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Automated System for Semantic Object Labeling
With Soft-Object Recognition and Dynamic

Programming Segmentation
Jonas Cleveland, Dinesh Thakur, Philip Dames, Cody Phillips, Terry Kientz,

Kostas Daniilidis, Fellow, IEEE, John Bergstrom, and Vijay Kumar

Abstract— This paper presents an automated robotic system
for generating semantic maps of inventory in retail environments.
In retail settings, semantic maps are labeled maps of stores where
each discrete section of shelving is assigned a department label
describing the types of products on that shelf. Starting from a
metric map of the store, the robot autonomously extracts the
shelf boundaries, generates a distance-optimal tour of the store
to view every shelf, and follows the tour while avoiding unmapped
clutter and moving people. The robot creates a point cloud of
the store using the data collected from this tour. We introduce
a novel soft-object assignment algorithm to create a virtual map
and a dynamic programming algorithm to segment this map.
These algorithms use a priori information about the products to
boost data from laser and camera sensors in order to recognize
and semantically label objects. The primary contribution of this
paper is the integration of multiple systems for automated path
planning, navigation, object recognition, and semantic mapping.
This paper represents an important contribution toward deploy-
ing mobile robots in dynamic human environments.

Note to Practitioners—One of the critical tasks in retail is to
optimally manage the use of floor space within each store. Doing
this correctly requires having accurate knowledge of the way
in which space is currently used in the store, how this usage
changes over time, and how this usage relates to sales. In a
retail chain, such as Walgreens, which has over 8000 stores in
the United States, this knowledge is difficult and expensive to
obtain. Furthermore, each individual retail store may have dozens
of different departments and may stock thousands of unique
product types. While embedded-system and infrastructure-based
solutions, such as radio-frequency identification tags, are tech-
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nically straightforward, they are simply not scalable over a full
product inventory. We present an autonomous system that uses
computer vision to recognize products and departments and that
is able to autonomously navigate around clutter and moving
people. The only step that requires human input is manually
driving the robot around the store to create an initial map of
the shelf locations. To the best of our knowledge, this is the first
implementation of a fully automated robotic inventory labeling
system for a retail environment. The framework presented in this
paper can also be used in other retail environments and in other
indoor environments with organized shelves, such as business
storage facilities and hospital pharmacies.

Index Terms— Automation, robot vision systems, robots.

I. INTRODUCTION

OPTIMALLY managing retail space to maximize profits
while providing customers with a good experience is

a challenging task that requires having detailed knowledge
of the way floor space is used. Maintaining this information
is difficult within a single store, which may have dozens of
product departments and thousands of unique products. The
challenge is even greater in a large retail chain, such as
Walgreens, which has over 8000 stores in the United States.
At present, the staff of each store is expected to label a
map of the shelves in a store with: 1) the departments
(e.g., diapers, first aid, and deodorant) contained within the
shelving fixtures and 2) the linear space occupied by each
department. Experience has shown that these maps can contain
errors at the time of their creation, and that additional errors
are introduced while revising the store maps due to seasonally
fluctuating demand and the introduction and removal of prod-
ucts. The creation of a novel automated system that accurately
determines department size and location produces significant
benefits by freeing the staff to provide more customer care,
reducing the costs associated with imperfect knowledge, and
enabling accurate optimization of store space allocations.

The material presented in this paper has been submitted to
the U.S. Patent Office [1], [2].

II. TECHNICAL BACKGROUND

There is extensive prior work on using robots to create
semantic maps of human environments [3]–[8]. This corpus
broadly defines a semantic map as the association of semantic
information with a spatial location. Much of this previous work
focuses on mapping household and academic building envi-
ronments. These are important human working environments,
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but the characteristics of these environments provide innate
advantages for object recognition systems.

1) Typically, objects in a home environment differ
drastically in size, color, and shape characteris-
tics [4], [5], [7].

2) The number of distinct object classes is relatively small.
For instance, Choudhary et al. [3] evaluate their system
over a bicycle helmet, chair, and kitchen appliances.

3) Despite these environments being described as clut-
tered [4], [5], [7], there is still usually a clear line of
sight to at least two faces on each object, or the objects
are placed in front of a clean background so that there
is little visual clutter.

Inventory storage facilities are important working environ-
ments that do not share these characteristics. Objects are
placed adjacent to each other and are usually in packaging
boxes so 3-D features are not discriminative. Objects of the
same family are placed near one another and are often similar
in size and color characteristics, making object classification
difficult. Furthermore, most retail environments have thou-
sands of unique product types.

Despite the recent significant interest in using robotic plat-
forms in human domestic working environments, there is
a surprisingly small amount of work in robotics in inven-
tory storage environments. Mankodiya et al. [9] create a
detailed proposal for robots that automate the construction of
planogram maps and handle other retail-centric tasks, such as
merchandise management, visual merchandising, and inven-
tory management. Mankodiya et al. [10], Kumar et al. [11],
and Frontoni et al. [12] describe systems for mapping the
physical structure of a retail environment. While previous work
broadly references robotic technology for object recognition
and mapping, it does not describe in detail the algorithms
necessary for multiclass object recognition or automated map
creation.

