonomous
robots. This is especially true in domestic environments,
where cups and containers are often made out of semi-
transparent materials, such as glass and plastic. Accurate
object localization is a prerequisite for tasks, such as grasp-
ing, obstacle avoidance and motion planning. Therefore,
the ability to perceive semi-transparent objects is vital to
successfully perform manipulation tasks in such scenes.

(a) Wine glass on table (b) Enlarged view of glass

(c) Stereo disparity (d) Inverse perspective map

Figure 1. Challenges of perceiving semi-transparent objects. (a)
Intensity image of a wine glass resting on its side. Even upon close
inspection of the glass, shown in (b), the contours of the glass are
weak or absent. A lack of texture causes stereo matching to fail,
shown in (c), where failures are denoted in blue. Diffraction, re-
fraction and specularities of the glass cause anomalies in the stereo
inverse perspective map, shown in (d).

Current sensors and approaches for object detection and
localization generally fail when applied to semi-transparent
objects. In intensity images, semi-transparent objects have
essentially no texture, and exhibit very weak contours, if at
all. The lack of contours and color of such objects cause
them to be virtually indistinguishable from the background
with standard segmentation approaches. Figures 1 (a) and
(b) demonstrate how such poorly defined contours make the
outline of the wine glass extremely difficult to discern, even
upon close inspection. The lack of texture and presence of
specularities result in the failure of traditional stereo match-
ing approaches. Figure 1 (c) reveals a hole in the stereo
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disparity image, signifying the failure of the stereo compu-
tation in the region of the glass. The transmissive property
of semi-transparent objects is unfortunate, as it renders in-
effective attempts to project texture onto the object surface
or use standard time-of-flight light sensing techniques.

In this paper, an approach for detecting and localizing
semi-transparent objects is presented that is based on the
inverse perspective map [17, 5]. It is shown that the same
properties of semi-transparent objects that present a chal-
lenge to their perception can be used as a cue to their pres-
ence. Specifically, the tendency of such objects to cause
specularity via reflection or to bend light via refraction gen-
erates anomalies in stereo parallax. It is demonstrated that
these anomalies are often detectable and provide strong ev-
idence for the presence of an object that is warping the light
field in the scene. Figure 1 (d) shows an example where
such a warping is salient.

In the present work, it is assumed that semi-transparent
objects lie on a known supporting plane. This planar as-
sumption allows for an inverse perspective mapping (i.e., a
homography) between a stereo camera pair. In brief, all
points in a given image view are mapped onto a known
ground plane and then reprojected back onto a second im-
age view. The reprojected image is then compared to the
true image in the second view to detect intensity differ-
ences. This necessitates the assumption that there is suffi-
cient background texture seen through the semi-transparent
object for such differences to exist. In general, a point on
the supporting surface is seen by the cameras via the two
respective light rays that emanate from it. If the path of the
the two light rays are unobstructed, their projection onto the
camera planes will obey the homography; however, if the
rays pass through a semi-transparent object, they will likely
bend and project to image locations that violate the homog-
raphy. This violation is detected by inversely mapping an
image view to a second one and comparing their intensity
values. In addition to violations due to refraction, specu-
larities will also cause an intensity difference as one camera
may receive a high localized intensity not seen from a differ-
ing viewpoint. Note that the presented cue does not discrim-
inate between opaque textured objects that are salient in the
plane-parallax image from semi-transparent ones. Nonethe-
less, a salient cue is provided for a problem with no other
reliable cues for figure-ground segregation.

1.2. Related work

As compared to the vast amount of work devoted to the
analysis of opaque objects (e.g., recognition and segmenta-
tion), semi-transparent objects have received relatively less
attention in the computer vision literature. Semi-transparent
objects are distinct from their opaque counterparts in that
they violate many of the fundamental vision assumptions
(e.g., Lambertian surface).

