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Abstract

Within the pastdecade, major advanceshaveoccurred
in facerecognition. With few exceptions,however, mostre-
search hasbeenlimited to training and testingon frontal
views. Little is known about the extent to which face
pose, illumination, expression,occlusion, and individual
differences,such asthoseassociatedwith gender, influence
recognition accuracy. We systematicallyvaried thesefac-
tors to testtheperformanceof two leading algorithms,one
templatebasedand the other feature based. Image data
consistedof over 21000images from 3 publicly available
databases: CMU PIE, Cohn-Kanade, and AR databases.
In general, bothalgorithmswere robustto variation in illu-
mination andexpression.Recognition accuracy washighly
sensitiveto variation in pose. For frontal training images,
performancewasattenuatedbeginningat about 15degrees.
Beyond about 30 degrees,performancebecameunaccept-
able. For non-frontal training images, fall off was more
severe. Smallbut consistentdifferenceswere found for in-
dividual differencesin subjects.Thesefindingssuggestdi-
rectionfor future research, including designof experiments
anddatacollection.

1. Intr oduction

Is facerecognition a solvedproblem? Over the last 30
years facerecognition hasbecome oneof the beststudied
patternrecognition problemswith anearlyintractable num-
ber of publications. Many of the algorithms have demon-
stratedexcellent recognition results,often with error rates
of lessthan 10 percent. Thesesuccesseshave led to the
development of a number of commercial facerecognition
systems.Most of the current facerecognition algorithms
canbe categorized into two classes,imagetemplatebased

or geometryfeature-based.Thetemplatebasedmethods[1]
compute the correlation betweena faceand one or more
model templatesto estimatethe face identity. Statistical
tools such as Support Vector Machines (SVM) [30, 21],
LinearDiscriminant Analysis(LDA) [2], PrincipalCompo-
nentAnalysis(PCA) [27, 29, 11], KernelMethods[25, 17],
andNeural Networks[24, 7, 12, 16] havebeenusedto con-
structasuitablesetof facetemplates.While thesetemplates
canbe viewedasfeatures,they mostly capture global fea-
turesof the faceimages.Facialocclusionis oftendifficult
to handlein theseapproaches.

Thegeometryfeature-basedmethodsanalyzeexplicit lo-
calfacialfeatures,andtheirgeometricrelationships.Cootes
et al. have presentedanactive shapemodelin [15] extend-
ing the approachby Yuille [34].Wiskott et al. developed
anelasticBunchgraphmatchingalgorithm for facerecog-
nition in [33]. Penev et. al [22] developedPCA into Lo-
cal FeatureAnalysis (LFA). This technique is thebasisfor
oneof themostsuccessfulcommercial facerecognitionsys-
tems,FaceIt.

Most facerecognition algorithms focuson frontal facial
views. However, posechangescanoftenleadto largenon-
linear variation in facial appearancedue to self-occlusion
andself-shading. To addressthis issue,Moghaddamand
Pentland[20] presenteda BayesianapproachusingPCA as
a probability densityestimationtool. Li et al. [17] have
developed a view-basedpiece-wiseSVM model for face
recognition. In thefeaturebasedapproach,Cootesetal. [5]
proposeda 3D active appearancemodelto explicitly com-
pute the faceposevariation. Vetter et at. [32, 31] learn
a 3D geometry-appearancemodel for faceregistrationand
matching. However, todaythe exact trade-offs andlimita-
tion of thesealgorithmsarerelatively unknown.

To evaluatetheperformanceof thesealgorithms,Phillips
et. al. haveconductedtheFERETfacealgorithmtests[23],
basedon theFERETdatabasewhich now contains 14,126



imagesfrom 1,199individuals. More recently the Facial
Recognition Vendor Test[3] evaluatedcommercial systems
usingtheFERETandHumanID databases.Thetestresults
haverevealed thatimportantprogresshasbeenmadein face
recognition,andmany aspectsof thefacerecognition prob-
lemsarenow well understood.However, therestill remains
a gapbetweenthesetestingresultsandpractical userex-
periencesof commercial systems.While this gapcan,and
will, benarrowedthroughtheimprovementsof practical de-
tailssuchassensorresolutionandview selection,wewould
like to understandclearly the fundamentalcapabilitiesand
limitationsof currentfacerecognitionsystems.