We present an automated robotic semantic labeling system
that tackles some of the problems unique to retail environ-
ments. We propose a novel formulation of the path-planning
problem that guarantees complete traversal of the space while
constraining the motion of the robot to ensure that the sensors
view all relevant areas of the environment. Using existing
navigation algorithms (Section IV-B), the robot is able to
autonomously avoid unmapped static clutter, such as empty
boxes or shopping carts, and moving people. Once the robot
detects potential objects in the map, our soft-object recognition
system (Section IV-C) identifies potential class labels from
a template library. Our system uses these candidate single
object labels and their likelihoods to classify larger physical-
contextual regions (Section IV-E). The system extracts regions
by segmenting the most likely object labels, which are each
preassigned some region family. The segmentation step then
updates the object-class likelihoods based on the labels of
nearby objects. This soft-labeling differs from most existing
systems and significantly improves the labeling accuracy of
the final semantic map.

This paper combines computer vision and navigation algo-
rithms to autonomously navigate and recognize objects in
a spatially and visually cluttered environment. Our system

Fig. 1. Scarab robot in different stores. (a) Walgreens retail store. (b) Model
store.

yields an accurate annotated map and does not require any
external infrastructure or additional structure in the retail
environment [9], [10]. This paper is an important contribution
in that we describe the implementation of an automated
object discovery, map management, and path-planning system
capable of semantically labeling a retail environment. This
paper builds upon our previous work [12], including extended
descriptions of the shelf extraction and template extraction
algorithms, additional evaluation of the planning and naviga-
tion algorithms in multiple stores, and a video1 showing the
system in a real-world retail store.

III. INFRASTRUCTURE

In this section, we outline the salient features of a Walgreens
retail environment and describe the mock store that we have
built within the laboratory at the University of Pennsylvania.
We also describe the robotic platform used in the experiments.
Our system is a prototype for robotic inventory management
within a Walgreens store. The installation of the system
requires a human operator to teleoperate the robot in order to
generate an occupancy grid map of the store. After this initial
setup, the system is completely automated. Using the initial
map, the robot autonomously plans a path through the store
and follows this path to collect vision data about the products
in the store. The robot uploads this data to a docking station,
which processes the sensor data collected from the robot.

A. Walgreens Retail Environments

As described in Section II, retail stores such as the one
shown in Fig. 1(a) are spatially and visually cluttered indoor
environments. They often contain a series of parallel shelving
units, at static locations, that hold the products. These shelving
units must be at least five feet apart to allow customers to pass
by one another and are typically capped by an end stand. Each
shelving unit has multiple shelves arranged vertically. The
store may also contain temporary displays and other transient
objects, e.g., boxes, shopping carts, or baskets. These transient
objects are often static during the course of a single mapping
run but may move, appear, or disappear between runs.

The products are organized into departments, which are sec-
tions of shelves of standard widths that contain semantically
similar products, e.g., different brands of cereal. In most stores,
all of the products within a vertical column of shelves all
belong to the same department. This means that only a single

1Available at https://www.youtube.com/watch?v=a7TDgwQ5FlM



822 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 14, NO. 2, APRIL 2017

Fig. 2. (a) Computer-aided drawing drawing of the Scarab robot. (b) Example
path of the robot avoiding an obstacle.

shelf is required in order to determine the department labels
for the entire column of products. However, certain products
may be found within multiple departments, e.g., cold medicine
may be found within the Medicine department as well as a
Seasonal Flu and Cold department.

We worked directly with Walgreens to design, build, and
stock a model retail environment according to the company
standards in order to perform realistic tests within a labo-
ratory environment. Fig. 1(b) shows the robot in the model
store. Each aisle is at least five feet long with shelves on
either side with enough depth for multiple items. Our model
store contains six departments with similar dimensions and
product makeups to a Walgreens store. There are at least two
departments on both sides of the aisle and over 60 different
product brands that are found at Walgreens stores. The model
shelving units are two shelves high, since only a single shelf
is necessary to label a department.

In order to thoroughly test the performance of our system in
a retail environment, Walgreens proposed a number of other
constraints on the environment. First, at least one shelf section
of longer than two feet is covered by glass to simulate products
protected by a glass encasement, such as refrigerated products
and electronics. Second, a movable object with a footprint of
one square foot may appear in the environment to emulate
a box of products waiting to be put on the shelves or a
customer’s shopping basket. Finally, at least two departments
should have at least one product in common. In our model
store, the Seasonal Flu section shares three product types with
the Medicine department and one product type with the Skin
Care department.

B. Robot

The platform is a modified Scarab robot [13], which is built
in-house and shown in Fig. 2(a). It is a differential drive robot
with a top speed of 1.4 m/s. It has a modular design with plug-
and-play capability, where sensors and actuators can be easily
swapped. We use a Hokuyo UTM-30LX laser and a Point
Grey Flea3 USB camera for this application. Both sensors
have USB3 data links. We mount the camera 46 cm from the
ground plane to be able to detect products on the bottom two
shelves, increasing the robustness of the system. Processing
for the navigation system is done using the onboard computer
with a 2.4-GHz Intel Core i5 processor and 4 GB of RAM.

The robot is powered by a pair of hot swappable 14.4 V,
95-Wh LiPo batteries. The robot can also be directly plugged
into the wall to charge.

C. Docking Station and Processing Computer

Data from the robot are transferred to the docking station
at the end of its automated run. The docking station parses
video from the camera into time-stamped frames and synchro-
nizes the images with the position data. The docking station
computer has a 2.8-GHz Intel Core i7 processor with 16 GB
of RAM. The data link from the robot to the docking station
is either Ethernet or WiFi.