In many works, the image of a semi-transparent ob-
ject has been modelled by a linear combination of layers
[1, 22, 15, 6]. Here, the focus is on modeling the attenuation
of light through the semi-transparent material at the expense
of ignoring refraction and specularities altogether. Another
set of work has considered the recovery of shape and pose
information from analytically derived reflective and refrac-
tive properties [4, 2, 14]. This body of research has assumed
highly simplified and controlled environments. Speculari-
ties alone have been used in a qualitative manner to recog-
nize objects of known 3D shape [20]. A drawback of this
approach is that it ignores potentially rich information in the
interior of the object caused by the refraction of the back-
ground behind it. Others have eschewed analytic models
and instead proposed methods based on learning from an
examplar set [7, 19, 18, 10, 16, 13]. Additional key distinc-
tions between approaches include whether the sensor used
is passive (e.g., CCD/CMOS camera) or active (e.g., time-
of-flight sensor [12]) and whether a single view or multiple
views are considered.

Common among the cited approaches is that they ig-
nore potentially useful contextual cues. For the detection of
opaque objects, it has been shown that performance is en-
hanced by introducing geometrical contextual information
of the scene layout [11, 3], such as the relationship between
objects and their supporting planes.

1.3. Contributions

In the light of previous research, the major contributions
of the present work are threefold. First, a new discovery
is reported that a well-known cue for obstacle detection,
the inverse perspective mapping [17, 5], makes an excel-
lent cue for figure-ground segregation of semi-transparent
objects. Second, a new representation for model-query im-
age matching in stereo images is proposed, where the model
is represented by its expected plane-parallax image based
on a known pose. Finally, promising preliminary detection
and localization results for semi-transparent objects are pre-
sented, in admittedly few images but with very challenging
appearance.

2. Technical approach
2.1. Opaque vs. semi-transparent objects

Perception of semi-transparent objects is a challeng-
ing task because such objects have properties that violate
fundamental assumptions made in most vision algorithms
about how light interacts with the scene objects. For in-
stance, objects are generally assumed to be diffuse Lam-
bertian surfaces, where light rays that strike the object are
isotropically reflected towards all viewpoints (see Fig. 2
(a)). This assumption permits reasoning about light rays and
image points using perspective projections. Specularities
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(a) Lambertian reflection (b) Specular reflection (c) Refraction

Figure 2. Opaque (Lambertian) vs. specular vs. semi-transparent objects.

and refractions violate the perspective projection of light
and require additional mathematical models to be handled
properly, such as the Bidirectional Reflectance Distribution
Function (BRDF) for specular reflection and Snell’s Law
for refraction. These models are a function of both the ob-
ject’s shape and material composition, as well as the camera
viewpoint, and are thus much harder to employ.

In the case of semi-transparent objects, light is often
reflected non-isotropically, leading to specularities arising
from the fact that some viewpoints receive the reflected light
at high intensity while others do not (see Fig. 2 (b)). Addi-
tionally, most light rays are not reflected at all, but rather
pass through the object and emerge bent based on the re-
fractive index of the material (see Fig. 2 (c)). Thus, most
light rays received at a specific viewpoint originate from
behind the object.

2.2. Local binocular semi-transparency cue

Semi-transparent objects refract the light coming from
the scene behind and often exhibit specular reflections of
light in front. These two properties of specular reflection
and refraction violate perspective projection and greatly
contribute to the difficulty in perceiving semi-transparent
objects. It is therefore interesting that this violation of per-
spective projection is precisely what can be exploited to in-
crease the saliency of semi-transparent objects in binocular
imagery.

When a plane is present within a scene, there exists a
homography between each camera’s image plane and the
scene plane. From these homographies there is also an
inverse perspective mapping that maps the (scene) plane’s
projection in the image plane of one camera onto the image
plane of the other. Figure 3 shows these homographies, H1

and H2, between the scene and cameras, as well as the in-
verse mapping, H−1

1 H2, that maps the right image plane
to the left image plane. This homography can be com-
puted from a stereo image pair via stereo correspondence
matching followed by estimating the dominant plane using
RANSAC [9].