In this paper, we will conduct a seriesof testsusingtwo
stateof art facerecognition systemson threenewly con-
structedfacedatabasesto evaluatethe effect of facepose,
illumination, facial expression,occlusionandsubjectgen-
deron facerecognition performance.

Thepaperis organizedasfollows. Wedescribethethree
databaseusedin our evaluationin Section2. In Section
3 we introducethe two algorithms we usedfor our eval-
uations. The experimentalproceduresandresultsarepre-
sentedin Section4, andwe concludein Section5.

2. Description of Databases

2.1. Overview

Table1 givesan overview of the databasesusedin our
evaluation.

CMU PIE Cohn-Kanade AR DB
Subjects 68 105 116
Poses 13 1 1
Illuminations 43 3 3
Expressions 3 6 3
Occlusion 0 0 2
Sessions 1 1 2

Table 1. Overview over databases.

2.2. CMU Pose Illumination Expression (PIE)
database

TheCMU PIEdatabasecontainsatotalof 41,368images
takenfrom 68 individuals[26]. Thesubjectswereimaged
in theCMU 3D Room[14] usinga setof 13 synchronized
high-quality color camerasand 21 flashes. The resulting
imagesare 640x480 in size, with 24-bit color resolution.
Thecamerasandflashesaredistributedin a hemispherein
front of thesubjectasshown in Figure 1.

A seriesof imagesof asubjectacrossthedifferentposes
is shown in Figure2. Eachsubjectwasrecordedunder 4
conditions:

1. expression: thesubjectswereaskedtodisplayaneutral
face,to smile,andto closetheireyesin order to simu-
lateablink. Theimagesof all 13camerasareavailable
in thedatabase.

2. illumination 1: 21 flashesare individually turnedon
in a rapid sequence. In the first setting the images
werecaptured with the room lights on. Eachcamera
recorded 24 images,2 with no flashes,21 with one
flashfiring andthenafinal imagewith noflashes.Only
theoutput of threecameras (frontal, three-quarterand
profileview) waskept.

3. illumination 2: the procedurefor the illumination 1
wasrepeatedwith the room lights off. Theoutputof
all 13 cameraswasretainedin thedatabase.Combin-
ing thetwo illumination settings,atotalof 43different
illumination conditionswererecorded.

4. talking: subjectscounted startingat 1. 2 seconds(60
frames)of themtalkingwererecordedusing3 cameras
asabove(again frontal, three-quarterandprofile view).

Figure3 shows examplesfor illumination conditions 1 and
2.

2.3. Cohn-Kanade AU-Coded Facial Expression
Database

This is apublicly availabledatabasefrom CarnegieMel-
lon University [13]. It containsimagesequencesof facial
expressionfrom menandwomenof varying ethnicback-
grounds.Thecameraorientation is frontal. Smallheadmo-
tion is present.Imagesizeis 640by 480pixels with 8-bit
gray scaleresolution. There are threevariations in light-
ing: ambient lighting, single-high-intensity lamp,anddual
high-intensity lampswith reflective umbrellas. Facial ex-
pressionsarecoded usingtheFacialAction CodingSystem
[8] andalsoassignedemotion-specifiedlabels.For thecur-
rent study, we selected714 imageimagesequencesfrom
105 subjects. Emotion expressionsincluded happy, sur-
prise,anger, disgust,fear, andsadness.Examples for the
differentexpressions areshown in Figure4.

2.4. AR FaceDatabase

Thepublicly availableAR databasewascollectedat the
Computer Vision Centerin Barcelona[19]. It containsim-
agesof 116 individuals (63 malesand 53 females). The
imagesare768x576pixelsin sizewith 24-bit color resolu-
tion. Thesubjectswererecordedtwiceata2-weekinterval.
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Figure 1. PIEdatabasecamerapositions.(a)13synchro-
nizedvideocamerascapturefaceimagesfrom multiple an-
gles,21 controlledflashunitsareevenly distributedaround
thecameras.(b) A plot of theazimuth( � ) andaltitude( � )
anglesof the cameras,alongwith the cameraID number.
9 of the 13 camerassamplea half circle at roughly head
heightrangingfrom afull left to a full right profileview(+/-
60 degrees);2 cameraswereplacedabove andbelow the
centralcamera;and2 cameraswerepositionedin the cor-
nersof theroom.