The processing computer acts as an online server. It collects
the data sent to it from the docking station. If this system was
deployed in Walgreens, processing would be completed on
Walgreens’ servers and uploaded to an interface for viewing
at Walgreens corporate headquarters. Currently, the data are
formatted using MATLAB scripts and product recognition
is handled by functions written in C. The computer has
a 2.9-GHz Intel Core i7 with 8 GB of RAM. The output of
the system is an image file containing the semantic map.

IV. SEMANTIC MAPPING

In this section, we first describe the planning and navigation
algorithms necessary for the robot to successfully traverse
cluttered retail environments, such as the Walgreens store
shown in Fig. 4, in order to collect product images. These
images are stamped with the pose of the robot in the map
frame and uploaded to a server for processing. The system
identifies the products within each individual image using a
soft-object detector, maintaining multiple potential class labels
for each object. Next, using the position of the robot, the most
likely class label of each object, and the size information for
each object, the system creates a virtual map of the store.
Finally, the system segments this virtual map into departments
using the object-to-department associations. Objects are then
relabeled according to the departments to increase the final
precision of the object labeling system. The image processing
and semantic map generation occur off-line. Fig. 3 shows the
planning, navigation, and semantic mapping system pipelines.

A. Path Planning

To perform the semantic mapping task, the robot must be
capable of navigating in a cluttered, indoor environment. To
deal with this, the robot plans a nominal path through the
environment and then adapts this plan online based on local
sensor information. These nominal paths maintain a desired
distance from the products on the shelves, as shown in Fig. 6,
in order for the robot to be able to correctly detect and identify
products using the camera.

1) Map Generation: Initially, the robot is given an occu-
pancy grid map of the environment or such a map is manually
created [first block in Fig. 3(a)]. To manually create a map, a
user steers the robot around the store, and the data from the
laser range finder are fed into the gmapping package from
robot operating system (ROS) [14] to create a high quality map
of the store. An occupancy map generated from a Walgreens
store in Philadelphia is shown in Fig. 4(a). The gray regions
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Fig. 3. System diagrams for planning, navigation, template library construc-
tion, and semantic mapping.

Fig. 4. Generated occupancy grid map of a Walgreens store. (a) Full store
map. (b) Inset showing details of the shelves.

Fig. 5. Extracted shelves (blue boxes) and corresponding segments to be
visited (green lines).

indicate unexplored areas while the white ones represent free
space and black regions are occupied.

2) Shelf Extraction: The robot must first extract the con-
tours of the shelves from the occupancy grid map before
it can plan a path through the environment [second block
in Fig. 3(a)]. This is done by morphologically closing
the occupancy map using a disk structure and then filling
holes [Fig. 5(a)]. We morphologically remove interior points
[Fig. 5(b)] before using an edge-linking operation to detect
potential shelving units. We discard any edges shorter than
a certain threshold as clutter objects [Fig. 5(c)]. Note that
shelves will typically result in closed edges, though some
nonclosed edges within a certain neighborhood must be closed.
Finally, we obtain an oriented bounding box for each closed

Fig. 6. Shelf extraction process. (a) Morphologically closed occupancy map.
(b) Interior points removed. (c) Edges obtained from edge-linking operation.
(d) Oriented bounding boxes for the edges.

edge [Fig. 5(d)]. For all of these steps, we use the open-source
image processing implementations from [15].

Using either the bounding box or the extracted shelf con-
tours, the robot creates a set of segments at some desired
offset distance (2 ft) from each edge of the shelf, as Fig. 6
shows. This offset distance is set to allow the robot to avoid
colliding with the shelves while keeping the products on the
shelves in focus in the camera images. Note that with the
onboard camera, even the smallest products are on the order
of 50×50 pixels at this distance. Most shelves in a Walgreens
store are rectangular and have end stands, so the robot must
visit all four sides. These sides must be traversed in a particular
direction (clockwise in our case), since the camera is mounted
facing to the right with respect to the heading direction of the
robot.

3) Planning: To plan an optimal path through the store, we
represent the store as a directed graph. Each of the extracted
shelf segments becomes a node in the graph. We create
directed edges, or arcs, between all nodes, with the weight
being the distance from the endpoint of the first shelf to the
starting point of the second shelf. Note that these edges are
not symmetric, since the distance from the endpoint of shelf
A to the beginning of shelf B is different than the distance
from the end of shelf B to the beginning of shelf A. This type
of planning problem is an arc routing problem (ARP) [16].
Generic ARP solvers find a least-cost traversal of some arcs
or edges of a graph subject to constraints. Let m be the
number of shelves in the store and let n be the total number
of sides/segments of the shelves to be visited. Consider a
graph G = (V , A ∪ E) where V = {v1, v2, · · · vn} is a set
of vertices, A is a set of directed arcs aij(i �= j), and E is
a set of undirected edges ei j (i < j). Let cij be the cost of
traversing arc aij and dij be the cost of traversing edge eij. Let
A′ ⊂ A and E ′ ⊂ E be the subsets of arcs and edges that the
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robot must traverse while the remaining arcs and edges, A\ A′
and E \ E ′, are optional. For our problem, E = E ′ = ∅, and
hence, the graph G is a directed graph. This class of ARPs
is known as the directed rural postman problem (DRPP) [16]
[third block in Fig. 3(a)].

