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Abstract—Estimation of camera pose from an image of n points or lines with known correspondence is a thoroughly studied problem

in computer vision. Most solutions are iterative and depend on nonlinear optimization of some geometric constraint, either on the world

coordinates or on the projections to the image plane. For real-time applications, we are interested in linear or closed-form solutions free

of initialization. We present a general framework which allows for a novel set of linear solutions to the pose estimation problem for both

n points and n lines. We then analyze the sensitivity of our solutions to image noise and show that the sensitivity analysis can be used

as a conservative predictor of error for our algorithms. We present a number of simulations which compare our results to two other

recent linear algorithms, as well as to iterative approaches. We conclude with tests on real imagery in an augmented reality setup.

Index Terms—Pose estimation, exterior orientation, absolute orientation, camera localization.
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1 INTRODUCTION

POSE estimation appears repeatedly in computer vision in
many contexts, from visual servoing over 3D input

devices to head pose computation. Our primary interest is
in real-time applications for which only a small number of
world objects (lines or points) is available to determine
pose. Augmented reality [2], in which synthetic objects are
inserted into a real scene, is a prime candidate since a
potentially restricted workspace demands robust and fast
pose estimation from few targets. The motion of the camera
is usually unpredictable in such scenarios, so we also
require algorithms which are noniterative and require no
initialization.

In this paper, we propose a novel set of algorithms for
pose estimation from n points or n lines. The solutions are
developed from a general procedure for linearizing quad-
ratic systems of a specific type. If a unique solution for the
pose problem exists, then our algorithms are guaranteed to
return it. They fail in those cases where there are multiple
discrete solutions. Hence, we can guarantee a solution for
n � 4, provided the world objects do not lie in a critical
configuration [21], [26]. The only similar noniterative
methods for an arbitrary number of points are those of
Quan and Lan [24] and Fiore [7]. We are aware of no
competing method for lines, but show that our results are
qualitatively acceptable in comparison to an iterative
algorithm of Kumar and Hanson [16].

1.1 Related Work

Our goal has been to develop fast pose estimation
algorithms which produce stable results for a small number
of point or line correspondences. In the point case, a similar

approach to ours is taken by Quan and Lan [24]. They
derive a set of eighth degree polynomial constraints in even
powers on the depth of each reference point by taking sets
of three inherently quadratic constraints on three variables
and eliminating two using Sylvester resultants. They apply
this method to each point in turn. Our algorithm, like theirs,
is based on depth recovery, but our approach avoids the
degree increase, couples all n points in a single system of
equations, and solves for all n simultaneously. Recently,
Fiore [7] has produced an algorithm for points which
introduces two scale parameters in the world to camera
transformation and solves for both to obtain the camera
coordinates of points. Unlike our algorithm and that of
Quan and Lan, Fiore’s approach requires at least six points
unless they are coplanar. We show in Section 4.1, that our
algorithm outperforms both of these linear algorithms in
terms of accuracy. We also mention the approach of Triggs
[27] which uses multiresultants to solve a polynomial
system derived from the image of the absolute quadric.
This method is best suited to four or five points and does
not perform as well as direct decomposition of the
projection matrix for larger collections of points.

There are many closed form solutions to the three point
problem, such as [4], [10], which return solutions with well
understood multiplicities [15], [22]. Fischler and Bolles [8]
extended their solution to four points by taking subsets and
using consistency checks to eliminate the multiplicity for
most point configurations. Horaud et al. [11] developed a
closed form solution on four points, which avoids this
reduction to a three point solution. These closed form
methods can be applied to more points by taking subsets
and finding common solutions to several polynomial
systems, but the results are susceptible to noise and the
solutions ignore much of the redundancy in the data.

There exist many iterative solutions based on minimiz-
ing the error in some nonlinear geometric constraints, either
on the image or target. We mention just a few. Nonlinear
optimization problems of this sort are normally solved with
some variation of gradient descent or Gauss-Newton
methods. Typical of these approaches is the work of Lowe
[19] and of Haralick [5]. There are also approaches which
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more carefully incorporate the geometry of the problem into
the update step. For example, Kumar and Hanson [16] have
developed an algorithm based on constraints on image lines
using an update step adapted from Horn’s [13] solution of
the relative orientation problem. We compare this algorithm
to our line algorithm in Section 4.1. There are several such
variations using image line data. Liu et al. [18] use a
combination of line and point data. Lu et al. [20] combine a
constraint on the world points, effectively incorporating
depth, with an optimal update step in the iteration. We use
this as a reference in Section 4, to compare the three linear
point algorithms mentioned. Dementhon and Davis [3]
initialize their iterative scheme by relaxing the camera
model to scaled orthographic. These iterative approaches
typically suffer from slow convergence for bad initializa-
tion, convergence to local minima, and the requirement of a
large number of points for stability. Our algorithms require
no initialization, can be used for a small number of points or
lines, and guarantee a unique solution when one exists.

Another approach is to recover the world to image plane
projection matrix and extract pose information. This
technique is examined by [1], [9] among many others. This
projective approach is inherently less stable for pose
estimation because of the simultaneous solution for the
calibration parameters. It also requires a large data set for
accuracy. We compare this approach to ours in Section 4.1.

2 POSE ESTIMATION ALGORITHM

Throughout this paper, we assume a calibrated camera and
a perspective projection model. If a point has coordinates
ðx; y; zÞT in the coordinate frame of the camera, its
projection onto the image plane is ðx=z; y=z; 1ÞT .