During eachsession13 conditions with varying facial ex-
pressions,illuminationandocclusionwerecaptured. Figure
5 showsanexample for eachcondition.

3. FaceRecognitionAlgorithms

3.1. MIT , Bayesian Eigenface

Moghaddamet. al. generalize thePrincipalComponent
Analysis (PCA) approachof Sirovich andKirby [28] and
Turk andPentland[29] by examining the probability dis-
tribution of intra-personal variations in appearanceof the
sameindividualandextra-personal variationsin appearance
dueto differencein identity. Thisalgorithm performedcon-
sistentlynearthetop in the1996FERRETtest[23].

Given two faceimages,�����	��
 , let ��
���������
 be the
imageintensitydifferencebetweenthem,we would like to

c25 c25

c22 c02 c37 c05 c27

c07

Figure 2. Posevariationin thePIEdatabase.8 of 13cam-
eraviews areshown here. The remaining5 cameraposes
aresymmetricalto theright sideof camerac27.

Figure 3. Illumination variationin thePIEdatabase.The
imagesin thefirst row show facesrecordedwith roomlights
on, theimagesin thesecondrow show facescapturedwith
only flashillumination.

estimatetheposteriorprobability of �������	� ��� , where ��� is
theintra-personalvariation of subject� . According to Bayes
rule,we canrewrite it as:

����� � � ��� 
 �����!� � � �"����� � �
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where�-+ is theextra-personal variation of all thesubjects.
To estimatethe probability densitydistributions �����!� ���$�
and �����!� �-+.� , PCA is usedto derived a low (M) dimen-
sion approximation of the measured feature space � /021
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(2)

where _ � � P � aretheeigenvectorsandeigenvaluesin theM
dimensional principal component space,and `<����� is the
residualerror.

The algorithm finds the subject class � which maxi-
mizesthe posterior ����� � � ��� . Unlike FaceIt’s algorithm,



Figure 4. Cohn-Kanade AU-CodedFacial Expression
database.Examplesof emotion-specified expressionsfrom
imagesequences.

this is a mostly templatebasedclassificationalgorithm, al-
though somelocal featuresareimplicitly encoded through
the“Eigen” intra-personalandextra-personalimages.

3.2. Visionics,FaceIt

FaceIt’s recognition module is basedon Local Feature
Analysis(LFA) [22]. This technique addressestwo major
problemsof Principal ComponentAnalysis. The applica-
tion of PCA to a setof imagesyields a global representa-
tion of the imagefeaturesthat is not robust to variability
dueto localizedchangesin theinput [10]. Furthermorethe
PCA representationis nontopographic,sonearbyvaluesin
the featurerepresentationdo not necessarilycorrespondto
nearby valuesin theinput. LFA overcomestheseproblems
by using localized imagefeaturesin form of multi-scale
filters. The featureimagesare then encoded using PCA
to obtaina compact description. According to Visionics,
FaceItis robustagainstvariations in lighting, skin tone,eye
glasses,facialexpressionandhair style. They furthermore
claim to be able to handle posevariations of up to 35 de-
grees in all directions. We systematicallyevaluatedthese
claims.

4. Evaluation

Following Phillips et. al. [23] we distinguish between
gallery andprobeimages.Thegallerycontains theimages
usedduring training of the algorithm. The algorithms are
testedwith theimagesin theprobesets.All resultsreported
herearebasedon non-overlappinggallery andprobesets
(with theexceptionof thePIEposetest).We usetheclosed
universe model for evaluating the performance,meaning
thatevery individual in theprobe setis alsopresentin the
gallery. Thealgorithmswerenotgivenany furtherinforma-
tion, sowe only evaluatethe facerecognition, not the face

01
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08 09 10

11 12 13

Figure 5. AR database. The conditions are: (1) neu-
tral, (2) smile, (3) anger, (4) scream,(5) left light on, (6)
right light on, (7) both lights on, (8) sun glasses,(9) sun
glasses/leftlight (10)sunglasses/rightlight, (11)scarf,(12)
scarf/leftlight, (13) scarf/rightlight

verification performance.