ARP solvers typically transform the problem to a node rout-
ing problem, also called a traveling salesman problem (TSP),
as there are many readily available tools to solve TSPs.
Laporte [16] provides a unified approach for transforming
various classes of ARPs into TSPs. The first step is to
transform the DRPP on G into an asymmetric TSP (ATSP)
on H , where H = (W, B) is a complete graph. There is
a vertex w ∈ W for each arc of A′ in the original graph
and an arc b jk ∈ B with cost s jk equal to the length of a
shortest path from arc ai j ∈ A′ to arc akl ∈ A′. The next step
transforms the ATSP on H to a symmetric TSP (STSP) on a
complete undirected graph I using a three-node transformation
proposed in [17]. The new graph I = (U, C) contains three
copies of the vertices in H , i.e., ∃ui , un+i , u2n+i ∈ U , such
that ui = un+i = u2n+i = wi ,∀wi ∈ W [18]. Let the cost
of the edges ci,n+i , cn+i,2n+i be 0, the cost of edge c2n+i, j

(i �= j) be si j (i.e., the cost of bi j ∈ B), and the cost of all
other edges be ∞.

We use the publicly available Concorde TSP solver [19],
which uses a branch-and-cut algorithm to solve the STSP on
the graph I . The solver provides a least-cost sequence of the
segments for visiting the shelves. Our contribution to robot
navigation is applying these well-studied problems and open-
source solvers to the problem of robotic navigation in retail
environments. This differs from previous approaches to retail
navigation, such as [20], where a floor cleaning robot follows
a human specified path.

B. Navigation

The nominal path for the robot is composed from the
sequence of shelves found from the STSP problem. The robot
discretizes each segment along the path to get a series of
waypoints. These waypoints are sequentially set as goals in
the locally reactive controller from Guzzi et al. [21].2 This
controller provides the Navigation and Obstacle Avoidance
blocks in Fig. 3(b). This approach does not provide any formal
safety guarantees for the robot, but we have had no problems
throughout our extensive development and testing. In addition,
the algorithm does not require perfect knowledge of the map
or of the locations of other robots and people, only raw laser
scans.

When the nominal path is unobstructed, the robot drives
straight toward the next waypoint, and when a transient
obstacle blocks the robot’s path, the robot drives around the
object and returns to the nominal path. To avoid obstacles,
the approach in [21] inflates all of the obstacles in the current
laser scan and steers the robot toward the point in free space
that is closest to the current waypoint. This allows the robot to
reactively replan safe paths around static obstacles, such as a
box, as shown in Fig. 2(b), as well as avoid moving obstacles,

2Our implementation is available online at https://github.com/bcharrow/
scarab/tree/master/hfn

such as people. We bias this replanning toward the nearest
shelf to avoid having the obstacles block the camera view.

The robot uses the adaptive Monte Carlo localiza-
tion (AMCL) algorithm [22] to track its position in the
occupancy grid map as it moves. An implementation of this
algorithm is available in the amcl ROS package [23]. This
provides the robot with the odometry input in Fig. 3.

C. Object Detection

Recent computer vision literature has seen an explosion
of techniques in a race toward the perfect image feature
descriptor. At a high level, families of feature descriptors
include those that use image gradients, binarized colors, and
image patches [24]–[27]. Recent research is biased toward
features with a compact descriptor length, such as Fast Retina
Keypoint, to enable high performance on resource constrained
platforms, such as mobile devices. While these descriptors
reduce the computational overhead, SIFT remains the standard
for performance in variable lighting conditions [24]–[27].

1) Template Object Library: The processing computer has
a library of all of the product classes that could be found in
a store. This library contains information about the physical
characteristics and department associations for each product.
Each individual product class S in the store has at least one
corresponding image template, depending on the type of prod-
uct. Some objects are constrained to one orientation on a shelf,
such as objects hanging from shelves. Other objects might be
placed in multiple positions or be deformable, e.g., a bag of
chips. Each template ω consists of a set of image descriptors
Dω = {dk}1≤k≤Kω . Since accuracy is our primary objective,
we extract SIFT descriptors from a uniform grid spaced every
five pixels using a dense keypoint search across input images
and training templates [28], [29]. The number of keypoints
can be different for each template ω, so we normalize the
total number of descriptors, Kω, across all product types by
random selection. The template object library � = {ω} is
the collection of all of the individual templates. Fig. 7 shows
an example product template. We extract SIFT descriptors at
multiple scales and organized in a list, associating them with
the product name and Universal Product Code. In practice, we
extract descriptors over two scales.