Given a stereo image pair of a scene plane, such as a ta-
ble, each point on the plane, X , projects its light intensity
onto the two image planes. Assuming the scene plane has

O2 O1 

H1 H2

H1
-1H2

Figure 3. Stereo inverse perspective mapping. Planar homogra-
phies H1 and H2 relate the scene plane to the two images planes
with O1 and O2 denoting the respective centers of projection, re-
spectively. The inverse mapping, H−1

1 H2, maps the right image
plane to the left image plane.

a Lambertian surface, it is expected that the corresponding
points on the image plane, X1 and X2, have the same in-
tensity. These two image points are related by the inverse
perspective mapping [17, 5],

X1 = H−1
1 H2X2. (1)

In more general terms, the homography acts as a correspon-
dence function, f(·), that encodes the expected perspec-
tive reprojection of X2 in the other image plane, such that
X1 = f(X2). The planar homography is used due to the
ease of estimation and practicality of assuming a dominant
supporting plane.

If I(·) is the intensity function, then the intensity discrep-
ancy function, D = |I1(X1) − I2(f−1(X1))|, is expected
to be negligible if the two image points indeed correspond
to the same point on a Lambertian surface. A critical source
for intensity discrepancies among images captured at dif-
ferent viewpoints, as it relates to semi-transparent objects,
is the refraction of light as it travels from the scene plane
to the cameras. Since this refraction is not accounted for
in the perspective projection, errors in the reprojection are



Algorithm 1: Computing intensity discrepancy.
Input: I1: View 1 intensity image, I2: View 2 intensity

image, C: Intrinsic stereo parameters
Output: D: Intensity discrepancy, P : Supporting Plane

Step 1: Compute the stereo disparity
values between the views.
Step 2: Estimate the dominant plane via
RANSAC.
Step 3: Compute the inverse homography
H−1

1 H2 between views.
Step 4: Remap image in view 2 to view 1
using the homography, (1).
Step 5: Compute absolute difference, D.

Algorithm 2: Localizing semi-transparent objects.
Input: D: Intensity discrepancy, P : Supporting plane, C:

Intrinsic stereo parameters, O: 3D object models
Output: S: Similarity map, L: Object localization

Step 1: Establish pose search space
using P and C.

Step 2: Sample search space.
Step 3: Create parallax template M
from O for each sample point.

Step 4: Compute inner product of each
template M and discrepancy image D
yielding S.

Step 5: Consider similarity peaks as
candidate locations, with top as L.
Step 6: (Optionally) Repeat Steps 1-5
with finer sampling.

introduced as light rays pass through the object and are bent
on their path towards the image plane. These errors are then
propagated to the inverse mapping between cameras. Gen-
erally, the intensity discrepancy image generated by the in-
verse perspective mapping has a relatively high response on:
(i) binocular half-occlusion regions [8], (ii) opaque objects
that lie off the scene plane, (iii) specular highlight regions
and (iv) semi-transparent objects that distort the view of the
background by way of refraction.

2.3. Localizing semi-transparent objects

To detect and localize semi-transparent objects from a
stereo pair, the intensity discrepancy (i.e., parallax image)
between images from two viewpoints is computed. Given
the intensity discrepancy image, a template matching-based
approach is employed to perform object localization in 3D
space.

The model template is generated by the union of the (bi-
nary) silhouettes of the object rendered in the left and right
views, with the right silhouette reprojected to the left im-

Figure 5. Parallax template as generalized center surround. The
positive white center area corresponds to the parallax template
mask, M . The negative gray area corresponds to the dilated re-
gion surrounding M , represented as dilation(M)−M .

age plane by the inverse perspective mapping, (1), see Fig.
4 (a). This simulates the stereo parallax and is done to com-
plement the parallax revealed in the intensity discrepancy
image by the subtraction of two stereo views. This parallax
is seen as objects extend upwards off the plane, resulting in
noticeable “double vision” in Fig. 6 (b).

