
Contour cut: identifying salient contours in images by solving a Hermitian
eigenvalue problem

Ryan Kennedy, Jean Gallier and Jianbo Shi
University of Pennsylvania

{kenry,jean,jshi}@cis.upenn.edu

Abstract

The problem of finding one-dimensional structures in im-
ages and videos can be formulated as a problem of search-
ing for cycles in graphs. In [11], an untangling-cycle cost
function was proposed for identifying persistent cycles in
a weighted graph, corresponding to salient contours in an
image. We have analyzed their method and give two signifi-
cant improvements. First, we generalize their cost function
to a contour cut criterion and give a computational solu-
tion by solving a family of Hermitian eigenvalue problems.
Second, we use the idea of a graph circulation, which en-
sures that each node has a balanced in- and out-flow and
permits a natural random-walk interpretation of our cost
function. We show that our method finds far more accurate
contours in images than [11]. Furthermore, we show that
our method is robust to graph compression which allows us
to accelerate the computation without loss of accuracy.

1. Introduction

Many visual perception problems involve finding salient
one-dimensional structures in datasets, such as finding con-
tours in images [1], finding object trajectories in video [3],
or identifying meaningful sequence of events [9].

In [11], Zhu developed an approach for finding salient
one-dimensional structures in a graph by finding persistent
cycles and demonstrated that this can be used to extract con-
tours from images. They were able to identify salient con-
tours and their algorithm is one of the top-performing algo-
rithms on the Berkeley Segmentation dataset [7]. In their
algorithm, Zhu constructs a directed graph by defining a
graph node for each image edge and connecting all nodes
within a small radius. Weights are given to the graph edges
based on the relative angles of the image edges such that
edges with similar angles are strongly connected. To distin-
guish between contours and clutter, they consider a random
walk on the graph. During a random walk, either a con-
tour will be followed, or else the walk will diverge away
from a contour due to clutter and gaps in the edges. The

ℜ

ℑ

ℜ

ℑ

Figure 1: Top: image with all (possibly-overlapping) con-
tours found by our algorithm using 30 eigenvectors. right,
“most-representative” eigenvector with contours. Bottom:
left, image with all (possibly-overlapping) contours found
using Zhu’s algorithm [11] using 30 eigenvectors. right,
“most-representative” eigenvector with contours.

main insight of Zhu is that of persistency: for a salient con-
tour, a random walk will tend to return to the same node
consistently after a predictable amount of time (roughly the
length of contour). It was shown this peakedness in the re-
turn time of a random walk is related to the eigenvectors of
the random walk matrix. Zhu used this persistency measure
to identify one-dimensional contours in the graph.

In this paper, we present an extension of the work of Zhu
and provide two main contributions. First, we analyze the
graph cycle cost function and introduce a flow on the graph
which allows us to define various graph cuts. We show this
leads to a simple modification of Zhu’s method of comput-
ing the eigenvectors of the random walk matrix. This new
algorithm significantly improves upon that of Zhu, while
maintaining a low computation time. Second, we show that
Zhu’s solution only calculates the actual critical points of
their cost function if the random walk matrix is a normal
matrix. The exact optimal solution which we present re-

2065

(a) Image with graph weights (W) superim-
posed.

(b) Zoomed in weights of W . (c) Zoomed in stationary distri-
bution of P .

(d) Zoomed in weights of F .

Figure 2: Difference between W and the circulation F = ΠP . 2a: image with graph connections superimposed. 2b: a
zoomed-in section. 2c: π, the stationary distribution of P . 2d: weights of F . Note that in 2b, the weights on all three
contours of the junction are equally strong while in 2d, the flow constraint causes the weights to split at the junction. For all
plots, the weight are averaged over both directions. Red indicates higher weights and blue indicates lower weights.

quires solving an eigenvalue problem of a parameterized
matrix and we demonstrate that it significantly outperforms
Zhu’s algorithm on natural images.