2) Camera Measurement: From each camera image, we
extract a dense set of SIFT descriptors from the entire image.
We cannot use conventional SIFT keypoint detection, because
there are no prestored images for entire scenes or shelves.
For our application, we found that dense SIFT (DSIFT) fea-
tures yield higher accuracy [28] than standard SIFT features.
We project each pixel to a plane based on laser depth data.
We then perform a nearest-neighbor search over each keypoint
in the projected plane to determine its nearest neighbor in
the template library. Previous work, such as [30], does well
to argue the advantages of nearest-neighbor classifiers over
parametric approaches, such as support vector machines. We
employ a naïve Bayes nearest-neighbor classifier [30] that
minimizes

N∏

i=1

||di − N NS (di )+ DistN NS (di )||2 (1)
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Fig. 7. Sequence for building template entry. (1) Create image mask of the
object. (2) Extract keypoints at multiple scales (with the descriptors displayed
in the following). (3) Build data library.

where d1, . . . , dN are the descriptors extracted from the cur-
rent frame, N NS (di ) is the nearest-neighbor descriptor of di

in class S [30], and DistN NS (di ) is a probability score based
on the number of times the quantized nearest neighbor occurs
in a training set normalized over the total descriptors in that
set. We use a voting scheme across all classes of the form

HS =
∑

i

1

||di − N NS (di )+ DistN NS (di )||2

×
∫

x

∫

y
f
(
v i

x , v
i
y

)
dxdy (2)

where [vx , vy]T is a vector from the template point to the
center of the template itself

f
(
v i

x , v
i
y

) = exp

(
−

(
xi
w − v i

x

)2

2σ
2i
x

−
(
yi
w − v i

y

)2

2σ
2i
y

)
(3)

[xw, yw]T is the center of the Gaussian vote stamp, and
σx and σy are the window sizes of the Gaussian vote
stamp.

This yields a voting table for each product, as seen in
Fig. 8. This voting algorithm over all templates is bounded by
O(N2 K s) complexity, where N is the number of incoming
features, K is the number of features per template, and s is
the number of templates. We sort product heat maps according
to their maxima, p(Ss) = maxx,y(HS). C j is initialized
at x, y for p(Ss) > ε, where ε is some threshold value,
and each centroid is associated with a probability confidence
(C j , p(Ss)) based on the object classifier output, as Fig. 9(c)
shows. This algorithm provides the Template Classification
block in Fig. 3(d).

D. Map Representation

A semantic map in this context consists of objects relevant
to a robot working in a retail environment—shelves and
products—where sections of shelving are labeled according to

Fig. 8. Camera frame and its corresponding product heatmaps.

their department. Since retail environments are densely packed
with many different products, each image of the shelves will
likely contain multiple product classes.

Traditional semantic mapping approaches create a 3-D point
cloud from RGB-D (RedGreenBlue-Depth) sensor input or the
integration of laser data and camera data [3]. A point cloud,
Mp , consists of points pi , . . . , pn ∈ R

3. These points are
grouped into segments, Tl , based on similar characteristics.
The space is discretized into a number of regions, with each
region being classified as either an object or a surface using
the methods described in [32] and [33]. Each potential object
belongs to a single class S [3] and objects are represented
using a tuple

O = {
K , D, C

}
(4)

where C ∈ R
3 is the centroid of the potential object in the map

frame, K is a set of key points, and D is a corresponding set
of image feature descriptors. The position in the map frame
is computed using the sensor data combined with the pose
estimate from the localization system. Each object also has a
confidence measure, which comes from the covariance matrix
of the localization system.

We take an alternative approach that exploits the a priori
information about the objects in the environment.
We manage two concurrent map representations, as shown in
Fig. 9(a) and (b). The first is a traditional point cloud, Mp ,
generated from laser range data and a monocular camera.
The second is a virtual map of the recognized objects and
their positions, Mvp . This is distinct primarily, because once
an object is recognized in the point cloud, a full scaled
model of that object is added to the virtual map, as Fig. 10
shows. Our novel virtual map provides several advantages.
First, it only stores information that is relevant to the robot’s
task. Second, it provides the object classification system with
information about what the robot will see from different
viewpoints. Finally, it improves object classification by
applying spatial constraints to accurately segment and classify
nearby objects.

Rather than giving objects hard labels, we adopt the soft-
object representation described in [33]. We maintain a list of
potential classes Ss along with a corresponding probability for
each class. Thus, the object representation described earlier is
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Fig. 9. Figures compares (a) conventional map and (b) our soft-object
semantic map. Conventional approaches attempt to assign each point in a cloud
to a particular object, where the color indicates different objects. Our approach
initially assigns multiple labels (blue triangles) to each object (yellow circles).
(c) We use the most likely class for each object to create an initial department
segmentation and labeling. We update the likelihood of the labels for each
object using this department segmentation and label the final map using the
most likely updated class for each object.

changed to

O =

⎧
⎪⎨

⎪⎩

p(S1), K1, D1, C
...

p(Ss), Ks , Ds , C

⎫
⎪⎬

⎪⎭
(5)

Fig. 10. Example shelf in the virtual map overlaid on an image of the
physical store.

where there are s potential class labels for the object and
s∑

i=1

p(Si ) = 1. (6)

Objects are transformed to the map frame using the robot
pose associated with the image and the laser depth data.
We aggregate these objects into a single map Mvp . We add a
new object to the virtual map when an object is detected in an
image and that detected object is not within some threshold
distance of an existing object. When a new object is added, we
normalize the class probabilities p(S|ω), save the descriptors
and key points for each respective class Kω and Dω, and find
the centroid location C .

E. Map Segmentation

We wish to partition the map into departments of seman-
tically related products. Map segmentation is most often
performed over a point cloud, Mp , which is represented by
an undirected graph G = (V , E). The vertices, va ∈ V ,
are points in Mp , and the edges, eab ∈ E , correspond to
pairs of neighboring vertices (va, vb). Each edge eab has a
corresponding weight, wab, which is a nonnegative measure
of dissimilarity between neighboring elements va and vb.
In image segmentation, the elements in V are pixels, and the
weight is a measure of the dissimilarity between two pixels,
e.g., the difference in intensity, color, motion, or location.
Segmentation algorithms partition V into components, such
that each region T corresponds to a connected component in
the graph G.