2.1 Mathematical Framework

We begin with a general mathematical treatment from
which we will derive both our point and line algorithms.
Consider a system of m quadratic equations in n variables
xi of the form

bi ¼
Xn
j¼1

Xn
k¼j

aijkxixj ði ¼ 1 . . .mÞ; ð1Þ

where the right-hand side of (1) is homogeneous in fxig. We
present a linearization technique to solve this system in the
special case where the solution is a single point in IRn. Let
xij ¼ xixj and � ¼ 1. We rewrite (1) as

Xn
j¼1

Xn
k¼j

aijkxij � bi� ¼ 0 ði ¼ 1 . . .mÞ: ð2Þ

Since xij ¼ xji, this is a homogeneous linear system in the
nðnþ1Þ

2 þ 1 variables f�; xijj1 � i � j � ng. Such a system can
be solved by singular value decomposition. We first write
the system as

M�xx ¼ 0; ð3Þ

where �xx ¼ ðx11 x12 . . .xnn �ÞT and M is the matrix of
coefficients of the system (2). Then, �xx 2 KerðMÞ. If
M ¼ U�VT is the SVD, then KerðMÞ ¼ spanðfvigÞ where
fvig are the columns of V corresponding to the zero

singular values in �.1 If KerðMÞ is one-dimensional, then �xx
is recovered up to scale. However, the condition � ¼ 1
determines scale and returns the correct solution to (2),
from which we recover the solution to (1) up to a uniform
sign error. In practice, the physical interpretation of the
problem will determine sign.

If the dimension of KerðMÞ is N > 1, we attempt to
isolate the solution to (1) by reimposing the quadratic
nature of the original problem. Since �xx 2 KerðMÞ, there
exist real numbers f�ig such that

�xx ¼
XN
i¼1

�ivi: ð4Þ

For any integers fi; j; k; lg and any permutation fi0; j0; k0; l0g,
observe that xijxkl ¼ xi0j0xk0l0 . Substituting individual rows
from the right-hand side of (4) into relations of this sort
results, after some algebra, in constraints on the �i of the
form

XN
a¼1

�aaðvij
a v

kl
a � vi0j0

a vk0l0

a Þþ

XN
a¼1

XN
b¼aþ1

2�abðvij
a v

kl
b � vi0j0

a vk0l0

b Þ ¼ 0;

ð5Þ

where we use the notation �ab ¼ �a�b for integers a and b,

and vij
a refers to the row of va corresponding to the variable

xij in �xx. We again have the obvious relation �ab ¼ �ba. It

follows that equations of the form (5) are linear and

homogeneous in the NðNþ1Þ
2 variables f�abg. These can be

written in the form K��� ¼ 0, where K is the matrix of

coefficients from (5) and ��� is the vector formed by the terms

f�abg. We again solve this system by SVD, where

K ¼ ~UU~��~VVT. Observe that KerðKÞ must be one-dimensional

since two independent solutions would allow us to derive

two solutions to (1), contradicting our original assumption.

Having recovered ��� up to scale, we recover the correct scale

by imposing the condition implied by the last row of (4),

specifically that �1v
L
1 þ �2v

L
2 þ . . . :þ �Nv

L
N ¼ � ¼ 1 where

vL
i is the last row of vi. Having solved for ���, hence, �xx, we

obtain xi as �
ffiffiffi
x

p
ii, where the choice of sign for x1

determines the sign of xi by sgnðxiÞ ¼ sgnðx1Þsgnðx1iÞ.
Before presenting our pose estimation algorithms, we

briefly present a more formal treatment of our approach.
Let HQðIRnÞ and HLðIRnÞ be the set of quadratic and linear
equations on IRn, respectively, which are homogeneous in
the variables. Our approach was to linearize the quadratic
system in (1) to the linear one in (2) by applying the map
f : HQðIRnÞ ! HLðIR~nnÞ defined by fðtitjÞ ¼ tij; fð1Þ ¼ �,
where ~nn ¼ nðnþ1Þ

2 þ 1. This increases the dimension of the
solution space to N � 1 by artificially disambiguating
related quadratic terms. Let V0 ¼ KerðMÞ as above. We
think of V0 as an N-dimensional affine variety in IR~nn. V0

assumes an especially simple form since it is a vector
subspace of IR~nn. To recover the original solution to (1), we
impose additional constraints of the form xijxkl ¼ xi0j0xk0l0
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for fi0; j0; k0; l0g a permutation of fi; j; k; lg. Let e1 be one such
equation, and let Varðe1Þ be the algebraic variety in IR~nn

defined by it. Then, V1 ¼ V0 \Varðe1Þ is a subvariety of V0

defined by the ei and the system (2). Since Varðe1Þ is not in
any linear subspace of R~nn, it follows that V1 is a proper

subvariety of V0. Given a sequence of such constraints feig
with ei independent of fejjj < ig, we obtain a nested

sequence of varieties V0 � V1 � V2 . . . of decreasing dimen-

sion. Since we have more quadratic constraints than the

dimension of V0, we eventually arrive at the desired

solution. Observe that this procedure is entirely generic

and does not depend on the coefficients of the original

system (1). It follows that an abstract description of the

subspace S ¼ VarðfeigÞ � IR~nn, which we do not yet have,

would allow us to eliminate the second, often more

computationally intensive, SVD needed to find KerðKÞ in

our procedure. Note that we are aware of the problems

overdimensioning can cause when seeking solutions in a

given parameter space in the presence of noise, for example,

in determining the Essential matrix. However, these effects

are determined by the geometry of the underlying space. In

our case, the genericity of S and the linear nature of V0

contributes to the robustness which we see in Section 4.
We now examine the variety S in more detail. For the

moment, we will ignore the constant � since it was

introduced only as a computational trick. As seen below,

for the problems under consideration, we always know the

signs of fxig, hence, fxijg. We now observe that the only

essential relations of the form xijxkl ¼ xi0j0xk0l0 are those

which can be written as

xiixjj ¼ x2
ij: ð6Þ

Since fi0; j0; k0; l0g is a permutation of fi; j; k; lg, we have

trivially that

xiixjjxkkxll ¼ xi0i0xj0j0xk0k0xl0l0 :