2. Problem formulation
2.1. Graph construction

LetG = (V,E) be a graph with vertex set V and edge set
E ⊆ V × V . Each edge is assigned a non-negative weight
Wij , with the matrix W ∈ (R+

⋃
{0})|V |×|V |. A contour

(C,O) is defined by a set of vertices C ⊆ V and a function
O : C → {1, . . . , |C|} which specifies a unique ordering
of these vertices. To construct a graph from an image, we
follow the procedure of [11]. First, we find the edges in the
image. Two graph vertices are created for each image edge
(one for each direction) and vertices are connected if they
are nearby in the image. Graph weights are set based on the
relative angles of the image edges (Figure 3b).

Note that closed cycles in an image can be found di-
rectly by using only a single graph vertex per image edge
and making sure that the orientations are locally consistent.

2.2. Graph circulations

In the normalized cut algorithm [10], the concepts of
graph cuts and volume are defined for a symmetric graph
weight matrix W . For asymmetric graphs, the cut from A
to B is not in general equal to the cut from B to A, for
A,B ⊆ V . We introduce a graph circulation matrix F . A
circulation [2][5] is a matrix F ∈ (R+

⋃
{0})|V |×|V | which

assigns a non-negative real value to each graph edge, satis-
fying ∑

i:(i,j)∈E

Fij =
∑

k:(j,k)∈E

Fjk, (1)

so that each node has the same total incoming and outgo-
ing weight. We use the circulation F = ΠP , where P =
D−1W with D = diag(

∑
jWij) is the row-normalized

weight matrix and Π = diag(π) is the diagonal matrix of
the stationary distribution of P . This circulation is advanta-
geous because if W is symmetric then the directed versions
of cut and volume that we will define reduce to the original
undirected versions [5]. It also admits a natural random-
walk interpretation of our algorithm (Section 2.7). Figure 2
shows the difference between the weights of F and W .

2.3. Internal and external cuts

A contour is a one-dimensional structure in a graph. We
use the external cut of a contour (C,O) to measure its sep-
aration from the rest of the graph, V \ C:

Ecut(C) =
∑

i∈C,j 6∈C

Fij . (2)

We use the internal cut to measure the entanglement
caused by graph edges within the contour that violate the
orderingO. Intuitively, the internal cut measures how much
the contour deviates from an ideal one-dimensional contour
toward a 2-dimensional clique. Let k ∈ Z+ be the width of
the contour. Nodes i, j ∈ C with |O(i)−O(j)| > k are too
distant and so are part of the internal cut:

Icut(C,O) =
∑

(i,j)∈C,|O(i)−O(j)|>k

Fij . (3)

Figure 3c shows these two cuts on a weight matrix.

2.4. Contour cut cost

Given a contour (C,O), we define a cost function which
takes into account both the internal and external cuts:

Ccut(C,O) =
Icut(C,O) + Ecut(C)

Vol(C)
, (4)

where Vol(x) =
∑
i∈C,j∈E Fij is the sum of the weights

of all edges incident with the contour. This cost function
will be small for contours having small internal and external
cuts.

2066

2.5. Circular embedding

To represent a contour (C,O), we must encode both
which nodes are part of the contour as well as the order-
ing of these points. We do so using a circular embedding
where each node of the contour is mapped to a point on a
circle about the origin in the complex plane and all other
points are mapped to the origin (Figure 3f). Each point is
represented as as complex number

xj = rj exp(iθj) (5)

with rj = 1 if j ∈ C and 0 otherwise, and θj = O(j)δ with
δ = 2π

|C| . The radius rj of each point encodes whether it is
part of the contour and the angle θj encodes the ordering.

2.6. Contour cut

The internal and external cuts can be encoded with re-
spect to the circular embedding. Given a the circular em-
bedding of a contour, x ∈ C|C|, the external cut is:

Ecut(x) =
∑

(i,j)∈E:
ri=0
rj 6=0

Fij =
∑

(i,j)∈E

Fijri(1− rj). (6)

Rather than using the hard-bound of k for the internal
cut, we use a soft version of the internal cut by using the
cosine function, as in [11]:

Icut(x) =
∑

(i,j)∈C

Fijrirj [1− cos(θj − θi − δ)]. (7)

This cosine function has two desirable properties. First, the
cosine will reach a maximum of 1 when two nodes are ex-
actly δ apart (they are adjacent in the ordering) in which
case the cut is zero, and it decreases as the nodes are far-
ther away. Second, since longer contours are packed more
tightly in the circle, δ will be smaller and this cost function
will tend to regard nodes further away as “closer” as the
contour becomes longer.