Other work represents the segmentation problem as a
dynamic programming (DP) problem. DP has been applied
over images in several domains, including noise filtering, edge
detection, and contour segmentation. Most notably, in [34],
DP is applied to parse the facade of a building. The approach
in [34] initializes the segmentation process by first labeling
each pixel based on a classifier

p(Ss) = log pm,s(Ss)− log �Sω∈S� pm,s(Sω) (7)

where pm,s is the multinomial probability distribution of
pixel s over the label space S� and Ss is the normalized log-
likelihood output of the classifier. We apply the maximum
likelihood label to each pixel, and then use structural infor-
mation to further constrain the pixels.
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Fig. 11. Segmentation occurs over one dimension where each VO S is
grouped into a region T .

A conventional approach would determine the class S and
label all points in a segment T with the associated class.
Instead, we place a virtual object (V O) of the maximum
likelihood class in the virtual map Mvp . This VO has the size
and shape of the object class from the template library. Our
segmentation algorithm runs over this virtual map, combining
object recognition and region segmentation into a single step.
We initialize the department boundaries using the boundaries
of the VOs, as Fig. 11 shows. We then determine segments
(T ) composed of objects V O (products or shelves), where
each segment corresponds to a department in the Walgreens
store. Recalling that each product type is associated with one
or more department labels, we use the labels of nearby objects
to influence the final estimate of each object’s class. If a V O
is assigned to a department T during the segmentation, but
the class SV O cannot appear in department T , then the class
SV O changes to the maximum likelihood class that can appear
in T .

The DP problem, outlined in Algorithm 1, is formulated
as a segmentation of a 1-D signal, q[0], q[1], · · ·q[s − 1],
into k segments, where each q is a boundary of the model
object class estimated to be located at that position [35]. For
k departments, there are k − 1 transitions, {t1, . . . , tk−1}, in
addition to the start, t0 ≡ 0, and end, tk ≡ s, of the shelf. The
i th segment has the probability density function (pdf)

pi(q[ti−1], . . . , q[ti − 1]). (8)

With the assumption that each department is statistically
independent, the pdf of the data set is

k∏

i=1

pi(q[ti−1], . . . , q[ti − 1]) (9)

where the maximum likelihood estimate segmenter chooses
t1, t2, . . . , tk−1 and k to maximize (9). This algorithm provides
the Map Segmentation block in Fig. 3(d).

V. ANALYSIS

A. Evaluation of the Planning and Navigation Pipelines

To validate the efficacy of our planning and navigation sys-
tems, we tested the robot in several different scenarios, varying
the configuration of the planner and testing in multiple envi-
ronments. We demonstrate that the optimal planner described
in Section IV-A is able to generate efficient paths through the
stores and the navigation algorithm described in Section IV-B
is able to accurately track these paths. We perform this analysis

Algorithm 1 DP Department Segmentation finds the
optimal segmentation of a string of products into depart-
ments using DP. For clarity, the algorithm demonstrates
the computation of the score of the optimal segmentation.
As is typical for DP solutions, the segmentation labels
are recoverable by additionally storing the argmax and
performing a standard DP traceback* from the optimal
solution.

Input: String S1 . . . Ss of products S
Output: Segmentation of products into T1 . . . Tk of

departments T
Let opt ( j, k) be the optimal solution score using
S1 . . . Sj , with k segments
Let score(i, j, t) be the score of the department t using
products Si . . . Sj

Let kmax be the maximum number of segments to
consider
Let optsoln be the optimal solution resulting from the
optimal segments
for j ← 1 to s do

opt ( j, 0)← 0
end
for k ← 1 to kmax do

for j ← 1 to s do

opt ( j, k)

← max
1≤i< j

[
opt (i, k − 1)+max

t∈T
score(i + 1, j, t)

]

end
end
optsoln← max1≤k≤kmax opt (s, k)
T1 . . . Tkopt ←
Standard DP ArgMaxT raceback(opt, optsoln)∗
return T1 . . . Tkopt

in simulation using the Gazebo robot simulator3 and the maps
created in two real-world stores.

We first tested the optimal planner presented against a
greedy planner that drives the robot to the nearest unvisited
segment. Fig. 12(a) shows a path followed by the robot for
a greedy solution, while Fig. 12(b) shows the output of the
optimal planner. In either case, the robot must visit all of the
shelf segments, so the difference is the order in which the robot
visits the shelf segments. While the greedy planner does well
for most of the run, visiting the last few shelves requires the
robot to traverse the width of the store, significantly increasing
the total distance traveled compared with the optimal planner.

As described in Section IV-B, we examine two different
methods of traversing the shelves: following the straight
lines of the bounding box and following the contours of the
shelves. The contour-following method, shown in Fig. 13, has
longer paths than the line-based method, shown in Fig. 12(b).
To guide the robot, we interpolate these lines or contours to
get a sequence of waypoints for the robot to visit. We also

3Available at http://gazebosim.org/
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Fig. 12. Output paths for the greedy and optimal planners in the first store.
In order for the robot to visit all of the shelf segments (green lines), it must
drive between shelves (red lines). The shelf segments are straight lines that
we extract from the bounding boxes of the shelves. (a) Greedy solution.
(b) Optimal solution.

