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Abstract

In this paper we present a new algorithm for structure
from motion from point correspondences in images taken
from uncalibrated catadioptric cameras with parabolic mir-
rors. We assume that the unknown intrinsic parameters are
three: the combined focal length of the mirror and lens and
the intersection of the optical axis with the image. We in-
troduce a new representation for images of points and lines
in catadioptric images which we call the circle space. This
circle space includes imaginary circles, one of which is the
image of the absolute conic. We formulate the epipolar con-
straint in this space and establish a new4� 4 catadioptric
fundamental matrix. We show that the image of the absolute
conic belongs to the kernel of this matrix. This enables us
to prove that Euclidean reconstruction is feasible from two
views with constant parameters and from three views with
varying parameters. In both cases, it is one less than the
number of views necessary with perspective cameras.

1. Introduction

During the last10 years there has been a considerable
effort in studying the reconstruction of scenes from uncali-
brated perspective views given point correspondences. This
is considered now a thoroughly understood problem. So-
lutions and insights gained from these studies boosted ap-
plications in video processing and image based rendering.
Two books [10] and [5] contain comprehensive treatments
of the subject.

In the meantime, computer vision researchers realized
that perspective cameras are just one modality among many.
Motivated by the need for a panoramic field of view, cata-
dioptric cameras have been designed and can be already
purchased off-the-shelf. For an extensive coverage the
reader is referred to the recent book by Benosman and
Kang [2] and the proceedings of the Workshop for Omnidi-
rectional Vision [4]. Among several designs, the catadiop-
tric systems with a single effective viewpoint, called central
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catadioptric, attracted special attention due to their elegant
and useful geometric properties. Several authors have stud-
ied the properties of central catadioptric cameras and the
image formation in them [15, 20, 3, 22, 12, 8]. Kang [12]
proposed a single view approach from the image of the cir-
cular mirror boundary of a paraboloid mirror. Geyer and
Daniilidis showed [7, 8] how calibration of a parabolic cata-
dioptric system can be achieved from a single view of three
lines in space or from a single view of two sets of parallel
lines.

In this paper, we study the recovery of motion and scene
structure frommultipleparabolic catadioptric views. Such
views can be obtained from a reflective surface of revolution
of parabolic profile and an orthographic lens. We assume
that the optical axes of the lens and the mirror are parallel.
They do not have to coincide but to avoid aberrations and
enable maximal coverage of the CCD-chip they should be
close to each other. We assume, thus, that the catadioptric
system is correctly aligned. We further assume that the as-
pect ratio and skew parameter are known leaving only the
focal length (combined scaling factor of mirror, lens, and
CCD-chip) and the image center (intersection of the optical
axis with the image plane) as unknown.

It is already known that in such parabolic catadioptric
systems lines project onto circles. We introduce a new rep-
resentation for circles in the image plane: the circle space
of three dimensions. This space is divided into two parts by
an abstract paraboloid. The exterior of the paraboloid rep-
resents all circles with real radius and the interior all circles
with imaginary radius. The space does not contain circles
with complex radii but the paraboloid itself represents all
circles with zero radius which are just points on the plane.
By lifting each image point to a point of the paraboloid and
each image circle to a point outside the paraboloid we have
one space for both points and circles.

The fact that we can represent imaginary circles enables
us to represent the image of the absolute conic. In the cal-
ibrated case, the image of the absolute conic is the focus
of the abstract paraboloid in the circle space. In the non-
calibrated case, the imaginary image of the absolute conic
is a point inside the abstract paraboloid that is vertically
symmetric to the point representing the real image of the
fronto-parallel horizon.



We formulate the calibration problem as the question for
a linear transformation that will map uncalibrated points
on the abstract paraboloid to “calibrated” points on a
paraboloid and the image of the absolute conic to its focus.
Indeed, such a linear transformationK exists and encodes
all three intrinsic parameters (focal length and image cen-
ter). The question is now to find this mapping from multiple
views.

It turns out that we can formulate the epipolar constraint
using projective coordinates of the circle space we have
been working on. A new4 � 4 “catadioptric” fundamen-
tal matrix is composed from the essential matrixE and an
induced projection following the mappingK above. We
prove that the circle representation of the images of the ab-
solute conic in the left and the right view respectively lie in
the left and right nullspaces of the catadioptric fundamen-
tal matrix. Because the catadioptric fundamental matrix is
rank2, the image of the absolute conic is in the intersection
of the left and right nullspace if the intrinsic parameters are
constant and rotation does not vanish and is not about the
translation direction. For three views, it is even possible to
determine the image of the three different absolute conics
in the case of varying intrinsics.