Now, substituting (6), we obtain

x2
ijx

2
kl ¼ x2

i0j0x
2
k0l0 :

Since we know the signs of all xij, taking the square roots of

both sides of the above equation and applying the correct

signs results in the desired xijxkl ¼ xi0j0xk0l0 . Observe also that,

for four integers i; j; k; l, the polynomials xiixjj � x2
ij and

xkkxll � x2
kl have zero sets which are coincident (or subsets of

oneanother in eitherdirection)only iffi; jg ¼ fk; lg. It follows

immediately that S ¼ \fVarðxiixjj � x2
ijÞg, and that this is a

basis for the variety. There are nðn�1Þ
2 such polynomials in an

nðnþ1Þ
2 dimensional Euclidean space. We expect then that S is

n-dimensional. This is clear if we notice that only the variables

fxiig are independent. If there is a solution to the quadratic

system (1), it follows immediately that the linearized version

of this solutions satisfies (2) and that it lies in the variety S.

Suppose the physical solution is unique. We have already

established that there is no sign ambiguity in fxig or fxijg.
Suppose that our algorithm produces two solutions �xx and �yy.

Both of these must then be in KerðMÞ and in S. However, if

they are in S, it follows that for x2
ij ¼ xiixjj and y2ij ¼ yiiyjj.

However, the knowledge of sign implies that we can write

this as

xij ¼ sgnðxiÞsgnðxjÞ
ffiffiffiffiffiffiffiffiffiffiffi
xiixjj

p ¼ xixjyij

¼ sgnðyiÞsgnðyjÞ
ffiffiffiffiffiffiffiffiffiffiffi
yiiyjj

p ¼ yiyj:

This explicit decomposition implies that �xx and �yy correspond

to solutions consistent with the original quadratic system

(1). This contradicts the uniqueness assumption on the

solution to the original system.

2.2 Point Algorithm

We assume that the coordinates of n points are known in

some global frame, and that for every reference point in the

world frame, we have a correspondence to a point on the

image plane. Our approach is to recover the depths of

points by using the geometric rigidity of the target in the

form of the nðn�1Þ
2 distances between n points.

Let wi and wj be two points with projections pi and pj.

We indicate by dij the distance between wi and wj. Let ti
and tj be positive real numbers so that jtipij is the distance

of the point wi from the optical center of the camera,

similarly for tj. It follows that dij ¼ jtipi � tjpjj. This is our

basic geometric constraint (see Fig. 1). Let bij ¼ d2ij. Then, we

have

bij ¼ ðtipi � tjpjÞT ðtipi � tjpjÞ
¼ t2ip

T
i pi þ t2jp

T
j pj � 2titjp

T
i pj:

ð7Þ

Equation (7) is exactly of the form (1), and we apply the

solution described to recover the depth scalings ti. In this

case, M in (3) has size nðn�1Þ
2 � nðnþ1Þ

2 þ 1
� �

, and can be

written as M ¼ ðM0jM00Þ, where M0 is nðn�1Þ
2 � nðn�1Þ

2

diagonal. M has the explicit form

M ¼
�2p12 0 0 ... 0

0 �2p13 0 ... 0

..

. ..
. ..

. . .
. ..

.

0 0 0 ... �2pn�1;n

0
BBB@

���������

p11 p22 0 ... ... �c12

p11 0 p33 ... ... �c13

..

. ..
. ..

. . .
. . .

. ..
.

0 ... ... pn�1;n�1 pnn �cn�1;n

1
CCCA:

ð8Þ
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Fig. 1. The basic geometric constraint used in n point algorithm relates

the distance between points in the world dij and the scale factors ti and

tj associated with the projections pi and pj.



It follows that KerðMÞ is nðnþ1Þ
2 þ 1� nðn�1Þ

2 ¼ nþ 1

dimensional. Hence, we must compute K and find its

kernel. K will have ðnþ1Þðnþ2Þ
2 rows and there are Oðn3Þ

equations of the form (5). We use only the n2ðn�1Þ
2 constraints

derived from expressions of the form tiitjk ¼ tijtik.
The choice of sign for ftig is clear, since these are all

positive depth scalings. Given these scale factors, we have
the coordinates of world points in the frame of the camera.
Now, the recovery of camera rotation and translation
simply amounts to solving the absolute orientation pro-
blem. We translate the two clouds of points, in the camera
and world frames, to their respective centroids and recover
the optimal rotation using unit quaternions [12] or SVD of
the cross-covariance matrix [14]. Given the rotation,
translation between the two centroids is immediately
recovered.

We summarize the point algorithm:

1. Establish quadratic equations in point depths with
coefficients depending on image measurements and
distances between 3D points using (7).

2. Rewrite quadratic depth terms titj as tij.
3. Solve resulting linear system in (8).
4. Express real solution as linear combination of basis

vectors of KerðMÞ with unknown f�ag as in (4).
5. Use relations of the form xijxkl ¼ xi0j0xk0l0 for

fi0; j0; k0; l0g a permutation of fi; j; k; lg to establish
quadratic relations between f�ag.

6. Rewrite as linear relations in terms f�abg and solve
using (5).

7. Recover depths ftig using f�ag.
8. Solve absolute orientation problem to recover pose.

2.3 Line Algorithm

Unlike the point case, direct recovery of line parameters
does not appear feasible since the number of linearized
variables (derived, for example, from Plücker coordinates)
grows too fast in comparison to the number of available
constraints. Instead, we show how to directly recover the
rotation and translation.

