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Abstract 

 
We present an algorithm for automatic inference of 

human upper body motion. A graph model is proposed 
for inferring human motion, and motion inference is 
posed as a mapping problem between state nodes in 
the graph model and features in image patches. Belief 
propagation is utilized for Bayesian inference in this 
graph. A multiple-frame inference model/algorithm is 
proposed to combine both structural and temporal 
constraints in human motion. We also present a 
method for capturing constraints of human body 
configuration under different view angles. The 
algorithm is applied in a prototype system that can 
automatically label upper body motion from videos, 
without manual initialization of body parts.  

 

1. Introduction 
 

Human motion detection and tracking has many 
applications. For example, motion perception in a 
human-machine interface could enable people to 
communicate with computers using body language or 
gestures. Another application is human activity 
analysis, in which human motion and gestures are 
detected and recognized from surveillance cameras.  

Many research activities have been directed toward 
tracking and recognition of human motion and 
gestures. In this paper, we describe our approach for 
automatic inference of human upper body motion from 
motion energy images and color features.    
 
1.1.  Previous works 
 

While many works have been done on human 
motion tracking (Bregler 1998, Ju 1996), most of the 
algorithms need manual initialization of body parts for 
tracking. For algorithms with self-initialization ability, 
only some of them estimate details of body parts. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
          (a)                                  (b)                               (c) 

Figure 1.  Motion energy images of a gesture with 
motion history accumulated. (a) Input frames. (b) 
Accumulations of motion energy images starting 
from the 1st frame. (c) Same as (b), with motion 
energy pixels of the current frame marked. 

Generally, automatic labeling of body parts is 
based on selected image features and techniques. 
Background subtraction is an effective technique for 
human detection and tracking (Haritaoglu 1998, 
Felzenszwalb 2001), and are widely used in video 
surveillance applications with static cameras.  

The Multi-view approach (Gavrila 1996) makes use 
of 3D information and can resolve some of the 
ambiguities in complex situations, such as occlusions. 
The application of background subtraction and multi-
view algorithms may not always be possible in some 
applications, such as instant human activity analysis in 
single camera videos. 

Body structure approach is proposed recently based 
on component models of human body (Ioffe 2001, 
Felzenszwalb 2001). To label body parts, the 
algorithms search the space of possible human 
configurations, and find the best match with image 



observations. In Mori (2002), shape context matching 
is used to match contours of body parts.  

In this paper, we propose a new framework that can 
infer human upper body motion and label body parts 
without manual initialization. We pose body parts 
labeling as a Bayesian inference problem in a Markov 
network (Jordan 1998, Yedidia 2001). Our motivation 
and method are similar with Freeman (2000), though 
with different applications. Our model is proposed to 
capture constraints of human body configuration under 
different view angles. A multiple-frame Markov 
network model is further proposed for combining both 
temporal and structural constraints in the Markov 
network. We use belief propagation, which performs 
spatial and temporal inference simultaneously, to infer 
body motion in the Markov network. We are using this 
approach to design an intelligent human machine 
interface, where we can assume limited view angles, 
single person, and still background.  
 
1.2. Motion energy images 
 

Motion-energy image (MEI) is a motion feature for 
representing moving regions (Bobick 2001). 
Let ),,( tyxD be a binary image sequence indicating 

regions of motion. ),,( tyxD  can be obtained by image 

differencing followed by a thresholding. In this paper 
we assume 

),,( tyxD =1                              (1) 

represents the pixel at (x, y) in frame t is in motion, 
then the binary motion-energy image ),,( tyxEτ  is 

defined as  
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τ is the temporal duration for computing the MEI.  
Fig. 1 shows an accumulation of MEI of a gesturing 

activity in several frames. The outlined pixels in Fig.1 
(c) are the current slice of motion energy pixels.  

In this paper, we use motion-energy image as the 
motion feature to infer 3D position of body joints. To 
do this, we proposed a Markov network model to 
embed constraints of human body structure. We also 
propose a multiple frame Markov network model to 
take advantage of temporal consistency in human 
motion. 

We divide the task into 2 phases. First, inferring 2D 
positions of body joints in images. Second, recover 3D 
positions of body joints. In the following, we will first 
present our inference model. The method for 
combining motion and color features into the inference 
models is given in section 4. 

The organization of this paper is as follows. In 
section  2,  we  describe a  Markov  network model  for 
human upper body motion inference in a single frame. 
In section 3, we propose a multi-frame model for 
Bayesian inference. Section 4 describes using motion 
and color features to constrain the inference space, and 
gives experimental results. Finally, section 5 concludes 
the paper. 