Fig. 13. Optimal planner output in a second, larger store. The robot starts and
ends the experiment in the lower left corner. The robot follows the contours
of the shelves.

study the effect of the waypoint spacing, selecting a dense
set of points (3-cm spacing) and a spare set of points (30-cm
spacing).

Table I shows the average path length for various plan-
ner configurations. Each configuration was tested using four
different starting locations of the robot. The nominal path
lengths using the bounding box and contour methods from
Section IV-A are given in columns “Line” and “Contour.”
The actual path lengths from the Gazebo simulations are in
the “Gazebo” column and the reported percent difference in
column “% diff CG” is between the planned and simulated
contour-following paths in columns “Contour” and “Gazebo.”
The rows labeled “Shelf” give the length of the shelf segments
to be viewed, while “Greedy” and “Optimal” are the total
path lengths, which includes both the shelf segments and
the connections between shelves. The rows labeled “% diff
GO” show the percent difference between the “Greedy” and
“Optimal” plans.

We see that in store 1, densely selecting waypoints
(rows “1D” in Table I) increases the path length by more
than 10 m compared with the sparse waypoints (rows “1S”
in Table I). When tested on the robot in a simulated environ-
ment, the sparse path was much more similar to the actual path

Fig. 14. (a) Precision (blue curves), recall (red curves), and localization
error (yellow curves) as evaluated over a test data set in a Walgreens store.
(b) Confusion matrix for the test data sets. Each row corresponds to a product
in the store and each column is a recognized product. The last row and column
represent the background. The left-bottom bar shows the color key from min
to max.

TABLE I

COMPARISON OF AVERAGE PATH LENGTH OF DIFFERENT

PLANNING METHODS IN MULTIPLE ENVIRONMENTS

(2.69% difference) than the dense path (6.58% difference).
This is due to the robot “smoothing” out the path as it drives
along. The simulated path length is also smaller than the
planned path length, again due to this “smoothing” behavior
of the navigation algorithm. We also see that the optimal
planner is 9%–12% better than the greedy planner across all
configurations, a significant margin given that 90%–95% of the
total path length for the optimal planner is simply traversing
the shelves. The same trends hold in store 2, where we also
used a path with sparse waypoints (rows “2S” in Table I).

B. Evaluation of Semantic Mapping Pipeline

In order to independently evaluate our computer vision
pipeline, we collected a data set at Walgreens using the camera
on a mobile device with 2.2-mm focal length and 8-Mpixel
resolution. Fig. 14 summarizes the results of this initial study
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Fig. 15. Evaluation of the computer vision system. (a) Product classification precision and recall for different image feature descriptors. (b) Product
classification accuracy versus the number of DSIFT keypoints per template in the template object library. (c) Department classification error during each stage
in the semantic mapping pipeline in two environments.

and is a confusion matrix evaluating the accuracy of the
product recognition.

We next analyze our system using the data from the store
aisle shown in Fig. 10. We evaluate our system in a similar way
to [36]. In [36], the goal is to recognize products on grocery
store shelves. However, the number of object classes is much
lower than the number of classes in this paper. Fig. 15 shows
the results of this analysis. First, we examine how different
image feature descriptors affect the product classification rate.
Fig. 15(a) shows the individual product classification precision
and recall for different image features. Overall, we see that
SIFT and DSIFT have significantly higher precision and recall
rates than the histogram of gradients and speeded up robust
features. We use the DSIFT features, since the primary goal
of our mapping system is accuracy.

Next, we examine the effect of the number of features per
template object on the product classification rate. Fig. 15(b)
shows the product classification accuracy as we vary the
number of words (features) per template for two example
products. In general, the classification accuracy increases as
the number of features increases. However, at some point,
the returns begin to diminish, as we see for template 2. The
cutoff point varies for each template and depends on the size
and visual complexity of the packaging, with larger and more
complex packages seeing higher returns for large word counts.

Finally, we examine the effects of each stage in our semantic
mapping pipeline from Fig. 3(d) on the classification error in
the final map. Fig. 15(c) shows the department classification
error rate for different configurations, where we see significant
decreases in the error rate after both our soft assignment
algorithm (Section IV-C) and our DP segmentation algorithm
(Section IV-E). This result holds across environments, though
the effects are smaller in the model store where there are fewer
product types.

Fig. 16 shows the pixel point cloud generated during the
robot’s trajectory. Measurements are taken at each frame.
We have developed a graphical user interface (GUI) to enable
a human to easily view the virtual map generated by the
robot. Each department along the shelf is color labeled. The
human user is able to click on a section to explore the virtual

Fig. 16. Example aisle in the pixel point cloud generated by a robot following
the red trajectory.

product map in that department. Figs. 17(c) and 18(b) show
the screenshots of this GUI.