Thus, the main result of this paper is that, with un-
known focal length and image center, Euclidean reconstruc-
tion from parabolic catadioptric views is feasible:

1. From two views with the same camera parameters.
2. From three views with varying camera parameters.
In both cases, it is one view less, than in the case of per-

spective views with the same unknowns (focal length and
image center): Three views are necessary for constant pa-
rameters [14, 13] and four views are necessary for varying
parameters [11]. In particular the fundamental matrix has
seven degrees of freedom whereas the intrinsics have three
and the motion has five for a total of eight. In the three view
case the trifocal tensor has 19 free parameters whereas the
three intrinsincs have nine plus 11 for the motion, yielding
a total of 20.

We are not going to review here the vast amount of
literature on uncalibrated Euclidean reconstruction which
has been comprehensively summarized in the two recent
books [10, 5]. The main result [14] is that three views
suffice for Euclidean reconstruction with all intrinsics un-
known but constant. The results still hold for known aspect
ratio and skew. Hartley [10] showed that a varying focal
length can be recovered from two views with all other in-
trinsic parameters fixed. Sturm [18] studied the degenerate
configurations for the same assumption. Heyden and As-
trom [11] proved that four views suffice for unknown vary-
ing focal length and image center but known aspect ratio
and skew. Pollefeys et al. [17] studied several configura-
tions of unknown and varying parameters.

In the omnidirectional vision literature, there are very

few approaches dealing with structure from motion. Gluck-
man and Nayar [9] studied ego-motion estimation by map-
ping the catadioptric image to the sphere. Svoboda et
al [20] first established the epipolar geometry for all cen-
tral catadioptric systems. Kang [12] proposed a direct self-
calibration by minimizing the epipolar constraint. Fer-
mueller and Aloimonos [6] proved the superiority of the
sphere over the plane regarding stability. Teller [1] showed
how to compute ego-motion from spherical mosaics. Multi-
ple view algorithms for the perspective case which assume
piecewise planar environments are simpler when modified
for catadioptric imagery. [21, 19].

In the next section we mention introductory facts about
catadioptric geometry. We introduce the notion of circle
space and we find the image of the absolute conic on that
space. We finish the second section with the recovery of
the image of the absolute conic from the catadioptric funda-
mental matrix. In the third section we present reconstruc-
tion algorithms for two and three views. In the fourth sec-
tion a real experiment is described.

2. Preparations

2.1. Known Facts

We recall from [7] some facts about the projection in-
duced by parabolic mirror.

Fact 1. In a coordinate system whose origin is the focus
of the paraboloid and axis of symmetry coincides with the
z-axis, the projection of a space point(x; y; z; 1) is in image
coordinates:
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wheref is the combined focal length of the mirror and cam-
era, and(cx; cy) is the image center, the intersection of the
axis of the parabola with the image plane. We assume that
the aspect ratio is1 and that there is no skew. The image
point is obtained by intersecting the ray through the focus
and the space point with the parabola, then orthographically
projecting the intersection to a plane perpendicular to the
axis of the paraboloid.

Fact 2. The horizon of the fronto-parallel plane, the plane
perpendicular to the axis of the paraboloidal mirror, is the
circle

(cx � u)2 + (cy � v)2 = 4f2 : (2)

This circle of radius2f centered about the image center
is the equivalent of the calibrating conic which we call!0

since we call the image of the absolute conic!.
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Figure 1. A circle
 is represented by the point~
. The
plane� is the polar plane of~
 with respect to�. 
 is
obtained by projecting the intersection of� with � to
the plane.

Fact 3. The projection of a line is an arc of a circle. If
� is the center andR the radius of the circle and ifd2 =
(cx � �x)

2 + (cy � �y)
2 then

4f2 + d2 = R2 : (3)

This condition is equivalent to the condition that the circle
intersect!0 antipodally.

Fact 4. The image! of the absolute conic
1 is the circle

(cx � u)2 + (cy � v)2 = �4f2 ; (4)

centered at the image center with radius2if . This can be
derived by solving forx andy in the projection formula (1)
after substitutingx2 + y2 + z2 = 0,

x = (u�cx)z
2f y =

(v�cy)z
2f :

Substitute the right hand sides intox2 + y2 + z2 = 0, ob-
taining

z2

4f2
�
4f2 + (cx � u)2 + (cy � v)2

�
= 0 :

Dividing by z2=4f2 leaves (4). Thus, knowledge of either
the absolute conic or the calibrating conic yields the intrin-
sic parameters.