The volume of the contour is defined as

Vol(x) =
∑

(i,j)∈E

Fijri. (8)

The contour cut in terms of the circular embedding x is then

Ccut(x) =
Icut(x) + Ecut(x)

Vol(x)

= 1−
∑

(i,j)∈E Fijrirj cos(θj − θi − δ)∑
(i,j)∈E Fijri

= 1− <{x
∗ [F exp(−iδ)]x}

x∗Πx

=
x∗
[
Π−

[
F exp(−iδ) + FT exp(iδ)

]
/2
]
x

x∗Πx

=
x∗[Π−H(δ)]x

x∗Πx
,

where

H(δ) =
F exp(−iδ) + FT exp(iδ)

2
. (9)

Therefore, we can write the contour cut in terms of a
generalized Rayleigh quotient:

Ccut(x) = RΠ−H(δ),Π(x) =
x∗[Π−H(δ)]x

x∗Πx
. (10)

It follows that the problem of minimizing Ccut(x) =
RΠ−H(δ),Π(x) is equivalent to maximizing RH(δ),Π(x).

2.7. Interpretation

Following a similar derivation as in [2], the Rayleigh
quotient RΠ−H(δ),Π(x) can be rewritten as

RΠ−H(δ),Π(x)

=
1

2

∑
i,j Pijπi|xi − xjeiδ|2∑

i πi|xi|2
.

=
1

2

∑
i,j Pijπi(r

2
i + r2

j − 2rirj cos(θi − θj − δ))∑
i πir

2
i

.

This Rayleigh quotient is small when nodes with large edge
weights between them have a similar radius and an angle
difference close to δ. Thus, by minimizing this Rayleigh
quotient we are finding a subset of nodes and an ordering
for which all nodes with high weights on the contour have
a similar radius and an angle close to δ. Observe that for a
clique of nodes there will necessarily be many strong links
which span large angles (the internal cut), which will in-
crease the value of the Rayleigh quotient; only for contours
will the Rayleigh quotient be small.

The contour cut is also closely related to the normalized
cut, which has has a natural random-walk interpretation. In
[8], it was shown that minimizing the normalized cut mini-
mizes the probability of jumping between the two partitions
of nodes during a random walk. Like normalized cut, the
contour cut also has a natural random-walk interpretation.
Consider a discretized form of the internal cut (Equation 3)
and let B ⊆ E be the set of cut links (including both the
internal and external cut) on the contour C which is repre-
sented by the circular embedding x. Then,

Ccut(x) =
x∗(Π−H(δ))x

x∗Πx
=

∑
(i,j)∈B πiPij∑

i∈C πi

= P ((X0, X1) ∈ B|X0 ∈ C),

where Xi is the present vertex at time i during a random
walk. Therefore, the contour which minimizes the contour
cut is the contour which also minimizes the probability of
taking a bad link either too far forward on the contour (inter-
nal cut) or off of the contour (external cut) during a random
walk. In other words, it maximizes the probability of taking
a small step down the contour.

2067

(a)

1

3

2

5

6

7

8

9 11

12

10

4

14

16 13

17

15

18

(b)

1 ... 18

1
.
.
.

18

Icut

Icut Ecut

Ecut

(c)

ℜ

ℑ

*

(d)

12
3

4

5
6 7 8

9

10

11

12
ℜ

ℑ 13−18

(e)

10

11
1212

3

4

5
6 7

9

13−18

ℜ

8

ℑ

(f)

Figure 3: Our algorithm run on a synthetic example. The synthetic image (3a) is used to construct a graph (3b) represented
by a weight matrix (3c). The eigenvalues of Π−1H(δ) over all δ are plotted in 3d with local maxima denoted by black circles.
The best embedding, denoted by an asterisk, is shown in 3e with the ideal circular embedding with graph connections shown
in 3f.

