QWIRE Practice:
Formal Verification of Quantum Circuits in Coq

Robert Rand
rrand@seas.upenn.edu

Jennifer Paykin
jpaykin@seas.upenn.edu

Steve Zdancewic
stevez@cis.upenn.edu

University of Pennsylvania

We describe an embedding of the QWIRE quantum circuit language in the Coq proof assistant. This allows programmers to write quantum circuits using high-level abstractions and to prove properties of those circuits using Coq’s theorem proving features. The implementation uses higher-order abstract syntax to represent variable binding and provides a type-checking algorithm for linear wire types, ensuring that quantum circuits are well-formed. We formalize a denotational semantics that interprets QWIRE circuits as superoperators on density matrices, and prove the correctness of some simple quantum programs.

1 Introduction

The last few years have witnessed the emergence of lightweight, scalable, and expressive quantum circuit languages such as Quipper [10] and LIQUi| [22]. These language adopt the QRAM model of quantum computation, which describes how a quantum computer can be controlled by an accompanying classical computer that sends instructions and processes data received by the quantum computer. Quipper and LIQUi| programs classically produce circuits that can be executed on a quantum computer, simulated on a classical computer, or compiled using classical techniques to smaller, faster circuits. Since Quipper and LIQUi| are embedded inside general-purpose classical host languages (Haskell and F#, respectively), they can be used to build useful abstractions on top of quantum circuits, allowing for general purpose quantum programming.

As is the case with classical programs, however, quantum programs in these languages will invariably have bugs. Since quantum circuits are inherently expensive to run (either simulated or on a real quantum computer) and are difficult or impossible to debug at runtime, numerous techniques have been developed to verify properties of quantum programs.

The first step towards guaranteeing bug-free quantum programs is ensuring that every program corresponds to a valid quantum computation, meaning that a simulator or quantum computer running that program will not crash. In many cases this property can be enforced using type systems, such as in the quantum lambda calculus, which uses linear types and guarantees type safety [20]. Along these lines, Proto-Quipper [19] adds linear types to a subset of Quipper, though this approach has not been extended to the full Quipper languages.

Beyond simply ensuring quantum mechanical soundness, we might wish to statically analyze specific programs or families of programs and prove that their semantics matches a formal specification. Doing so requires a formal semantics for programs, such as unit vectors or density matrices. The specification can then be checked using model-theoretic techniques [9], using techniques such as Hoare logic [23], or using formal verification in a proof assistant [3].
Finally, one may wish to verify that two particular programs (or program fragments) have the same semantics. LIQWIRE, in particular, has focused on efficient compilation of quantum circuits; similar projects have explored verified compilation passes in the case of reversible circuits [1].

The QWIRE programming language [14] is a small quantum circuit language embedded in a classical host language, which provides three core features: (1) a platform for high level quantum computing, with the expressiveness of embedded languages like Quipper [10] and LIQWIRE [22]; (2) a linear type system that guarantees that generated circuits are well-formed and respect the laws of quantum mechanics; and (3) a concrete denotational semantics, specified in terms of density matrices, for proving properties and equivalences of quantum circuits.

In this paper we report on an ongoing effort to implement QWIRE in the Coq theorem prover [6] and formalize its denotational semantics, thereby providing a framework to formally verify the correctness of quantum programs and quantum program transformations.1 We include two forms of the language, one using Coq variables and higher-order abstract syntax for ease of programming, and a simpler version without these features, for verification purposes, along with a simple translation from the former to the latter. We then use this bridge to prove properties about higher-order programs using QWIRE’s denotational semantics.

This paper makes the following contributions:

- We implement the QWIRE programming language in the Coq proof assistant, incorporating features such as dependently-typed circuits and proof-carrying code;
- We present a type checking algorithm for the linear type system of QWIRE using a representation of linear contexts based on the Linearity Monad [15];
- We formalize a denotational semantics for QWIRE circuits, interpreting them as superoperators on density matrices [13]; and
- We show how these semantics can be used to verify quantum programs, including a quantum coin flip, a protocol with dynamic lifting, and a simple unitary circuit.

Throughout this paper, we will assume some level of familiarity with both functional programming and proof assistants in the style of Coq or Agda. Readers unfamiliar with either of these concepts should consult the introductory chapter of Software Foundations [17], which introduces the Coq language and theorem prover [6] used here.

2 Introduction to QWIRE programming

We start with some examples of QWIRE circuits implemented in Coq. The following circuit implements a quantum coin flip:2

```coq
Definition coin_flip : Box One Bit.
  box_ () ⇒
  gate_x ← init0 @();
  gate_y ← H @x;
  gate_z ← meas @y;
  output z).
```

1The Coq development for this paper is available at: https://github.com/jpaykin/QWIRE/tree/QPL2017
2Unless otherwise indicated, all QWIRE circuit definitions end in an implicit Defined.
The type \texttt{Box One Bit} is the high-level interface to \texttt{QWire} circuits, representing a “boxed” circuit with no input wires (represented by the unit type \texttt{One}) and a Bit-valued output wire. We use Coq notations and tactics to construct the circuit. The \texttt{box} tactic creates a boxed circuit from a function that takes an input pattern of wires and produces a circuit that uses those wires; \texttt{box} also calls the linear type-checker on the result, to ensure that the circuit is well formed. In this example, the \texttt{coin_flip} circuit has no inputs, so the input pattern to the box is the empty pattern (\texttt{()}).