Let fli ¼ ðvi;piÞg be a collection of 3D lines such that in

the world coordinate frame fvig are normalized vectors

giving the directions of the lines and fpig are points on the

lines. It follows that, in parametric form, points on li are

given by tivi þ pi for the real parameter ti. If ðR;TÞ 2
SEð3Þ ¼ SOð3Þ � IR3 is the transformation relating the

world and camera frames, then the corresponding repre-

sentations of the lines in the camera frame are fli ¼ ðwi;qiÞg
where wi ¼ Rvi and qi ¼ Rpi þT. Let Pi be the plane

defined by the optical center of the camera and the line li.

Let the corresponding lines in the image plane of the

camera be fsi ¼ ð���i; ciÞg, where ���i and ci are of the forms

ð�i;x; �i;y; 0ÞT and ðci;x; ci;y; 1ÞT , respectively, with ���i normal-

ized. Consider the point di on si which is closest to the

origin of the image plane. Then, di ¼ ci � ðcTi ���iÞ���i. Let

���i ¼ di

jjdijj . It follows that ���Ti ���i ¼ 0 so that f���i; ���ig is an

orthonormal frame spanning the plane Pi (see Fig. 2). Since

wi lies entirely in the plane Pi, we can write it as

wi ¼ ðwT
i ���iÞ���i þ ðwT

i ���iÞ���i. Substitutingwi ¼ Rvi, we obtain

Rvi ¼ ðRvT
i ���iÞ���i þ ðRvT

i ���iÞ���i. From this, we develop a set

of quadratic equations in the entries of R to obtain a system

of the form (1) and directly recover the rotation matrix. Let

Ki;j ¼ vT
i vj. We have the equation

Ki;j ¼ ½ðRvT
i ���iÞ���i þ ðRvT

i ���iÞ���i�
T ½ðRvT

j ���jÞ���j þ ðRvT
j ���jÞ���j�:

ð9Þ

For i 6¼ j, we obtain three additional equations from

Rvi �Rvj ¼ ½ðRvT
i ���iÞ���i þ ðRvT

i ���iÞ���i�
� ½ðRvT

j ���jÞ���j þ ðRvT
j ���jÞ���j�:

ð10Þ

Observe that (9) and (10) do not enforce the requirement

that R 2 SOð3Þ. We accomplish this using the 12 quadratic

constraints derived from

RTR ¼ RRT ¼ I: ð11Þ

Note that, in general, there are only six independent

constraints in (11), but by employing our linearization

procedure, we introduce more relations on the 45 linearized

terms frij ¼ rirjg, where frig are the nine entries in R.

Using (9), (10), and (11), we obtain nð2n� 1Þ þ 12 equations

of the form (1) in the 46 variables f�; rijg. For n � 5, we

obtain a solution for R directly from the SVD of the

corresponding M from (3). For n ¼ 4, the additional step

involving the SVD of K is required. Observe that the sign

convention is also determined. Since R 2 SOð3Þ, we need

only choose the global sign so that detðRÞ ¼ 1.

Having recovered the rotation,wedescribe how to recover

the translation. Given the point qi on the line li in camera

coordinates, we project to a point ki ¼ ðqi;x=qi;z; qi;y=qi;z; 1Þ on
the image plane. Since this point is on the line si, we have,

using the notation of this section,

qi;zðkT
i ���iÞ���i ¼ qi;zdi:

Substituting qi ¼ Rpi þT for each line, we obtain two
linear equations in the entries of T. A solution can be
obtained by directly applying SVD.
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Fig. 2. Geometric constraint used in n line algorithm. The plane Pi

determined by the line li and the optical center is spanned by f���i; ���ig.
Thus, wi ¼ Rivi can be written as a linear combination of these two

vectors.



We summarize the line algorithm:

1. Use invariance of inner products (9), expression of
cross product in two independent forms (10), and
membership ofR in SOð3Þ (11) to establish quadratic
equations in entries of R, the rotation matrix
between world an image coordinate frames.

2. Rewrite quadratic terms rirj from entries of R as rij.
3. Solve resulting linear system.
4. For four lines, proceed as with points for multi-

dimensional kernel.
5. For five or more lines, first linear step is sufficient.
6. Using known rotation, write overdetermined linear

system in entries of translation using projection
equations and solve using SVD.

3 SENSITIVITY ANALYSIS

We now analyze the sensitivity of the linear system and its
intersection with the variety described above to image
noise. Consider the linear system of the form (3).

M�xx ¼ 0: ð12Þ
Recall that the entries of M are polynomials in the image
measurements. In the presence of noise, the true coefficient
matrix for this system is ~MM ¼ MþMe, for some error
matrix Me, and the true physical solution to the pose
problem is ~xx ¼ xþ xe, for some error vector xe. In our
notation, f ~MM; ~xxg represents the true physical system, and
fM; xg represents the system perturbed by image noise. We
proceed by using standard techniques from matrix pertur-
bation theory [25].

If we assume knowledge of the noise in image measure-
ments, we can estimate Me. In particular, we can bound
jMej for some appropriate matrix norm. For the line case,
these are complicated polynomial expressions, but bounds
can be computed experimentally. In the point case, the
polynomials are simple products and sums of products of
image measurement errors. Our concern is not with the
computation of bounds on Me since these depend on a
clearly defined way on image measurements, but with the
nature of ~xxe, the error in the recovered solution. We make
no further mention of the computation of jMej in this
section.