4.1. Face localization and registration

Facerecognition is a two stepprocessconsistingof face
detectionandrecognition.First,thefacehastobelocatedin
theimageandregisteredagainst aninternalmodel. There-
sult of this stageis a normalized representationof theface,
which therecognition algorithm canbeappliedto. In order
to ensurethevalidity of ourfindingsin termsof facerecog-
nition accuracy, we provided both algorithms with correct
locations of the left andright eyes. This is done by apply-
ing FaceIt’s facefinding module with a subsequentmanual
verification of the results. If the initial facepositionwas
incorrect, the locationof the left andright eye wasmarked
manually andthe facefinding module is rerun on the im-
age.Thefacedetectionmodule becamemore likely to fail
asdeparturefrom thefrontalview increased.

4.2. Pose

Using the CMU PIE databasewe arein the unique po-
sition to evaluatetheperformanceof facerecognition algo-
rithms with respectto posevariations in great detail. We
exhaustively sampledthe posespaceby using eachview



in turn asgallery with the remaining views asprobes. As
thereis only a singleimagepersubjectandcamera view in
the database, the gallery imagesareincluded in the probe
set. Table2 shows thecompleteposeconfusionmatrix for
FaceIt.Of particularinterestis thequestionhow far theal-
gorithm cangeneralizefrom givengalleryviews.

Two thingsareworth noting. First, FaceIthasa reason-
ablegeneralizability for frontal gallery images:therecogni-
tion ratedropsto the70%-80%rangefor 45degreeof head
rotation (corresponds to camerapositions 11and37 in Fig-
ure 1 ). Figure6 shows the recognition accuraciesof the
differentcameraviews for a mugshot gallery view.
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Figure 6. Recognition accuraciesof all camerasfor the
mugshot galleryimage.Therecognitionratesareplottedon
theposepositionsshown in figure1(b). Thedarker color in
the lower portion of thegraphindicateshigherrecognition
rate.Thesquarebox marksthegalleryview.

Second,for most non-frontal views (outsideof the 40
degreerange), facegeneralizability goesdown drastically,
even for very closeby views. This canbe seenin Figure
7. Heretherecognition ratesareshown for the two profile
viewsasgalleryimages.Thefull setof performancegraphs
for all 13gallery views is shown in appendix A.

We thenaskedthequestion, if we cangainmore by in-
cluding multiple faceposesin the gallery set? Intuitively,
given multiplefaceposes,with correspondencebetweenthe
facial features,onecanhave a betterchance of predicting
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Figure 7. Recognitionaccuracies of all camerasfor the
two profile posesasgallery images(cameras34 and22 in
1b).



a
-66 -47 -46 -32 -17 0 0 0 16 31 44 44 62b 3 13 2 2 2 15 2 1.9 2 2 2 13 3

ProbePose c34 c31 c14 c11 c29 c09 c27 c07 c05 c37 c25 c02 c22
Gallery Pose

c34 1.00 0.03 0.01 0.00 0.00 0.03 0.04 0.00 0.01 0.03 0.01 0.00 0.01
c31 0.01 1.00 0.12 0.16 0.15 0.09 0.04 0.06 0.04 0.03 0.06 0.00 0.01
c14 0.04 0.16 1.00 0.28 0.26 0.16 0.19 0.10 0.16 0.04 0.03 0.03 0.01
c11 0.00 0.15 0.29 1.00 0.78 0.63 0.73 0.50 0.57 0.40 0.09 0.01 0.03
c29 0.00 0.13 0.22 0.87 1.00 0.75 0.91 0.73 0.68 0.44 0.03 0.01 0.03
c09 0.03 0.01 0.09 0.68 0.79 1.00 0.95 0.62 0.87 0.57 0.09 0.01 0.01
c27 0.03 0.07 0.13 0.75 0.93 0.94 1.00 0.93 0.93 0.62 0.06 0.03 0.03
c07 0.01 0.07 0.12 0.38 0.70 0.57 0.87 1.00 0.73 0.35 0.03 0.03 0.00
c05 0.01 0.03 0.13 0.54 0.65 0.75 0.91 0.75 1.00 0.66 0.09 0.01 0.03
c37 0.00 0.03 0.04 0.37 0.35 0.43 0.53 0.23 0.60 1.00 0.10 0.04 0.00
c25 0.00 0.01 0.01 0.06 0.04 0.07 0.04 0.03 0.06 0.07 0.98 0.04 0.04
c02 0.00 0.01 0.03 0.03 0.01 0.01 0.01 0.04 0.01 0.01 0.04 1.00 0.03
c22 0.00 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03 0.04 0.03 0.00 1.00