The similarity score between the position dependent
template and the corresponding intensity discrepancy im-
age region can be computed by an inner product. An issue
with using the inner product directly as a similarity score
is that it yields high scores for small templates in large re-
gions of high energy. A generalized center-surround is used
to penalize such cases. Specifically, the similiarity score
consists of the sum of energy over the template (i.e., inner
product) less the energy within the dilated area around the
template (see Fig. 5). Formally, the similarity score, S, for
a given discrepancy image, D, and rendered parallax tem-
plate mask, M , is computed by

S =
∑
ij

DijMij − α
∑
ij

Dij [dilation(M)−M ]ij , (2)

where α is the surround penalty factor. In evaluation, the
surround penalty factor, α, was set to 1.0 and 5 iterations of
binary dilation were used.

Each point on the surface plane is considered to be a
potential object position. The search space is sampled by
projecting each pixel location to its corresponding three-
dimensional point on the plane. While general pose es-
timation has six degrees of freedom, the assumption that
the objects rests on a known supporting surface reduces
the degrees of freedom in the object’s pose to five. Addi-
tionally, the assumption of rotationally symmetric upright
objects decreases the search space further to two degrees.
This two-dimensional search space is defined as the set of
three-dimensional points that lay on the supporting plane.
A coarse sampling of every ten pixels is used for an initial
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(a) Parallax template (b) Templates over search space (c) Search space similarity scores

Figure 4. Parallax templates and search space. (a) Summary for the creation of the parallax template. Conceptually, the model is rendered
in both the left and right views, and then the right view is remapped by the planar homography to the left view. The union of the binary
masks form the parallax template. (b) An example sampling of the search space. A binary template is rendered at each sampled point in the
search space. Its inner product with the intensity discrepancy image yields the similarity for that location. (c) Example score peak at wine
glass location. The search space is determined by projecting each pixel location of the intensity image to the supporting plane. Each pixel
location in this image corresponds to a intensity image point and its projection on the supporting plane. The color represents the similarity
of the templates centered at these points. Regions in red, yellow and blue, signify high, intermediate and low response, respectively.

localization that is then refined in a local window at a higher
sampling density. An example of the search space sampling
is illustrated in Fig. 4 (b).

To produce candidate locations for the object’s location,
several peaks are extracted from the similarity image; Fig. 4
(c) shows an example similarity image for a wine glass input
template. The location of the peak in the similarity image
directly corresponds to the pixel location in the intensity im-
age and the metric location on the supporting plane in the
world. The quality of a candidate is ranked by the height
of its peak. Finally, candidate locations are identified via
an iterative non-maximum suppression procedure that ter-
minates once a local peak is encountered that has a value
below a predefined threshold.

To recapitulate, the two main aspects of the proposed ap-
proach are summarized in Algorithms 1 and 2.

3. Empirical evaluation

To evaluate the presented approach, a test scene was
created consisting of the following five semi-transparent
glass objects: wine glass, sphere, drinking glass, mug and
bowl. In addition, a textbook was used to represent an
opaque distractor. A PointGrey BumbleBee2 stereo cam-
era was used to capture the binocular imagery. The left
view of the scene is shown in Fig. 6 (a) and the inverse
perspective mapping discrepancy image is shown in Fig. 6
(b). To generate the parallax templates, five models that
were roughly similar in shape and size to the objects in the
test set were selected from the Princeton Shape Benchmark
[21] and Google’s 3D Warehouse (http://sketchup.
google.com/3dwarehouse).

Object localizations were evaluated based on two crite-
ria: (i) the rank of the best candidate and (ii) the metric
position error from the ground truth of this candidate. To

(a) Sphere (b) Glass

(c) Mug (d) Bowl

Figure 7. Similarity images and candidate peaks. The similar-
ity images are created by taking the inner product of the center-
surround parallax template and the intensity discrepancy image at
the corresponding image locations. Red signifies areas of high en-
ergy and peak locations correspond to object location candidates.

determine the rank, the candidates were ordered by their
similarity value. To measure the metric error, ground truth
virtual model positions were established manually and the
distance between the ground truth and recovered positions
were computed in both pixel and scene space.