 
2. Modeling single frame probability 
 

Our goal is to infer positions of body joints based 
on motion energy images. In Bayesian framework, 
given image features x, body configuration h can be 
estimated as: 

)|(maxarg xhPh
h

= ,                          (3) 

)()|()|( hPhxcPxhP = .                       (4) 
Here body configuration h consists of positions of 
body joints, denoted in this paper as ),,( 21 Nsss L . 

 
2.1.  The Markov network model 
 

We propose the Markov network model as shown in 
Fig. 2(a) to solve Eqs. (3) and (4). In this model state 
nodes (the empty circles) represent 2D positions of 
body joints. In the Markov network model each state 
node is connected with a measurement node (the 
filled-in circles), as well as to its neighbors.  

We denote a state at node i as is , and observation 

at the corresponding measurement node as ix . As 

shown in Fig.2 (b), ix corresponds to the body parts 

between joints. We define the image patches 
(observations) corresponding to wrist joint, elbow, and 
shoulder joint, as lower arm, upper arm, and shoulder 
girdle, respectively. The image patches are defined 
based on a cardboard person model (Fig. 2(c)). 
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(d) 
Figure 2. (a)-(b) A Markov network model for upper 
body motion inference. The empty circles are state 
nodes, and filled-in circles are measurement nodes. 
(c) Cardboard person model for evidence computa-
tion. (d) An upper body motion inference result.  
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In this model, ),( jiij ssP  is the probability that two 

body joint positions appear together. )|( ii sxP  is  

computed  by  counting the number of motion energy 
pixels (x, y) in each image patches, i.e., ),,( tyxD =1 

(Eq.(1)). The definition is equivalent to say that the 
more motion energy pixels in the image patches, the 
more likely body joint positions defining the body part 
are right. 

Clearly, )|( ii sxP  computed above does not directly 

correspond to a probability function. We need to 
convert this “energy” measurement to a probabilistic 
measurement. This is done by a transform:  

    )}exp(1/{)|( ECsxP ii −+= ,                   (5) 

where E the number of motion energy pixels in an 
image patch, and C is a normalization coefficient. 

The Markov network model essentially decom-
poses Eqs. (3)-(4) by: 
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where degree of is , )deg( is  is the number of nodes 

connecting with is . 

Eqs. (6)-(8) are solved by inference in the Markov 
network model. In the following, we first propose a 
learning algorithm to estimate parameters of the 
Markov network model, then describe an inference 
algorithm based on belief propagation. 

 
2.2.  Learning the Markov network model 

The Markov network defined above decomposes 
the Bayesian inference problem Eqs. (3)-(4) into local 
states and their corresponding measurements or 
evidences. However, we need to estimate ),( jiij ssP  

before we can do inference in this network. ),( jiij ssP  

represents a priori probability for body joint positions, 
or configuration constraints of human body. 

In this paper, we assume the face position can be 
estimated beforehand using algorithms such as face 
detection. The approximate position of shoulder girdle 
is then estimated based on position of face and pose 
assumptions. Since we are only interested in human 
upper body configuration, we need estimate the 

),( jiij ssP ’s between wrist, elbow, and shoulder joints.  

We model joint probabilities of 2D projection of 
body joints, rather than directly model the constraints 

in 3D. The advantage of this approach is that it 
simplifies the modeling process and avoids recovering 
3D pose at the beginning. The drawback is the 
modeling is view-specific. In our system, we train a 
separate set of ),( jiij ssP for each different view angles. 

We consider only 3 view angles at this stage, namely, 
frontal, turning to the left, and turning to the right. For 
our application of human computer interface, the 3 
view-angle assumption is enough. 

We use a supervised learning method for estimating 
),( jiij ssP between 2D positions of joints i and j. We 

uniformly sample the 2D image space, as shown in 
Fig. 3, and only estimate joint probabilities at the 
sampling positions (intersections of the grid in Fig. 3). 
All the other positions are tied to the nearest sampling 
coordinates.   

 Before the learning process, each sampling 
position ),( ji ss  are given the same probability:  

)*/(0.1),( ssjiij NNssP = ,                    (9) 

where sN is the number of sampling positions. Then 

we run our body part labeling system through video 
sequences. For each estimated pair of body joint 
positions ),( ji ss that is not a valid human body 

configuration, we reduce its probability by  
TssPssP jiijjiij /),(),( = ,                  (10) 

where T is a constant and 1>T . Then ),( jiij ssP  is 

renormalized by: 
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Figure 3. Learning joint probabilities at sampling 
points of a 2D image plane. 