We first consider the simpler case of five or more lines
and then apply a more elaborate analysis to the point
algorithm. We omit the four line case in this treatment. In
the following, we will use j 	 jF to indicate the Frobenius
norm of a matrix, and j 	 j to indicate the 2-norm of vectors
or matrices, as appropriate.

3.1 Sensitivity for Lines

Using the notation developed above, we write

~MM~xx ¼ 0

ðMþMeÞðxþ xeÞ ¼ 0

MxþMxe ¼ �Meðxþ xeÞ:
ð13Þ

First, observe that M~xx ¼ 0.2 We multiply both sides of (13)

by the pseudoinverve of M to obtain

MyMxe ¼ �MyMeðxþ xeÞ: ð14Þ

In the case of five or more lines, recall that M has full
column rank. It follows that MyM~xxe ¼ ~xxe. Using this fact,
the triangle inequality and the properties of the Frobenius
norm, we obtain

jxej � jMyjF jMejF ðjxj þ jxejÞ:

At this point, we can choose to ignore the quadratic error
term, or we can state, based on observation of a given
physical situation and camera setup, that j~xxej � �j~xxj, where
� � 1 for any reasonable situation and noise level. It follows
that

jxej � �jMyjF jMejF jxj ð15Þ

with 1 � � � 2, where the experimental evaluation below
indicates that the upper limit is a highly conservative
estimate. In addition, for the line case x consists of products
of terms from rotation matrices, all of which are bounded
above by one. Thus, we can restate (15) as

jxej �
ffiffiffiffiffi
46

p
	 �jMyjF jMejF :

3.2 Sensitivity for Points

The point case becomes more complicated by the fact that
M is rank deficient and has a multidimensional kernel. We
begin by writing the error term as xe ¼ xp þ xn, where xp 2
K ¼ KerðMÞ and xn is orthogonal to K. Then,

MyMxe ¼ MyMðxp þ xnÞ ¼ MyMðxnÞ ¼ xn;

and (15) becomes

jxnj � �jMyjF jMejF jxj: ð16Þ

In other words, we only have an estimate of the error in a
direction normal to the kernel of M. Nothing more can be
obtained from the linear system. We must now use the fact
that both the perturbed solution x and the correct solution
x ¼ xþ xe lie on the variety defined by the relations in (6).
Each of the equations of the form xiixjj ¼ x2

ij defines a
differentiable manifold in RN , but their intersection does
not. This lack of regularity means we cannot use differential
properties in a straightforward manner.

Instead, we begin by examining the kernel more closely.
Recall thatK is nþ 1-dimensional for n points. If x is written
as

�xx ¼ ðx12 . . .x1n x23 . . .x2n . . .xðn�1Þn x11 . . .xnn �ÞT ;

then using the notation of Section 2.2 with xs replacing ts to
maintain consistency with this section, we write down an
explicit basis for K. Let w ¼ ð1 1 1 1 . . . 1ÞT and

vi ¼
�12
p12

. . .
�1n
p1n

�23
p23

. . .
�2n
p2n

. . .
�ðn�1ÞðnÞ
pðn�1Þn

�11
p11

. . .
�nn
pnn

0

� �T

;

where

�kl ¼
1
2 if k 6¼ l and ðk ¼ i or l ¼ iÞ
1 if l ¼ k ¼ i
0 otherwise:

8<
:

Then, fviji ¼ 1::ng [ w is the required basis. The fact that
Mvi ¼ Mw ¼ 0 for the form of M in (8) is a simple
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2. Strictly speaking, M~xx is not zero. However, in practice, jM~xxj << 1,
since ~xx is the closest solution (e.g., via SVD) to the system defined by M.
This does not depend on the magnitude of the error in M.



calculation. Linear independence is easily established by

inspecting the last nþ 1 entries in each vector. Note that

this is not an orthogonal basis, but we do not require this for

our purposes.
Since xp lies in the kernel of M, we have xp ¼Pn
i¼1 civi þ dw for real numbers fci; dg. Observe, however,

that the only basis vector which contributes a component to

� is w. Since � ¼ 1 is known exactly, there is no error in this

direction. It follows that d ¼ 0. An alternative interpretation

of this fact is that the � variable can be eliminated from the

outset if we do not require that the linear equation in the

first step of our algorithm be homogeneous. The result is an

expression of the sort

ðMþMeÞðxþ xeÞ ¼ �ww ) Mxe ¼ �Meðxþ xeÞ;

since Mx ¼ �ww and where the equations are over one fewer

variable. From this point, we would proceed as above.

We write the ij component of xp as x̂xij and the ij

component of xn as �xxij, and focus on the three vector obtained

by projection of xp onto the xii; xjj; and xij directions. We see

from inspection of the basis vectors that, for any i; j, only vi; vj

contribute to ðx̂xii; x̂xjj; x̂xijÞ. This can then be rewritten as
ci
pii
;
cj
pjj
;
ciþcj
2pij

� �
by substituting the explicit formof fvig.Wenow

obtain a simple relationship between x̂xii; x̂xjj; x̂xij, namely,

� 2pijx̂xij þ piix̂xii þ pjjx̂xjj ¼ 0: ð17Þ

If xþ xe is the solution to the unperturbed system MþMe,

it must satisfy xiixjj ¼ x2
ij for all i; j. If we substitute

xe ¼ xp þ xn, we obtain

ðxii þ x̂xii þ �xxiiÞðxjj þ x̂xjj þ �xxjjÞ ¼ ðxij þ x̂xij þ �xxijÞ2: ð18Þ

Note that �xxii; �xxjj; �xxij are bounded by (16). We now combine

(17) and (18) and try to impose bounds on x̂xii; x̂xjj; x̂xij. We

mention in passing that, although xp is orthogonal to xn, we

can make no such statement about the vectors ðx̂xii; x̂xjj; x̂xkkÞ
and ð�xxii; �xxjj; �xxkkÞ.