2.2. Parabolic Circle Space

In the next few paragraphs we consider an abstract
paraboloid which is different from the physical paraboloid
of the mirror. Following Pedoe [16], we use this surface
to describe a correspondence between points in space and
circles in the plane. Lines in this circle space correspond

to one parameter systems of coaxial circles. Planes in the
space correspond to two parameter systems of circles which
intersect a single circle antipodally. See Figure 1 in which a
circle is obtained from a point in space by taking the polar of
the point with respect to the paraboloid, and projecting to a
plane the intersection of the polar plane with the paraboloid;
this projection will be a circle.

We call the paraboloid�; it is given by the quadratic
form
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Its focus is at the origin and has a focal length equal to1
4 .

So,
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Definition. Suppose
 is the circle centered at(p; q) with
radiusR:

(p� x)2 + (q � y)2 = R2 ; (6)

whereR is possibly zero or imaginary, but never complex.
Let thepoint representationof 
 be the the projective point
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Note that the circle’s radius is real iff it lies outside of
�. Its radius is imaginary iff it lies inside of (above)�. If
R = 0 then
 is a single point and~
 lies on�. The set of
pointsf~
g is the parabolic circle space.

When
 is a point, because~
 has the samex andy coor-
dinates as
 but lying on�, we say that~
 is the lifting of

to�.

Proposition. If � is the polar plane of the point~
 with
respect to the paraboloid�, the orthographic projection in
the direction of thez-axis of the intersection of� with � is
the circle
.

Proof: The implicit equation of the polar plane� of ~
 is
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Substitutez = x2 + y2 � 1=4, yielding (6). �

Therefore the point(p; q; r; 1) represents the circle

(p� x)2 + (q � y)2 = p2 + q2 � r � 1

4
: (8)



We can extend the definition to encompass lines as well;
they are represented by points on the plane at1. The polar
plane of a point(p; q; r; 0) at infinity is the plane

0 = �r

2
+ px+ qy ;

which is independent ofz and so the line in the plane has
the same equation.

2.3. Application of Circle Representation

First, note the point representations of the calibrating
conic,
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which, because it has a real radius, lies outside of�; and
the absolute conic,
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which, because it has an imaginary radius, lies inside of
�. The points~! and~!0 lie the same vertical distance,4f2,
away from�.

Proposition. The point representations of circles which
are images of lines in a parabolic projection lie in a plane
whose pole with respect to� is ~!.

Proof: If (p; q; r; 1) is a circle which is the parabolic pro-
jection of a line it must satisfy (3). Using (8),

4f2 + (cx � p)2 + (cy � q)2 = p2 + q2 � r � 1

4

4f2 + c2x + c2y +
1

4
= 2pcx + 2qcy � r; (11)

which, in the variablesp, q, andr, is the equation of a plane.
This plane is represented by the row vector
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is the pole of the plane�. �

The paraboloid� was defined so that its focus is the ori-
gin. The point~! is located at the origin whencx; cy = 0
andf = 1

4 . The polar plane of this point (11) reduces to
r = � 1

2 . In this case, image points lifted to the parabola
exactly correspond to calibrated rays. When these intrinsics
hold, the lifting of a space point projected by formula (1) is
a point on the parabola which is collinear with the focus and

the point in space. In particular, the projection of the point
(x; y; z; 1)T in space is
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which lies on the line through the focus and the point
(x; y; z; 1)T .

Is there a linear transformation which transforms point
representations of uncalibrated image points, in which~! is
in general position, to calibrated rays, in which~! is the ori-
gin? In the next section we show that this is indeed the case.

2.4. Transformations Fixing�

In this section we find linear transformations under
which� is invariant. The four transformations,
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are such that for any choice of�, �, and vectors� ,
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whereC� was previously defined in (5) and is the quadratic
form of �. Therefore these transformations affect the
parabolic circle space such that they take points to points,
as opposed to say points to circles. The transformations
have the following effect on points in the image plane:R�

induces a rotation of� about the origin;S� induces a scale
of � also about the origin;T� translates points by� ; andH
reflects about the linex = 0.

Any composition of these transformations will also leave
� invariant. Note that these transformations also leave�1
invariant. They are therefore affine transformations, and
also they send lines to lines.