3. Computational solution
To minimize the contour cut, we want to solve

maxx
x∗H(δ)x
x∗Πx (11)

s.t. xi = ri exp(iθi), ri ∈ {0, 1}, θi = O(i)δ,

where we seek not just the global maximum but all criti-
cal points which correspond to different contours. By re-
quiring ri and θi to take on discrete values the problem is
computationally infeasible since it requires searching over
not only an exponential number of subsets sets of vertices
but also over orderings on each of these sets. We relax the
problem by allowing x to take on arbitrary complex values:
x ∈ C|C|. Note that we now must maximize over δ in ad-
dition to x. We thus seek the critical points of Equation 12
with respect to both x and δ. Our main result for solving
Equation 12 is the following theorem:

Theorem 3.1. The critical points of the relaxed contour cut
problem

maxx,δ
x∗H(δ)x
x∗Πx s.t. xi ∈ C (12)

can be found by searching over δ and finding the eigenvec-
tors of the corresponding matrices Π−1H(δ); any eigen-
vectors for which x∗H(δ)x = |x∗Fx| are critical points
with respect to both x and δ.

Proof. This immediately follows from Lemmas 3.2 and 3.3,
with proofs in the Supplementary Material.

For a fixed δ, we have:

Lemma 3.2. For fixed δ, the critical values of x∗H(δ)x
x∗Πx

are equal to the eigenvalues of the Hermitian matrix
Π−1/2H(δ)Π−1/2 and are achieved for all vectors of the
form x = Π−1/2y, where y is the associated unit eigen-
vector of Π−1/2H(δ)Π−1/2, with the maximum being the
top eigenvalue λ1. Furthermore, Π−1/2H(δ)Π−1/2 and
Π−1H(δ) have the same eigenvalues and every eigenvec-
tor, x, of Π−1H(δ) is of the form x = Π−1/2y, where y is
an eigenvector of Π−1/2H(δ)Π−1/2.

For a fixed x we have:

Lemma 3.3. For a fixed x, the unique local maximum (and
thus the global maximum) of x∗H(δ)x

x∗Πx is attained for δ =

arg(x∗Fx) for the function value |x
∗Fx|
x∗Πx . Furthermore, we

have
x∗H(δ)x

x∗Πx
≤ |x

∗Fx|
x∗Πx

∀ δ. (13)

3.1. Normal graphs

For a normal matrix P (or equivalently, F), we have the
following result:

Claim 3.4. If P = D−1W is a normal matrix, the critical
points of Equation 12 are exactly the eigenvectors of P .

Proof. See supplementary material1.

This means that, for normal P , we can find the critical
points of Equation 12 by directly finding the eigenvalues of
P without searching over all δ.

This is, in fact, the algorithm given by Zhu [11], where
it is claimed that the critical points of their cost function are
obtained at the eignenvectors of P . As their cost function
differs from ours only in that we use the normalized matrix
F = ΠP rather thanP directly and divide by x∗Πx, it holds
that the eigenvectors of P are only the critical points of their
cost function when P is normal, contrary to the claim of
Zhu. This result also motivates an approximation of our
algorithm, given in Section 3.6

3.2. General graphs

In practice, P is rarely a normal matrix and we cannot
simply calculate the eigenvectors of P . For general graphs,
we can use Theorem 3.1 to create an algorithm which finds
the actual critical points of Equation 12. However, in prac-
tice it might be difficult to search over all values of δ with
a small enough step size such that x∗H(δ)x = |x∗Fx| to
a high enough precision. Instead we propose a different

1Available at http://www.seas.upenn.edu/∼ kenry/ccut.html

2068

(a) Image with a contour traced (red).

ℑ

ℜ

(b) Contour in embedding space
for x a solution to Px = λx.

ℑ

ℜ

(c) Contour in embedding space
for x = Π−1y, y a solution to
PT y = λy.

ℑ

ℜ

(d) Contour in embedding space
for x a solution to Π−1H(δ)x =
λx.