As a first approximation, we ignore all quadratic terms

in error in (18), which then becomes

xiix̂xjj þ xjjx̂xii � 2xijx̂xij 
 2xij�xxij � ðxii�xxjj þ xjj�xxiiÞ: ð19Þ

We rewrite the right-hand side of (19) as fij. Since fij
depends only on terms in x and xn, we can bound it

explicitly. Solving for x̂xij and substituting into (17), we

obtain a line in x̂xii; x̂xjj given by

xjj � xij
pii
pij

� �
x̂xii þ ~xxii � xij

pjj
pii

� �
x̂xjj ¼ fij: ð20Þ

If we take any k with i 6¼ k 6¼ j, we obtain two more

equations of the form

ðxkk � xik
pii
pik

Þx̂xii þ ðxii � xik
pkk
pii

Þx̂xkk ¼ fik

ðxkk � xjk
pjj
pjk

Þx̂xjj þ ðxjj � xjk
pkk
pjj

Þx̂xkk ¼ fjk:

However, these are all linear in x̂xii; x̂xjj; x̂xkk, and we solve

them simultaneously to obtain

x̂xii ¼
fijajkbik þ fikbijbjk � fjkbijbik

aijajkbik þ aikbijbjk
; ð21Þ

where

aij ¼ xjj � xij
pii
pij

bij ¼ xii � xij
pjj
pij

:

The other terms are obtained by transposing the indices
appropriately.

For each i, we compute x̂xii using all combinations of j; k
with j 6¼ i 6¼ k and for a bound on the fs obtained from xn.
We need only consider the smallest of these since all
relations must be satisfied. Combining the terms x̂xii,
bounded as above, and using (17), we obtain a bound on
jxpj of the same order as jxnj. It follows that we have
bounded jxej.

We mention that the linear approximation above is not
necessary. If we choose to include the terms which are
quadratic in the errors, we obtain a quadric from (18) in
x̂xii; x̂xjj; x̂xij instead of a plane as in (19). The intersection of
this quadric with the plane defined by (17) is a conic in
x̂xii; x̂xjj instead of a line as in (20). We then proceed as above,
but with three conics instead of three lines. We do not
attempt to write down a closed form expression for this
approach.
3D Errors: Note that the above procedure can be adapted
with little modification to handle the case of errors in the 3D
coordinates of fiducials. The key point is that the error in �
can no longer be assumed to be zero. Hence, the right-hand
side of (17) will contain a term depending on estimated
error in the distances between world points. Consequently,
one of the two error planes intersected above is not a linear
subspace of Rn, but rather an affine space, whose distance
from the origin is a function of the estimated error in world
coordinates.

4 RESULTS

We conduct a number of experiments, both simulated and
real, to test our algorithms (hereafter referred to asNPL and
NLL for n point linear and n line linear, respectively) under
image noise. We compare to the following algorithms:

For points:

. PM: Direct recovery and decomposition of the full
projection matrix from six or more points by SVD
methods [6]. We use a triangle (4) to indicate this
algorithm on all graphs.

. F: The n point linear algorithm of Fiore [7]. We
signify this by a square (ut).

. QL: The n point linear algorithm of Quan and Lan
[24]. We signify this by a diamond (�).

. LHM: The iterative algorithm of Lu et al. [20]
initialized at ground truth. We signify this by a
circle (�) and include it primarily as a reference to
compare the absolute performance of the linear
algorithms. We expect it to achieve the best
performance.

For lines:

. KH: The iterative algorithm of Kumar and Hanson
referred to as R_and_T in [16]. We initialize KH at
the ground truth translation and rotation (KHRT
signified by 4) and at ground truth translation and
identity rotation (KHT signified by ut).
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4.1 Simulation

All simulations are performed in MATLAB. We assume
calibrated virtual cameras with effective focal length
(diagonal terms in calibration matrix) 1; 500 in the point
case and 600 in the line case. We report errors in terms of
relative rotation error and relative translation error. For the
point case, we also show RMS reprojection error. Each pose
ðR;TÞ is written as ð�qq;TÞ, where �qq is a unit quaternion. For
recovered values ð�qqr;TrÞ, the relative translation error is
computed as 2 jT�Trj

jT jþjTrj and the relative rotation error as the
absolute error in the unit quaternion, j�qq � �qqrj. For n points
with real projections fpig and recovered projections fpirg,
the RMS reprojection error isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

jpi � pirj2
 !

=n

vuut :

Note that reprojection errors are computed with a different

set of random points than those used to estimate pose. In
the case of PM, the reprojection is performed with the
recovered projection matrix rather than by applying the
world to camera transformation. Hence, the reprojection
error can be smaller than for some linear methods, but
never in comparison to NPL. Noise levels in image
measurements are reported in terms of the standard
deviation of a zero mean Gaussian. For the point case,
when we add Gaussian noise with standard deviation � to
image coordinates, we do so independently in the x and y

directions. We also only admit noise between �3� and 3�.
In the line case, we again report pixel noise and propagate
to noise in the line parameters following [28]. Unless
indicated, all plots represent mean values over 400 trials.

Point Simulation 1 (Dependence on noise level). We
vary noise from � ¼ 0:5 to 4. For each noise level, we
generate 400 random poses. For each pose, we generate six
points at random with distances between 0 and 200 from
the camera. We restrict translations to jT j < 100. In Fig. 3,
observe that NPL outperforms PM, F, and QL for all noise
levels.

Point Simulation 2 (Dependence on number of points).