Table 2. Confusiontablefor posevariation.Eachrow of theconfusiontableshows therecognitionrateoneachof theprobeposes
givena particulargallerypose.Thecamerapose,indicatedby its azimuth(� ) andaltitude(� ) anglewasshown in Figure1.

novel faceposes.This testis carriedout by takingtwo sets
of faceposes,cd7d7;�eIdf\�hgif\j , and c�8ikl�eIdf\�eI�mnj asgalleryand
testonall otherposes.Theresultsarepresentedin Table3.

ProbePose 02 05 07 09 11 14 22 25 27 29 31 34 37
Gallery Pose

11-27-37 0.01 0.99 0.91 0.93 1.0 0.35 0.01 0.1 1.0 0.91 0.19 0.0 1.0
05-27-29 0.01 1.0 0.90 0.91 0.88 0.24 0.01 0.1 1.0 1.0 0.12 0.01 0.66

Table 3. Posevariation.Recognition ratesfor FaceItwith
multiple posesin thegalleryset.

An analysisof the results,shown in Figure8, indicates
that with this algorithm, no additional gain is achieved
throughmultiple facegallery poses.This suggeststhat3D
facerecognition approachescouldhave an advantageover
naive integrationof multiple faceposes,suchasin thepro-
posed2DstatisticalSVM or relatednon-linearKernelmeth-
ods.

Weconductedthesamesetof experimentsusingtheMIT
algorithm. The resultsaremuchworsethanFaceIt’s even
with manual identificationof theeyes.We suspectthatthis
might bedueto theextremesensitivity of theMIT algorithm
to faceregistrationerrors.

4.3. Illumination

For this test, the PIE andAR databasesare used. We
foundthatbothalgorithmsperformedsignificantlybetteron
theillumination images thanunderthevarious posecondi-
tions. Table4 shows the recognition accuraciesof FaceIt
andtheMIT algorithm on bothdatabases.As described in
section2.2thePIE databasecontainstwo illuminationsets.

Theimages in setillumination 1 weretakenwith theroom
lights on. The mugshot gallery imagesdid not have flash
illumination. For the illumination 2 setof imagestheroom
light wasswitchedoff. Theillumination for thegallery im-
ageswasprovided by a flashdirectly oppositeof the sub-
ject’s face. In eachcasetheprobe setwasmadeup by the
remaining flashimages(21and20imagesrespectively). As
canbe expected, the algorithms perform betterin the first
test.

Illumination
PIE 1 PIE2 AR 05 AR 06 AR 07

FaceIt 0.97 0.91 0.95 0.93 0.86
MIT 0.94 0.72 0.77 0.74 0.72

Table 4. Illumination results. PIE 1 and 2 refer to
the two illumination conditionsdescribedin section2.2.o
AR05,AR06,AR07p arethe

o
left,right,bothp light oncon-

ditionsin theAR databaseasshown in Figure5

The resultson the PIE databaseareconsistentwith the
outcomeof theexperimentson theAR database. Herethe
images5 through7 dealwith differentillumination condi-
tions,varying the lighting from the left- andright sidesto
bothlights on.

While theseresultsleadoneto concludethatfacerecog-
nitionunderilluminationisasolvedproblem,wewouldlike
to caution that the illumination change could still causea
major problem when it is coupled otherchanges (expres-
sion,pose,etc.).
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Figure 8. Multiple posesgallery vs. multiple singleposegallery. Subplotsa1 anda2 show the recognition ratewith gallery
pose11. With a singlegallery image,the algorithmis ableto generalizeto nearbyposes.Subplotsb

o
1,2p andc

o
1,2p show the

recognition ratesfor poses27 and37. Subplotsd
o
1,2p show the recognition rateswith gallery poseof

o
11,27,37p . Onecansee

d
o
1,2p is the sameas taking the maximumvaluesin a-c

o
1,2p . In this caseno additionalgain is achieved by using the joint seto

11,27,37p asthegalleryposes.