Figure 4: Comparison between approximate solutions (4b, 4c) and an exact solution (4d) to the eigenvalue problem
Π−1H(δ)x = λx. By using H(δ), we take both P and PT into account and are able to achieve a more circular embed-
ding. Using just P or PT by itself can lead to an ordering which spirals out rather than creating a circle.

algorithm which is motivated by the observation that as δ
changes, the eigenvalues of H(δ) rarely cross. This has
been observed previously [6] and it has been true in our
experience as well. To determine the critical points with
respect to δ, we make the assumption that the kth largest
eigenvalue of H(δ) remains the kth largest over all values
of δ, in which case it suffices to directly find the local max-
ima of the kth eigenvalue over all δ. This gives rise to the
following algorithm:

Algorithm 1 Contour cut

Calculate matrices P and Π from W .
for δ = δmin to δmax do
H(δ)← (ΠP exp(−iδ) + PTΠ exp(iδ))/2
Solve Π−1H(δ)x = λx for top k eigenvectors.

end for
Find local maxima of each λi over all δ. The associated
x’s are critical points with respect to both x and δ.

In practice, we found it sufficient to search over a small
range for δ, such as δ ∈ [0, π/4] with a step size around
0.025.

3.3. Examples

Figure 3 shows the result of running our algorithm on a
synthetic image. All eigenvalues for all δ were computed
and plotted in Figure 3d. The top solution to the relaxed
optimization problem is shown in Figure 3e with the ideal
circular embedding in Figure 3f.

Results on a real image are shown in Figure 4. The im-
age and a contour are shown in Figure 4a, with the corre-
sponding contour in the embedding space in Figure 4b-4d.
Another comparison between the embeddings for each al-
gorithm is shown in Figure 8

3.4. Approximations

For full images the resulting graph can have on the order
of 10,000 nodes, making calculation of our algorithm slow.
To improve speed, there are two approximations: approxi-
mating the graph and an approximating the algorithm.

3.5. Approximating the full graph

In the middle of a strong contour where there is no junc-
tion or clutter, there is very little ambiguity about which
nodes should be grouped together into a potential contour.
We found that constructing the full weight matrix and then
using normalized cut [10] to cluster nodes into n = 500
or n = 1000 small contour segments worked well in prac-
tice. Given these contour segments, a new weight matrix is
created by treating each fragment as a supernode in a new
graph with the weights between fragments set to be the sum
of the weights between nodes in each fragment in the origi-
nal graph. Our algorithm can be run on the smaller graph.

3.6. Approximating the algorithm

The matrix Π−1H(δ) can be written as

Π−1H =
P exp(−iδ) + Π−1PTΠ exp(iδ)

2
. (14)

The solutions of Π−1H(δ)x = λx are thus a combination
of the eigenvectors of P and of Π−1PTΠ, modulated by
δ. As an approximation, we can solve just the eigenvalue
problem Px = λx. Alternatively, another approximation
is had by solving the eigenvalue problem PT y = λy and
performing the variable transformation x = Π−1y. These
approximations can also be interpreted as assuming that P
is normal, in which case either one provides the exact solu-
tion (Section 3.1).

We will demonstrate experimentally that (1) approximat-
ing the graph by clustering high-confidence nodes does not

2069

reduce the accuracy significantly and that (2) our exact algo-
rithm gives significantly better results than using the eigen-
vectors of P or PT .

3.7. Discretization

Given a solution to our relaxed problem, we must find
a discrete set of vertices and a discrete ordering on those
vertices. To do so, we follow the procedure of [11] and dis-
cretize the relaxed solutions by finding a cycle around the
origin of maximum area. However, we make one change to
this algorithm. In [11], Zhu finds the maximum-area cycle
by using the shortest path algorithm. The best cycle is actu-
ally the longest path, but since the longest path problem is
NP-complete, Zhu transforms the longest path problem into
a shortest path problem by subtracting the graph weights
from a large constant, giving an approximate longest path.
We make the observation that the graph induced by the re-
laxed solution can be constrained such that the links go
around the origin in only one direction, in which case the
graph can be split at some angle and then forms a directed,
acyclic graph (DAG). The longest path through a DAG can
be found in polynomial time by negating the weights and
using the Bellman-Ford shortest-path algorithm.