These transformations act as similarity transformations
on the points. Do they change the image of the absolute
conic and the line image plane so as to correctly reflect the
transformation induced on the points? In other words, say



cx, cy, andf are fixed, applyingT� would induce a transla-
tion of � on points; it should therefore transform~! into

(cx + �x; cy + �y; (cx + �x)
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and the line image plane (11) to
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2+(cy+�y)
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4
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so that the new image center is(cx + �x; cy + �y) as de-
sired; any rotation or scaling should act similarly. One can
verify that all four transformations transform~! and the line
image plane in a manner consistent with the way in which
the transformations affect points.

Thus, there is a linear transformation taking point rep-
resentations of image points obtained from a camera with
intrinsic parameterscx, cy, andf , to calibrated rays. This
transformation is the4� 4 matrix,
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This is an important point, for ifq = (u; v; 1)T is the
parabolic projection (with intrinsicscx, cy, f ) of the space
pointp = (x; y; z; 1)T then for some scalar�,
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which is theperspective projection of(x; y; z; 1) with im-
age center(0; 0; 1) and focal lengthf = 1. Note thatK
is different from the usual camera matrix: it is not actually
a projection;P induces the projection. LeavingK non-
singular (i.e. not incorporatingP ) will make it easier to
prove that a matrix, a fundamental matrix, created with it
has a certain rank.

2.5. The Catadioptric Fundamental Matrix

Letm andn be calibrated rays pointing to the same point
(x; y; z; 1) in space taken from two views related by a rota-
tion R and translationt. The pointsm andn must satisfy
the epipolar constraint which is specified by

nT [t]�Rm = nTEm = 0 ; (15)

whereE = [t]�R is called the essential matrix. Say
p = (u1; v1; 1)

T andq = (u2; v2; 1)
T are two parabolic

catadioptric projections of the space point, and say the cam-
era matrices areK andK 0, with ~! and ~!0 the point rep-
resentations of the image of the absolute conic. If~p and
~q are their liftings to�, then using equation (14), so that
m = PK ~p andn = PK 0~q, the epipolar constraint (15)
becomes,

~qTK 0TP TEPK ~p = 0 : (16)

Let the4� 4 matrix

F = K 0TP TEPK (17)

be called thecatadioptric fundamental matrix. Then the
epipolar constraint for parabolic catadioptric cameras is

~qTF ~p = 0 : (18)

Theorem. The catadioptric fundamental matrix defined in
(17) has rank2. Let ~!1 be the point representation of the
image of the absolute conic in the first image, correspond-
ing toK, and similarly for~!2 corresponding toK 0 in the
second image. Then,

~!2F = 0 and F ~!1 = 0 : (19)

Proof: The essential matrixE is known to be of rank2,

thusP TEP =

�
E 0
0 0

�
has rank2. SinceK andK 0 are

non-singular thenF must also have rank2. Let us calculate
the left and right null vectors ofF . First, lett andt0 be the
images of the viewpoints from each camera,

t0
T
E = 0 ; and Et = 0 :

Then by inspection, linearly independent left and right null
vectors ofP TEP are
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Hencegi=1;2 = K�1fi are vectors spanning the right
nullspace ofF andg0i=1;2 = f 0i

T
K 0�T are vectors span-

ning the left nullspace. Note thatg2 = ~!1 andg02 = ~!T
2 .

Therefore,

~!T
2 F = 0 and F ~!1 = 0 :

Corollary. If K = K 0 andt 6= t0 then,

kerF \ kerF T = f� ~!g :

The conditiont 6= t0 is true when the rotation is not triv-
ial and when the axis of rotation is not the translation vector.



3. Algorithm

The algorithm proceeds in three steps. First estimate the
fundamental matrix, from the fundamental matrix extract
the intrinsic parameters via the image of the absolute conic,
and reconstruct using well known perspective methods.

3.1. EstimatingF

We use a non-linear method to estimateF . An algorithm
based on singular value decomposition which is similar to
the the8-point algorithm for the perspective case exists for
parabolic catadioptric projections but is equally sensitive.

1. Obtain imagespi;j = (ui;j ; vi;j ; 1)
T of the same point

qj=1;:::;n in space in two catadioptric viewsi = 1; 2.
Let
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4
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2. Minimize the sum of first-order geometric errors,X
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where the minimization is overF and using the nota-
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where one ofa; : : : ; f is held constant at1. This en-
sures thatF has rank2. Initial estimates forF can
be obtained using the singular value decomposition
method since the components ofF are linear in co-
ordinates of the lifted image points.