 
3. Modeling multiple-frame probabilities 
 

In everyday life, people use temporal constraints of 
human motion trajectories to help tracking of body 
parts. While people may not be able to find body 
configuration at an instance with enough confidence, 
they can definitely track human body parts after a long 
sequence of human performance.  

In this section, we extend the single frame Markov 
network model of section 2 into a Markov network for 
multiple frames of human motion.  



3.1. Temporal Constraints 
 
The temporal constraints are added to the Markov 

network model by define the joint probability of state 
nodes corresponding to the same body joint in 
consecutive frames, as shown in Fig. 4. Assuming t

is  

is a state of node i in frame t, and 1+t
is  is a state of 

node i in frame t+1, their joint probability is defined as 
follows: 
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which is a Gaussian distribution of 2D distance 
between t

is  and 1+t
is . The covariance parameter σ  is 

determined empirically. 
The joint probability (12) only imposes the 

smoothness of transition between t

is  and 1+t
is  without 

any specific  model.  This  gives  the system  ability  to 
 
 

 

 
 
Figure 4. Adding temporal constraints to the model. 
By connecting the state nodes, states of the same 
body joint in consecutive frames are given a joint 
probability.  
 
deal with a wide range of human motions. With 
temporal constraints, the Bayesian inference algorithm 
is more robust, and can even recover from labeling 
errors in a single frame. 
 
3.2. Belief propagation 

Belief propagation (BP) is an iterative algorithm to 
infer the hidden states (or solving Eqs. (6)-(8)) in a 
Markov network based on message passing. A basic 
iteration is as follows: 
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where ijm is the message that node i sends to node j, 

and ib is the belief, i.e., marginal posterior probability, 

at node i. ib  is obtained by multiplying all incoming 

messages to the node by the local evidence 
(likelihood). α  is a normalization constant. jiN \)(  

means all nodes neighboring node i except j. All 
messages )( iij sm are initialized to 1 before the 

iterations begin.   

Though belief propagation algorithm is exact (i.e., 
guaranteed convergence to the optimal solution) only 
in networks without loops, recent study shows that it 
can also converge in many loopy networks. Our multi-
frame Markov network contains loops. It is therefore 
interesting to see if the BP algorithm can converge to 
optimal solution in this network.  

As described in section 2.2, we defined three 
different view angles (poses). We compute the beliefs 
of possible body configurations for each pose.  Body 
pose and configuration are determined simultaneously 
by selecting the one which has the highest belief given 
the observations.    
 
3.3.  3D body configuration recovery 
 

Recovering 3D configurations based on 2D 
projection of body joint positions is based on the 
algorithm of Taylor (2000). Assume ),( 11 vu  and 

),( 22 vu are projections of the 3D points ),,( 111 ZYX  

and ),,( 222 ZYX on the image plane, under orthographic 

projection we have  
)()( 2121 XXsuu −=− ,                 (15) 

)()( 2121 YYsvv −=− .                   (16) 

and it can be derived that 
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where s is a constant, and l is the length between 
),,( 111 ZYX  and ),,( 222 ZYX . By assumimg a reference 

depth 0Z , and using the depth difference computed in 

(17), we can recover 3D positions of all the body 
joints. For details, refer to Taylor (2000). 

 
4. Experimental results 
 
4.1.  System architecture 

We developed a prototype system that can 
automatically detect and label human upper body 
motion in a natural environment. The algorithm is 
shown in Fig. 5. 

 
 
 
 

 

 
 

Figure 5. Upper body motion inference system. 
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The algorithm proceeds as follows: First, face 
detection is conducted; color and motion features are 
extracted (Section 4.1.1), and candidate positions for 
each body joints are detected based on the image 
features (Section 4.1.2). Then, Bayesian inference is 
conducted in the multi-frame Markov network model. 
We use belief propagation to find the best body 
configuration. At this stage, the estimated body 
configuration is 2D positions of body joints on images. 
We then apply 3D recovery algorithm to recover 3D 
coordinates of body joints (Section 3.3). 

 
4.1.1. Color and motion features. We use 2 different 
features in our system. For motion feature extraction, 
we apply frame difference to obtain motion energy 
images for subsequent processing.  

For color feature extraction, we apply face 
detection algorithm first, and build a skin color model 
from the detected face region.  