4. Experiments

4.1. Algorithms

We compare the algorithm which finds the exact critical
points of Equation 12 by searching over all δ to the algo-
rithms that give approximations by finding the right eigen-
vectors of P and the left eigenvectors of P scaled by Π−1.
The algorithms we compare are ‘H(F)’, ‘H(P)’, ‘P ’, and
‘PT ’, where the name designates which matrix is used in
the eigenvector computation. Specifically, ‘H(F)’ is the al-
gorithm which finds the exact critical points of Equation 12
using the circulation matrix F = ΠP ; ‘H(P)’ is the exact
algorithm using P rather than F ; ‘P ’ is the approximation
given by the right eigenvectors of P (Section 3.5); ‘PT ’ is
the approximation given by the left eigenvectors of P and
scaled by Π−1 (Section 3.6). Note that ‘P ’ is the algorithm
given by Zhu [11].

We also compare between using the full graph and clus-
tering the nodes to n = 500 and n = 1000 clusters and
running the algorithms on this reduced graph (Section 3.5).
Finally, we compare to the probability of boundary (Pb) al-
gorithm [7] as a baseline. Since Pb is the input to our al-
gorithm, this comparison gives an indication of whether we
are identifying the contours of Pb that are most salient.

We show that reducing the graph size to n = 1000 or 500
has little effect on the quality of the results but significantly
reducing the running time, while our exact algorithm per-
forms significantly better than the approximate algorithms.

4.2. Berkeley Segmentation Dataset

4.2.1 Evaluation

We use two different measures to evaluate the algorithms on
the Berkeley Segmentation Dataset [7]. First, we compare
the precision-recall (PR) curves from the Berkeley Segmen-
tation dataset. Because different algorithms may yield dif-
ferent numbers of contours, we generate PR curves using
the top 10 and top 20 contours from each algorithm that
were found from the top 30 eigenvectors, as ranked by our
cost function x∗H(δ)x

x∗Πx . We also prune contours that over-
lap a better one by more than 25%. For each contour, the
average of the Pb along the contour is used as input to the
Berkeley benchmark, as was done in [4].

As noted in [4], the Berkeley benchmark is not well-
suited for contour algorithms because it treats each pixel
independently, and so we also compare the algorithms using
the average value of the cost function x∗H(δ)x

x∗Πx with respect
to the full graph, for each algorithm and graph size. Under
this measure, the best possible value is obtained by the true,
discrete local maxima of Equation 11. This is therefore a
measurement of how close each algorithm gets to finding
the true local optima, relative to each other. This measure is
also independent of our application to images since it mea-
sures with respect to the cost function without translating
back to the image domain.

4.2.2 Results

The effect of using a reduced-size graph is shown in Figure
5. When using both the top 10 and top 20 contours, there
is very little if any decrease in the quality of the results by
using a reduced-size graph. This is also seen in average cost
function value for the contours (Table 1). Thus, we can use
a smaller graph to speed up the algorithm without reducing
the quality of the results.

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

Full graph
n = 1000
n = 500

(a) Top 10 contours

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

Full graph
n = 1000
n = 500

(b) Top 20 contours

Figure 5: Effect of using a reduced-size matrix on the re-
sults of the exact algorithm H(F) for the Berkeley Seg-
mentation dataset.

A comparison between algorithms is shown in Figure 7.
Using a graph of size n = 500, the precision values are

2070

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

H(F) top 10
H(F) top 20
Pb

Figure 6: Comparison of our algorithm to Pb [7] algorithm
on the Berkeley Segmentation dataset. Our algorithm out-
performs Pb in the low-recall range

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

H(F)
H(P)
P
PT

(a) n = 500, top 10 contours

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

H(F)
H(P)
P
PT

(b) n = 500, top 20 contours

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

H(F)
H(P)
P
PT

(c) n = 1000, top 10 contours

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

H(F)
H(P)
P
PT

(d) n = 1000, top 20 contours

Figure 7: Comparison of algorithms for the Berkeley Seg-
mentation dataset.

very similar for low recall, but for higher recall the algo-
rithms ‘H(F)’ and ‘H(P)’ have better precision. Because
all algorithms are producing the same number of contours,
this indicates that ‘H(F)’ and ‘H(P)’ are producing longer
contours, which is a better result. This can also be seen
in the cost function values in Table 1, where ‘H(F)’ and
‘H(P)’ outperform ‘P ’ and ‘PT ’.