3.2. Estimating!

In the case whereK = K 0 the left and right nullspaces
of F contain the point representation of the image of the
absolute conic. In the presence of noise the nullspaces will
not intersect. Once we have calculated the two-dimensional
nullspaces, we choose the point equidistant to the two lines
as the estimate of~!.

When the intrinsics vary and we have images from three
views, with three matricesKi=1;2;3 and point representa-
tions~!i=1;2;3, we then have

F12 = KT
2 P

TE12PK1 ;

F23 = KT
3 P

TE23PK2 ;

F31 = KT
1 P

TE31PK3 :

Then once we have estimated the three fundamental matri-
ces we calculate say~!1 from the fact that,

kerF12 \ kerF T
31 = f~!1g :

Again, the estimate of~!1 is the point equidistant to the two
nullspaces.

3.3. Reconstruction

Reconstruction proceeds as in the calibrated perspective
case. Once we have determined~! and consequently!, we
can transform the image points into calibrated rays with
which we determine the essential matrixE using a non-
linear optimization and then back-project the rays into space
using a linear algorithm, both algorithms described in [10].

4. Experiments

We use the algorithm to perform a reconstruction of a
scene from two views. The two pictures in Figure 2 are of
a building on the campus of our institution and are assumed
to have the same intrinsic parameters. First we manually
choose and correspond points in the two images. We calcu-
late the fundamental matrixF between the two views from
the point correspondences using the algorithm described in
the previous section. We estimate the point representation
of the image of the absolute conic by finding the left and
right nullspaces ofF and finding the point equidistant to
each. Using the intrinsic parameters we back-project the
image points to calibrated rays. Using the calibrated rays
we estimate the essential matrixE, decomposeE into trans-
lation and rotation, and determine the perspective camera
projection matricesP1 andP2. We then back-project the
rays and use homogeneous linear triangulation to estimate
scene points.

The reconstruction is shown in the top and bottom of
Figure 3. In the reconstruction we have fitted a plane to
the points on the front facade of the building and to points
on the ground plane, these are highlighted in Figure 2 and
shaded differently in Figure 3. The viewpoints and poses
are also displayed in the figures. The triangulation is manu-
ally added and shown for visualization purposes only. The
ground plane and front facade were reconstructed to almost
planar surfaces and are close to perpendicular. The other
facade of the building, on the left in the images, did not
reconstruct true to the scene, this is because this plane is
perpendicular to the axis of motion which makes estimat-
ing depth more error-prone. In two views with such small
motion, the reconstruction performs remarkably well.



Figure 2. Two images taken with the same parabolic catadioptric camera. Points are those used for correspondence.
Points highlighted in white are on the ground plane; points highlighted in black are on one side of the building facade.

Figure 3. Reconstruction from two images. Black points are in the ground plane. Darkly shaded points are on the front
facade of the building; lightly shaded points are on the other facade (which is on the left in the images). Planes are fitted
to the facade and ground plane (and translated slightly so points are made visible). The coordinate systems at the points
are the pose estimates. Tilt of the fitted plane is irrelevant to the results of the reconstruction. The top view is taken
looking straight at the front facade; the bottom view is from the side. Note that the mirror reverses the orientation; this
has been accounted for in the reconstruction.



5. Conclusion

We have established a new representation for images of
lines and points in parabolic catadioptric cameras. Based
on this representation we found a natural representation for
the image of the absolute conic if aspect ratio and skew are
assumed known. Writing the epipolar constraint in this new
space yields a new catadioptric fundamental matrix. It turns
out that the image of the absolute conic belongs to the two-
dimensional kernel of this matrix. Applying thus only sub-
space recovery and intersection we can obtain Euclidean re-
constructions:

� from two views with the same camera

� from three views with three different cameras.

The corresponding minimal views for the perspective case
are three and four, respectively. This approach opened new
questions which we address in our current work: What is
the number of independent conditions onF to be decom-
posable? What is the degree of the manifold of all cata-
dioptric fundamental matrices? Which point configurations
make the recovery of the fundamental matrix degenerate?
What is the minimal number of points for directly comput-
ing motion and the intrinsics?

Sensor resolution of commercial catadioptric cameras is
increasing every year. We believe that geometrically intu-
itive algorithms working directly on catadioptric images can
provide flexible solutions for panoramic image-based ren-
dering and visualization.
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