We demonstrate that all five algorithms perform better as
the number of points used for pose estimation is increased.
Points and poses are generated exactly as in Point

Simulation 1, but the number of points is varied from five
to 11. We add 1:5� 1:5 pixel Gaussian noise to all images.
Note, in Fig. 4, that NPL outperforms the other linear
algorithms, but that the performance difference is greatest
for fewer points, which is our primary concern as
mentioned in the introduction. Note that we do not plot
results for PM or F for five points since these algorithms
require at least six points.

Point Simulation 3 (Dependence on effective field of

view). We generate poses as in Point Simulation 1.
However, we now constrain the six points to lie on six of
the vertices of a 10� 10� 10 cube with arbitrary orienta-
tion, but centered on the optical axis of the camera. Once
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Fig. 3. (Point Simulation 1) Rotation, Translation, and Reprojection errors for six points versus noise level. We plot results for the five algorithms,

NPL, PM, F, QL, and LHM. Note that NPL outperforms all but the iterative LHM with ground truth initialization.

Fig. 4. (Point Simulation 2) Rotation, Translation, and Reprojection errors versus number of points used for pose estimation with 1.5 � 1.5 pixel

Gaussian noise. We plot results for the five algorithms NPL, PM, F, QL, and LHM. We see that NPL outperforms all but the iterative LHM with

ground truth initialization for all numbers of points considered. The difference is largest for a small number of points.



again, we take 31 point configurations for each of the 31
random poses. We add 1.5 � 1.5 pixel Gaussian noise to all
images. Our goal is to evaluate the performance of our
algorithm as the object occupies a smaller fraction of the
image. Results are recorded in Fig. 5. NPL outperforms QL,
PM, and F for pose estimation when the object is
approximately seven times as far away as its extent. Note
that this is our primary region of interest.

Line Simulation 1 (Dependence on noise level). We
vary pixel noise from � ¼ 0:5 to 5 and propagate to noise in
line parameters following [28]. For each noise level, we
generate 400 poses and six line segments for each pose.
World line segments are contained in a 20� 20� 20 box in
front of the camera and translations are restricted to
jT j < 10. We plot relative rotation and translation errors
for NLL and KH (see Fig. 6). As expected, the iterative
algorithm performs better for good initialization (ground
truth in the case of KHRT). However, we cannot predict
convergence time. With poor initialization, even at ground
truth translation and R ¼ I for KHT, our linear algorithm
shows better mean performance. This is a result of
convergence to local minima in some trials. We demonstrate
this by plotting not only mean relative rotation and
translation errors, but also the standard deviation of the
relative rotation error. We immediately see the advantage of
having no initialization requirement for NLL.

Line Simulation 2 (Dependence on number of lines).

We generate poses and points as in Line Simulation 1, but
for the numbers of lines varying from four to 11 and with

fixed noise of 1:5� 1:5 pixels. We see in Fig. 7, that the
performance of both algorithms improves with increasing
number of lines. Note also that KH is less likely to converge
to local minima for larger numbers of lines. The absolute
performance of NLL is again comparable to KH.

4.1.1 Timings in Simulation

We compare the runtimes of our procedure to several others
using MATLAB implementations of all algorithms on a 1.1
GHz Pentium III processor. Note that realtime performance
is not expected for any of the algorithms under MATLAB,
and our only goal is to provide comparison. The iterative
algorithms (KH and LHM) were set to terminate after 100
iterations if convergence had not yet been achieved. All
results are averaged over 1,000 trials and for points or lines
ranging from 6 to 11. The results are recorded in Table 1.
The notation used is identical to that above with the
following additions:

. LHMPM: refers to LHM initialized with the output
of PM.

. LHMT: refers to LHM initialized at identity rotation
and ground truth translation (analogous to KHT as
defined above for lines).

. KHNLL: refers to KH initialized with NLL.

We see that in the implementations tested, LHMPM is
consistently faster than our point algorithm (NPL), with the
difference increasing with the number of points. However,
as indicated in Section 4.2, for the number of points under
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Fig. 5. (Point Simulation 3) Rotation, Translation, and Reprojection errors for six points versus extent of object given as distance/size with 1.5 � 1.5

pixel Gaussian noise. We plot results for the five algorithms, NPL, PM, F, QL, and LHM. We see that NPL outperforms all but the iterative KH with

ground truth initialization in the region in which we are interested.

Fig. 6. (Line Simulation 1) Rotation and Translation errors and Standard Deviation of Rotation error versus noise level for NLL and KH. We initialize

KH at ground truth R and T (KHRT) to evaluate absolute performance and at ground truth T and R ¼ I (KHT) to demonstrate the advantage of

requiring no initialization in NLL.



consideration our algorithm runs in realtime under a C

implementation on a 600 MHz Pentium III. In addition,

unlike LHM, we guarantee recovery of the solution when it

exists and require no initialization. For the line case (NLL),

our algorithm is faster than KH. Since NLL is less

computationally intensive than NPL, we expect perfor-

mance from a C implementation at video framerate with

this algorithm as well.

4.2 Real Experiments

All images were taken with a Sony XC-999 camera and

Matrox Meteor II frame grabber. The camera was calibrated

using Lenz and Tsai’s algorithm [17]. All image processing

was done offline using MATLAB. Note that the more

computationally intensive point algorithm NPL has been

run in real-time (> 30 Hz) on a 600 MHz Pentium III using

the implementation of SVD from numerical recipes in C [23]

for the number of points discussed above and without any
attempt to optimize the algorithm.