VI. EXPERIMENTS

We conducted a series of experiments to test the ability of
the robot to navigate a retail environment with natural clutter
and to test the semantic labeling system. First, we tested our
system in the model store from Section III-A. Only a single
row of products was placed on the shelves in the model store,
since the camera will typically only capture the first row of
products on a shelf even when there are products behind them.
The positions of products changed between runs, but product
labels always faced outward from the shelf, as is typical in
retail environments. In each trial, a movable object (i.e., a
box) was placed in a random position. Fig. 2(b) shows the
path of the robot in one of the test runs. In this trial, the
robot moved closer to the shelf to avoid the movable object,
which is not included in the map of the store. Overall, the
robot is biased to move toward the shelves. This improves
object recognition, since each product is larger in the image,
even if the total number of products in each image decreases.
Our product recognition rate was highest for large objects.
Small products, such as medicine and cosmetics, were more
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TABLE II

MEASUREMENT ERRORS FOR DEPARTMENTS IN MODEL STORE

TABLE III

MEASUREMENT ERRORS FOR DEPARTMENTS IN REAL STORE AISLE

TABLE IV

SEGMENTATION STATISTICS

difficult to detect. We repeated these tests in an aisle of an
actual Walgreens store.

Figs. 17(a) and 18(a) show two camera sequences overlaid
with the object classes detected in the images. These sequences
are from the model and actual store, respectively. The system
aggregates these measurements from single images in order to
build the VO maps shown in Figs. 17(b) and 18(b). To evaluate
the accuracy in the physical dimensions of each department,
we compute the error between the labeled departments in
the final semantic map and their actual dimension in the
model store. The average error in the size of each depart-
ment was 13.3 cm, which is 12.3% of the department size.
Tables II and III show the percentage of shelf pixels that were
correctly labeled in the output map [Figs. 17(c) and 18(b)] for
each department. The overall error was 13.2% in the model
store and 4.6% in the store aisle.

Table IV shows the results of our segmentation algorithm
in both the model store and the actual store aisle. The actual
store is larger and it contains larger departments. These larger
departments have more products in them, leading to more
products being initially misclassified after the template classi-
fication step and in the final map after the map segmentation
step. The real store has significantly more misclassified prod-
ucts. Some of these were reclassified, if they did not belong to
the estimated department, but even the maximum likelihood
template in the correct department was still incorrect.

Despite these errors in individual product classifications,
our system is able to successfully determine the identity and
order of the departments on the shelves in each trial. The
system has the highest error with departments that are very
narrow and departments on the end stands of the aisles. This
is likely due to the fact that small departments contain fewer
items, so errors in individual product classification have a
larger impact on the department label. Departments on the
end stands have the additional challenge that the robot views

Fig. 17. Semantic mapping process for model store. (a) Object detection
over store shelf. (b) Virtual map. (c) Segmented map.

them while it is turning. This means that the camera is not fully
orthogonal to the shelf, which increases the classification error,
because most of the products are not in focus in the images.
Despite these errors, the average measurement error across
departments is relatively small, considering the application and
intended use of the semantic map: a retailer will have sufficient
information about the layout of the store to make decisions
about reorganizing items and departments. The system is able
to successfully navigate around small clutter objects in the
store and is able to correctly classify products covered by glass
or plastic windows.

The attached multimedia files contain a video4 of the robot
navigating in our model store and in a full retail store. The
video also shows the map generation, shelf extraction, path

4Also available at https://www.youtube.com/watch?v=a7TDgwQ5FlM
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Fig. 18. Semantic mapping process for an aisle in Walgreens store. (a) Object detection over store shelf. (b) Automated semantic map generated over an
actual Walgreens store aisle. We preselect which VOs with which to tabulate the database according to their frequency and recurrence across all Walgreens
stores. The products are colored according to the departments. We can see that the map segmentation step significantly reduces the product classification error.

planning, and autonomous navigation processes in a large,
real-world retail store.

VII. CONCLUSION

In this paper, we describe an automated robotic system that
can successfully navigate a retail environment to construct
a semantic map of the inventory in the store. Our robotic
system is able to reliably navigate through the cluttered
environment to collect images using the onboard camera. The
robot autonomously generates a distance-optimal path that
visits each shelf only once, and it follows this path while
avoiding any unmapped obstacles, such as boxes, shopping
baskets, or people. Using the data collected from the store,

the system then detects all of the potential products in each
image by combining the performance of weak classifiers over
associated objects. Each potential object is given a soft label
to account for the fact that many products share similar shape,
color, and size characteristics. The system then automatically
segments the map into regions using the most likely product
labels and assigns department labels to each region, using
information about which products belong to each department.
Finally, the products are relabeled using the department labels,
significantly improving the accuracy of the product labeling.

We provide experimental results showing our system cor-
rectly and accurately labeling a model store and an aisle from
an actual retail store. The model store contains over 60 product
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types in six departments while the retail store aisle contains
over 500 product types in eight departments. We also show
that our robotic system is capable of autonomously navigating
and collecting data from a full scale retail store.

We are currently working to scale up our system and to test
it out with other retailers. Departments and product types vary
widely across retailers, for instance, the average Walgreens
contains some 15 000 product classes over 11 000 square feet,
while the average Costco contains 40 000 product types over
150 000 square feet. We are also focusing on improving the
accuracy of the labeling system by using additional visual
information, such as barcodes. We are also looking at ways
to take advantage of the fact that store departments usually
remain within the same general vicinity in the floor plan even
when their size and exact product contents change [37]. This is
due to factors, such as consumer traffic patterns and the place-
ment of specialty containers (e.g., refrigerators). Future work
will represent each aisle with its own soft-object semantic map.
This allows the robot to use a smaller template object library,
which will only include the departments typically near that
location, and will improve classification accuracy and speed.
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