 
4.1.2. Detection of candidate states from features. 
Candidate states of body joints are needed in belief 
propagation algorithm. Theoretically, these state can 
be obtained by uniformly sampling the space of 
interest, but the potential number of candidate states 
will make the computational complexity extremely 
high. Here, we use a more practical approach by first 
find candidate positions of body joints using the 
extracted image features. This approach improve the 
speed by sacrificing some accuracy.  

Candidate positions for hands and wrists are 
detected based on the color model obtained from face 
detection. Some results are shown in Fig. 6(b). 
Distracters in background comprise some of the 
candidate positions, but those are expected.  

For elbow and shoulder joints, we use another 
strategy. We first generate approximate positions of 
shoulder joints based on assumption of human pose, 
then we use motion feature to generate candidate 
positions of elbows. Fig. 6(a) shows the method used 
in generating the candidate elbow positions. We 
accumulate motion cues in rectangles with width 
approximate the width of upper arm, rotating around 
assumed shoulder joints. For each rectangle at a 
rotation angle, we cluster motion cues within the 
rectangle, and find the major connected component of 
motion cues. The border of the connect component at 
far end from the shoulder joint is detected as a 
candidate elbow joint position.  After inference in the 
Markov network, we use motion feature to optimize 
positions of shoulders, based on estimated position of 
elbows. Fig. 6(b) gives results of elbow and wrist 
joints detection.  

It is worth noting that the candidate position 
detection step discussed in this section is used for 
speeding up the algorithm, and not required by the 
proposed Markov network model. We can always 
sampling the space to get the candidate states.   

 
 
 
 
 
(a)                                                   (b) 

Figure 6. (a) Detection of elbow joint positions. (b) 
Detected candidate elbow (blue) and wrist/hand 
(red and pink) joint positions overlaid on frame 
images.  

 
4.2. Results 

We tested our algorithm on captured videos with 
people performing meaningful gestures. The videos 
are recorded with 5 people, each 5 to 10 minutes. We 
also tested our system on cooking shows and some 
surveillance videos. 

Belief propagation is straightforward to apply in the 
multi-frame Markov network. In our experiments 
belief propagation algorithm always converges in 
several iterations even though the Markov network 
contains loops.           

Fig.7 shows a motion inference result. The 
estimated 2D joint positions and recovered 3D 
configuration are given in Fig. 7(a) and Fig. 7(b). By 
incorporating temporal constraints, the multi-frame 
model avoids many problems that would be detection 
errors based on single frame algorithm. Fig.7(d) shows 
an example of detection error based on a single frame.  

Fig.7(c) shows the convergence of beliefs of state 
nodes after each BP iteration. In this experiment we 
use 4 state nodes for each frame, and a 7-frames 
window (total of 28 state nodes) to infer body joint 
positions. We show the beliefs for all candidate states 
in 2 state nodes.  

In our experiments, we found error in about 12% of 
the total frames of videos under test.  This does not 
include the cases where the estimation is roughly 
correct but inaccurate. Errors occur mostly in 
occlusion situations (Fig. 8) or more subtle situations, 
such as when two hands are too close together.  

Fig. 8 gives an example of inference error caused 
by occlusion, partly due to the motion energy feature 
we used.  The feature has limited discriminating ability 
in occlusion situations. We are now working on adding 
more features to the system in order to deal with some 
difficult situations.   
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                                       (c)                                                 (d)                         

Figure 7.  (a) Motion inference result. (b) Recovered 
3D stick figures. (c) Convergence of beliefs of 2 
state nodes with 9 and 88 candidate states, 
respectively. Beliefs in 10 BP iterations are shown. 
(d) A single frame optimal estimation which was 
corrected by multi-frame constraints in (a).  

 
 
 
 
 
 

Figure 8.  An error caused by occlusion. 
 

5.  Conclusions 

Human motion inference and body parts labeling is 
a difficult problem. So far no existing feature is confi-
dential enough for inference. We believe to solve the 
problem we have to take advantage of an effective 
statistical inference approach and a combination of 
different features.  

This paper is an attempt in this direction. We 
propose a Markov network model for inference of 
human upper body motion. We utilize belief 
propagation algorithm for inference in this Markov 
network. The multi-frame Bayesian inference algorithm 
using BP give promising results.  

In the future, we will improve the algorithm in the 
following aspects. First, we will compare the results of 
using detected candidate states and uniformly sampled 
candidate states. Second, we will utilize more features 
or better way to use these features, in order to deal 
with some difficult situations. Finally, find a better 
solution to the view-specific problem. 
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