The empirical results are summarized in Table 1. In
terms of position error, all objects were successfully local-
ized, with a maximum error of approximately nine pixels in
the image and 11 mm on the table. These localizations are
shown in Fig. 6 (c) and (d). Of the five objects, the correct
wine glass and sphere locations were found as the top candi-

http://sketchup.google.com/3dwarehouse
http://sketchup.google.com/3dwarehouse


(a) Scene left view (b) Inverse perspective mapping discrepancy

(c) Recovered object positions (d) Objects overlayed on input image

Figure 6. Detection and localization results. (a) The left stereo image of the scene with five semi-transparent glass objects and a textbook.
(b) The intensity discrepancy from the inverse perspective mapping. (c) The resulting object localizations returned by the proposed
approach. (d) The object masks superimposed over the input image at their respective detection positions.

dates, the correct glass and mug locations were ranked third
and the bowl was ranked eighth. The sphere and the wine
glass were a source of confusion when searching for the
glass and mug. The similarity images in Fig. 7 (b) and (c)
reveal that their locations resulted in score peaks higher than
the correct localization. These candidates are shown for the
mug in Fig. 8 (a). The similarity images for the sphere and
wine glass (see Fig. 7 (a) and (b), respectively), illustrate
that these objects have very high peaks and are thus likely
to be selected as prime candidates. The bowl’s best can-
didate was ranked eighth. Its similarity image shows (see
Fig. 7 (d)) many high, yet flat peak regions that caused con-
fusion. These regions are caused by the large size of the
template, enabling it to encompass the energy of any object
in the scene, see Fig. 8 (b).

The localization of an object requires an evaluation of

1000-3000 templates for a 640 × 480 image. OpenGL is
utilized to render the model template at each sample loca-
tion. The search step (coarse search with refinement of best
candidate) takes under 10 seconds per object with unopti-
mized Python code.

4. Discussion and summary
The concept of using inverse projective mapping to

extract a salient cue indicating the presence of semi-
transparent objects was introduced. In addition, the utility
of this cue has been demonstrated in a novel approach to
perform model-query image matching in stereo imagery.

While the present formulation of the detection and lo-
calization approach yields confusions in discriminating be-
tween similar semi-transparent objects, the inverse projec-
tive mapping technique yields a highly informative cue for



(a) Mug detection candidates (b) Bowl detection candidates

Figure 8. Confusion among semi-transparent objects. Candidates are ordered left-to-right and top-to-bottom by decreasing similarity peak
score. (a) There were only five peaks detected for the mug, with the third (lower left) candidate being the correct match. All mug candidates
were centered over semi-transparent objects. (b) Due to its large size, the bowl template easily encompasses any area of high energy, and
can even straddle a gap to cover energy from three separate models, as shown in the lower right.

Object Error (pixels) Error (mm) Rank
wine glass 9.2 10.4 1

sphere 6.3 6.1 1
glass 6.3 8.7 3
mug 4.2 11.1 3
bowl 1.4 2.7 8

Table 1. Per object localization performance metrics. Error values
are between the position of the manually placed virtual model and
the estimated object location. The rank represents the position of
the best candidate, determined by similarity score value.

the detection of semi-transparent objects. Future work in-
volves improving the similarity metric to better detect and
localize specific instances of semi-transparent objects.

While this paper uses plane-parallax for its simplicity
and ease of estimation, the use of inverse projective map-
ping to detect semi-transparency extends to any correspon-
dence function when used in conjunction with perspective
projection. Such a correspondence function about the back-
ground surface is possible even if the support surface is not
planar because its 2.5D depth function can be captured with
a depth sensor.

In summary, this paper has presented a novel cue for
detecting the presence of semi-transparent objects and an
approach for detecting and localizing objects in stereo im-
agery. The approach is founded on the inverse perspec-
tive mapping. While this mapping has previously been
proposed for detecting opaque objects, its application to
semi-transparent objects, as done in this paper, has not been
considered. Preliminary results suggest that the approach
can achieve accurate detection and localization of semi-
transparent objects. Finally, it is anticipated that the pro-

posed cue will prove useful in a variety of applications be-
yond the particular detection and localization approach con-
sidered here.
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