A similar result holds for the graph of size n = 1000,
except that in this case the algorithm ‘H(F)’ significantly
outperforms ‘H(P)’, which can also be seen in Table 1.

Results on some of the Berkeley Segmentation dataset
are given in Figure 9. Figures 9c and 9d show that ‘H(F)’
finds significantly longer contours than either ‘P ’ or ‘PT ’.

Figure 6 shows a comparison between our algorithm and
Pb [7]. Since our algorithm begins with Pb as an input, it
will converge to Pb as more contours are used. Our algo-
rithm outperforms Pb in the low-recall range and so is able
to pick out the best salient contours in an image.

Graph Algorithm Top 10 contours Top 20 contours

n = H(F) 0.8312 0.7008
500 P 0.6047 0.5003

PT 0.7033 0.5098
H(P) 0.8246 0.6896

n = H(F) 0.8292 0.7403
1000 P 0.4569 0.4277

PT 0.6470 0.5460
H(P) 0.7887 0.6743

Full H(F) 0.8411 0.7452
graph P 0.6833 0.4970

PT 0.7391 0.6037

Table 1: Average value of x∗H(δ)x
x∗Πx with respect to the full

graph, for each variation of our algorithm.

References
[1] T. Alter and R. Basri. Extracting salient curves from images:

An analysis of the saliency network. International Journal
of Computer Vision (ICCV), 27(1):51–69, 1998. 2065

[2] F. Chung. Laplacians and the Cheeger inequality for directed
graphs. Annals of Combinatorics, 9(1):1–19, 2005. 2066,
2067

[3] I. Cox, J. Rehg, and S. Hingorani. A Bayesian multiple-
hypothesis approach to edge grouping and contour segmen-
tation. International Journal of Computer Vision (ICCV),
11(1):5–24, 1993. 2065

[4] P. Felzenszwalb and D. McAllester. A min-cover approach
for finding salient curves. In IEEE Conference on Computer
Vision and Pattern Recognition Workshop (CVPRW), page
185. IEEE, 2006. 2070

[5] D. Gleich. Hierarchical Directed Spectral Graph Partition-
ing. 2066

[6] P. Lax. Linear algebra and its applications. Wiley-
Interscience, 2007. 2069

[7] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In International Conference on Computer Vi-
sion, volume 2, pages 416–423, July 2001. 2065, 2070, 2071

[8] M. Meila and J. Shi. A random walks view of spectral seg-
mentation. 2001. 2067

[9] K. Prabhakar, S. Oh, P. Wang, G. Abowd, and J. Rehg. Tem-
poral causality for the analysis of visual events. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1967–1974. IEEE, 2010. 2065

[10] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905, 2002. 2066, 2069

[11] Q. Zhu, G. Song, and J. Shi. Untangling cycles for contour
grouping. In International Conference on Computer Vision
(ICCV), pages 1–8. IEEE, 2007. 2065, 2066, 2067, 2068,
2070

2071

ℜ
ℑ

ℜ

ℑ

ℜ

ℑ

ℜ

ℑ

Figure 8: The top 20 contours were found for an image and the contours were traced on the eigenvector for each algorithm
that was “most representative”, calculated as the one that maximized mean contour cut score of the un-discretized contours
as plotted in each embedding. Left to right: Image with contours overlaid (color indicates the ordering), most representative
eigenvector for ‘H(F)’, ‘H(P)’, ‘P ’, and ‘PT ’. Best viewed in color.

(a) Image with extracted contours
(white). (b) All thresholded Pb edges

(black) and contours (white).
(c)

Difference between ‘H(F)’
and ‘P ’. Contours only
‘H(F)’ found are white and
contours only ‘P ’ found are
black.

(d)

Difference between ‘H(F)’
and ‘PT ’. Contours only
‘H(F)’ found are white and
contours only ‘PT ’ found are
black.

Figure 9: Results of ‘H(F)’ on various images using an aggregated graph with n = 1000 vertices. The top 20 contours,
as ranked by our cost function (Equation 10), are plotted. Observe that our algorithm (’H(F)’) finds significantly longer
contours than Zhu’s algorithm (’P ’).

2072