4.4. Expression

Facesundergo large deformationsunderfacial expres-
sions.Humanscaneasilyhandlethis variation, but we ex-
pectedthealgorithmsto haveproblemswith theexpression
databases.To our surpriseFaceItandMIT performedvery
well ontheCohn-KanadeandtheAR database.In eachtest
weusedtheneutralexpressionasgalleryimageandprobed
thealgorithm with thepeakexpression.

Expression
Cohn-Kanade AR 02 AR 03 AR 04

FaceIt 0.97 0.96 0.93 0.78
MIT 0.94 0.72 0.67 0.41

Table 5. Expressionresults. AR 02, AR 03 andAR 04
referto theexpressionchangesin theAR databaseasshown
in figure5. Both algorithmsperformreasonably well under
facialexpression, however the“scream”expression, AR 04,
produceslargerecognition errors.

Table5 shows theresultsof bothalgorithmson the two
databases.Thenotable exception is thescream(AR04) set
of theAR database.

For most facial expressions,the facial deformation is
centered around the lower part of the face. This might
leave sufficient invariant information in the upperfacefor
recognition, which resultsin a high recognition rate. The
expression“scream”haseffectson both theupper andthe
lower faceappearance,which leadsto a significantfall off
in the recognition rate. This indicatesthat 1) facerecog-
nition under extreme facialexpressionstill remainsanun-
solved problem, and2) temporal informationcanprovide
significant additional informationin facerecognitionunder
expression.

4.5. Occlusion

For theocclusion testswe look at imageswherepartsof
thefaceareinvisible for thecamera.TheAR databasepro-
videstwo scenarios:subjectswearingsunglassesandsub-
jectswearinga scarfaround the lower portion of the face.
The recognition ratesfor the sunglassimagesareaccord-
ing to expectations.As Table6 shows, FaceItis unable to
handle this variation (AR08). The result further deterio-
rateswhentheleft or right light is switchedon (AR09 and
AR10).Thisresultis readilyreplicatedontheimagesof the
secondsession.

This testreveals thatFaceItis morevulnerableto upper
faceocclusionthan the MIT algorithm. Facial occlusion,
particularly upper faceocclusion,remainsa difficult prob-
lemyet to besolved. Interestingopenquestionsare1) what

Occlusion
AR 08 AR 09 AR 10 AR 11 AR 12 AR13

FaceIt 0.10 0.08 0.06 0.81 0.73 0.71
MIT 0.34 0.35 0.28 0.46 0.43 0.40

Table 6. Occlusionresults.AR08, AR09, AR10 refer to
the upperfacial occlusions,andAR11, AR12, AR13 refer
to the lower facialocclusions asshown in figure 5. Upper
facialocclusioncausesa majordropin recognition rates.

arethefundamentallimits of any recognition systemunder
various occlusions, and2) to what extend canotheraddi-
tional facial information,suchasmotion, provide the nec-
essaryhelpfor facerecognitionunderocclusion.

4.6. Gender

Male andfemalefacesdiffer in both local featuresand
in shape[4]. Men’s faceson average have thicker eye-
brows andgreatertexture in thebeardregion. In women’s
faces,the distancebetweenthe eyesandbrows is greater,
the protuberanceof the nosesmaller, and the chin nar-
rower than in men [4]. Peoplereadily distinguishmale
from femalefacesusing theseandotherdifferences(e.g.,
hair style),andconnectionist modeling hasyieldedsimilar
results[6, 18]. Little is known, however, about the sen-
sitivity of faceidentificationalgorithms to differencesbe-
tweenmen’s andwomen’s faces.The relative proportions
of menandwomenin trainingsamplesis seldomreported,
andidentification resultstypically fail to reportwhether al-
gorithmsaremoreor lessaccuratefor onesex or theother.
Otherfactors thatmayinfluenceidentification, suchasdif-
ferences in face shapebetweenindividuals of European,
Asian,andAfrican ancestry[4, 9], have similarly beenig-
nored in pastresearch.