Point Experiment 1. We demonstrate that virtual objects
are correctly registered into a real scene using NPL for pose
estimation. We obtain the coordinates of the eight marked
points in Fig. 8, by magnifying the relevant region and
marking by hand with a MATLAB program. We take the
vertex coordinates of a virtual box and the corners of the
metal edge in the world frame, transform to the camera
frame using the three recovered poses, and reproject. The
metal edge, which we augment to a full cube, is seven
inches on each side, and the camera distance varies from 30
to 40 inches from the nearest corner of the cube. Notice that
the virtual boxes are properly placed and aligned with the
world reference objects for all three poses.

Point Experiment 2. We repeat Point Experiment 1 on a
different scale. In Fig. 9, the box is approximately 18 inches
on each side, and the camera is approximately eight feet
from the nearest corner of the box. We estimate pose from
the eight marked points using NPL. We then take the
coordinates of two virtual boxes of identical size, stacked on
top of and next to the real one, transform to camera
coordinates, and reproject into the image. Note that the
virtual boxes are very closely aligned with the real one and
appear to be the correct size.

Point Experiment 3. We test NPL on coplanar points. In
Fig. 10, we mark nine points on the calibration grid in the
image. The points have a uniform spacing of eight inches.
The camera is placed approximately 11 feet from the
marked points. We recover the coordinates of the nine
points using NPL and compute a best fit plane from the
recovered points. The mean distance from the recovered
points to the best fit plane is 0.15 inches with a standard
deviation of 0.07 inches. We see that our algorithm does not
degenerate for coplanar points.

Line Experiment 1. We demonstrate the correct registra-

tion of virtual objects into a real scene using NLL. In

Fig. 11a, we indicate the seven line segments used to

estimate camera pose. In Fig. 11b, we overlay a texture on

the faces of the pictured box by transforming the world

coordinates of the box vertices to camera coordinates and

warping the texture onto the resulting quadrangles via

homographies. We also place a virtual cube on the original

box. The cube is aligned with the real box in world
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Fig. 7. (Line Simulation 2) Rotation and Translation errors and Standard Deviation of Rotation error versus number of points for NLL and KH. Noise

is fixed at 1:5� 1:5 pixels. We initialize KH at ground truth R and T (KHRT) to evaluate absolute performance and at ground truth T and R ¼ I

(KHT) to demonstrate the advantage of requiring no initialization in NLL.

TABLE 1
Timing Results (in Seconds) for Algorithms Under MATLAB

on a 1.1 GHz Pentium III

Results are given for NPL, PM, QL, F, LHMPM (LHM initialized with
PM), LHMT (LHM initialized with identity rotation and ground truth
translation), KHNLL (KH initialized with NLL), and KHT (KH initialized
with identity rotation and ground truth translation).



coordinates. Observe that, after transformation to the

camera frame and reprojection, it remains aligned. Finally,

we highlight the edges of the table by transforming its

world coordinates to camera coordinates and reprojecting

the appropriate line segments. We emphasize that all

virtual objects are constructed in world coordinates and

inserted into the images only after pose estimation and

transformation to camera coordinates.

4.3 Error prediction

We show that the sensitivity analysis of Section 3 can be

used to estimate errors in the recovered depths for the point

algorithm, given some idea of the geometry of the problem.

We focus on the point algorithm since the result for the line

algorithm is a direct application of linear algebra techni-

ques. Since our goal is to show the applicability of the

overall procedure, we do not attempt to estimate Me.

Rather, we will use the ground truth ~MM to find Me exactly,

and then calculate xn using this. For each point i, we

estimate xp, the error in the kernel direction using (21) over

all j and k. We then take the smallest of these since all must

be approximately satisfied.

We plot results for various levels of Gaussian noise

ranging from 0.5 to five pixel standard deviation. For

each noise level, we take 200 trials of six points with

translation restricted to half the maximum scene depth.

We plot in Fig. 12, the ratio of the norm of the real error

(computed from ground truth) to the estimated error

from the sensitivity analysis on a semilog scale. The

horizontal lines represent a ratio of one. Points above the

line are underestimation of error, and points below the

line are overestimations. Note that underestimation in

some cases is to be expected. First, the linear approxima-

tion in (19) will have an effect. Also, (21) has obvious

singularities for certain configurations which we have not

treated separately. Fig. 12a represents � ¼ 1 in (16). In

this case, approximately 4.5 percent of the trials resulted

in underestimation of errors. Fig. 12b represents � ¼ 2.

Here, approximately 1 percent of the trials resulted in

underestimation of the error.

5 CONCLUSION

Our goal was to develop fast and accurate pose estimation

algorithms for a limited numbers of points or lines. We have

presented a general mathematical procedure from which

we derive a pair of linear algorithms which guarantee the

correct solution in the noiseless case, provided it is unique.

We develop a sensitivity analysis for our algorithms which

also allows for coarse estimation of errors (with under-

estimation in very few cases) in pose recovery based on

known image errors. Our point algorithm shows perfor-

mance superior to competing linear algorithms and

comparable to a recent iterative algorithm. For our line

algorithm, there is no competing linear approach. We show

results comparable to a robust iterative algorithm when it is

correctly initialized and avoid the problems associated with

local minima for such algorithms.
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Fig. 8. (Point Experiment 1). Reprojection of a virtual box and three edges of a cube onto real-world reference objects. We estimate camera pose

using the eight circled points and NPL.

Fig. 9. (Point Experiment 2). Reprojection of two virtual boxes of

dimensions identical to a real box. We estimate camera pose using the

eight circled points and NPL.

Fig. 10. (Point Experiment 3). We recover the coordinates of the nine

coplanar points marked above using NPL and calculate the mean

distance between recovered points and a best fit plane as < 1% of the

size of the square defined by the nine points.
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