We evaluatedthe influence of genderon facerecogni-
tion algorithmsontheAR databasedueto its balancedratio
betweenthefemaleandmalesubjects.Figure9 shows the
recognition rateachievedby FaceItacrossthe13variations
including illumination, occlusion, andexpression.

The resultsreveal a surprising trend: betterrecognition
ratesareconsistentlyachieved for femalesubjects.Aver-
agedacrossthe conditions (excluding the testsAR08-10
whereFaceIt breaks down) the recognition rate for male
subjectsis 83.4%,while therecognition ratefor femalesub-
jectsis 91.66%. It is not clearwhathascausedthis effect.
To further validate this result, a much larger databaseis
needed.

If this result is further substantiated,it opens up many
interestingquestionson facerecognition. In particularit
raisesthequestions:1)whatmakesonefaceeasierto recog-



nizethananother, and2) aretherefaceclasseswith similar
recognizability.

01 02 03 04 05 06 07 08 09 10 11 12 13
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Figure 9. ARDB resultsmalevs. female. The dashed
line indicatesthe recognition ratefor malesubjectsin the
AR databaseshown in figure5.

5. Discussion

In natural environments, pose,illumination, expression,
occlusion and individual difference among people repre-
sentcritical challengesto facerecognition algorithms. The
FERETtests[23] andthe Facial Recognition Vendor Test
2000 [3] provided initial resultson limited variations of
thesefactors.

FaceItandtheMIT algorithmwereoverall thebestper-
formerin thesetests.Weevaluatedbothalgorithmsonmul-
tiple independentdatabasesthat systematicallyvary pose,
illumination, expression,occlusion,andgender. We found:

1. Pose:Posevariation still presentsa challengefor face
recognition. Frontal trainingimageshavebettergener-
alizability to novel views thando non-frontal training
images. For a frontal training view, we canachieve
reasonable recognition ratesof 70-80% for up to 45
degreeheadrotation.In addition, usingmultiple train-
ingviewsdoesnotnecessarilyimprovetherecognition
rate.

2. Illumination: Pureillumination changes on the face
are handled well by current face recognition algo-
rithms.

3. Expression: With the exception of extreme expres-
sionssuchasscream,thealgorithmsarerelatively ro-
bust to facial expression. Deformation of the mouth

andocclusionof theeyesby eye narrowing andclos-
ing present a problemto thealgorithms.

4. Occlusion: The performance of the facerecognition
algorithmsunder occlusionvaries.FaceItis more sen-
sitive to upper faceocclusionthanMIT. FaceItis more
robust to lower faceocclusion.

5. Gender:We foundsurprisingly consistentdifferences
of facerecognition ratesacrossthegender. This result
is basedon testingon the AR databasewhich has70
maleand60 femalesubjects.On average the recog-
nition ratefor femalesis consistentlyabout 5%higher
thanfor males,acrossa range of perturbation. While
the databaseusedin thesetestsis too small to draw
general conclusionsit pointsinto aninterestingdirec-
tion for futureresearchanddatabasecollections.

The current study has several limitations. One, we
did not examine the effect of faceimagesize on al-
gorithm performancein thevariousconditions. Mini-
mum sizethresholds may well differ for variousper-
mutations, which would be important to determine.
Two, the influence of racial or ethnicdifferenceson
algorithm performancecouldnot be examined dueto
the homogeneityof racial andethnicbackgrounds in
thedatabases.While largedatabaseswith ethnicvaria-
tion areavailable,they lack theparametricvariation in
lighting, shape,poseandotherfactorsthatwerethefo-
cusof this investigation.Three,faceschange dramat-
ically with development,but the influence of change
with developmentonalgorithm performancecouldnot
be examined. Fourth, while we were able to exam-
ine the combined effects of somefactors, databases
areneededthatsupport examinationof all ecologically
valid combinations,which may be non-additive. The
resultsof thecurrent studysuggest thatgreateratten-
tion be paid to the multiple sources of variation that
arelikely to affect facerecognition in naturalenviron-
ments.
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A. Appendix

The following figuresshow the recognition ratesfor all
cameraviews in turn asgallery images.They areordered
according to thecameranumbersroughly going from left to
right in Figure1.
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