The body of the circuit is made up of a sequence of gate applications, where \texttt{init0}, \texttt{H}, and \texttt{meas} are all gates. These gates are applied to input patterns, whose types are determined by the gate being applied. In \texttt{coin_flip}, the pattern (\texttt{()}) has type \texttt{One}, \texttt{x} and \texttt{y} have type \texttt{Qubit}, and \texttt{z} has type \texttt{Bit}. The output of each gate is bound in the remainder of the circuit, and the circuit is terminated by an output statement.

\texttt{QWire} ensures that wires in a circuit are treated linearly, meaning that they each wire is used exactly once as input and once as output. For example, the linear type system enforces the no-cloning property, rejecting the following bogus circuit.

\begin{verbatim}
Definition clone W : Box W (W \otimes W).
 box_ (w \Rightarrow output (w,w)). (* Linear type checker cannot be satisfied. *) Abort.
\end{verbatim}

\texttt{QWire} is compositional, meaning that a boxed circuit can be reused inside another circuit. Notice that only wires are treated linearly in \texttt{QWire}; a boxed circuit is a first-class Coq expression, and can be used as many times as necessary. Consider the following circuit, which flips a coin up to \texttt{n} times, returning 1 if and only if the coin always lands on heads, which occurs with probability $\frac{1}{2^n}$.

\begin{verbatim}
Fixpoint coin_flips (n : \texttt{N}) : Box One Bit.
 box_ (_ \Rightarrow match n with (* n:\texttt{N} is either 0 or the successor of some n' *)
 | 0 => gate_ x \leftarrow new1 @(); output x
 | S n' => let_ c \leftarrow unbox (coin_flips n') ();
 gate_ q \leftarrow init0 @();
 gate_ (c,q) \leftarrow bit_ctrl H @c,q;
 gate_ _ \leftarrow discard @c;
 gate_ b \leftarrow meas @q;
 output b
 end).
\end{verbatim}

The \texttt{unbox} operator feeds the input pattern (\texttt{()}) into the boxed circuit \texttt{coin_flips n'}, and the \texttt{let} operation binds the output of the recursive call in the rest of the circuit. The \texttt{let} and \texttt{unbox} operations are separate constructs; for example, \texttt{box_ (w \Rightarrow unbox b w)} is just the \texttt{\eta}-expansion of a boxed circuit \texttt{b}.

\texttt{QWire} also allows for \texttt{dynamic lifting} \cite{14}, in which measurement results from the quantum circuit are dynamically processed as classical data inside of Coq. This operation, which we call \texttt{lift}, measures a qubit (or any collection of wires) and produces a boolean (or a tuple of booleans) value. We can then use the result of the measurement to decide which gates to apply in the remainder of the circuit. For example, the following circuit has the same behavior as \texttt{coin_flips} above:

\begin{verbatim}
Fixpoint coin_flips' (n : \texttt{N}) : Box One Bit.
 box_ (_ \Rightarrow match n with
 | 0 => gate_ q \leftarrow new1 @(); output q
 | S n' => let_ q \leftarrow unbox (coin_flips' n') ();
 lift_ x \leftarrow q;
 if x then unbox coin_flip ()
 else gate_ q \leftarrow new0 @(); output q
 end).
\end{verbatim}

Further examples can be found in the online development, as well as in the original \texttt{QWire} paper \cite{14}.
3 Implementing QWIRE in Coq

At its core, a QWIRE circuit is a sequence of gates applied to wires. Each wire is described by a wire type W, which is either the unit type (has no data), a bit or qubit, or a tuple of wire types. In Coq we represent wire types as an inductively defined data type WType as follows:

\[
\text{Inductive} \ WType := \text{One} | \text{Bit} | \text{Qubit} | \text{Tensor} : \text{WType} \rightarrow \text{WType} \rightarrow \text{WType}.
\]

We use the Coq notation “$W_1 \otimes W_2$” for $\text{Tensor } W_1 W_2$.

Gates are indexed by a pair of wire types—a gate of type $\text{Gate } W_1 W_2$ accepts input of type W_1 and outputs the type W_2. In our setting, gates will include a universal set of unitary gates, as well as initialization, measurement, and control.\(^3\)

\[
\text{Inductive} \ \text{Unitary} : \text{WType} \rightarrow \text{Set} := (* \text{other unitary gates omitted *})
\mid H : \text{Unitary } \text{Qubit} (* \text{Hadamard gate *})
\mid \text{control} : \forall \{W\} \ (U : \text{Unitary } W), \text{Unitary } (\text{Qubit } \otimes W)
\mid \text{transpose} : \forall \{W\} \ (U : \text{Unitary } W), \text{Unitary } W.
\]

\[
\text{Inductive} \ \text{Gate} : \text{WType} \rightarrow \text{WType} \rightarrow \text{Set} :=
\mid U : \forall \{W\} \ (u : \text{Unitary } W), \text{Gate } W W
\mid \text{init} : \text{Gate } \text{One } \text{Qubit} | \text{meas} : \text{Gate } \text{Qubit } \text{Bit} | \text{discard} : \text{Gate } \text{Bit } \text{One}.
\]

The curly braces surrounding the type argument W indicate that W is an implicit argument, meaning that it can be automatically inferred from the other arguments. We further define U to be a coercion from unitaries to gates, meaning that for $u : \text{Unitary } W$, we can simply write u for $U u : \text{Gate } W W$.

An open circuit (one with free input wires) has Coq type $\text{Circuit } \Gamma W$, where Γ is a typing context of input wires and W is an output wire type. As an example, the circuit

\[
\text{gate}_{w1} \leftarrow H @w1; \text{gate}_{w2} \leftarrow \text{meas } \otimes w2; \text{output } (w2',w1')
\]

has type $\text{Circuit } (w1: \text{Qubit}, w2: \text{Qubit}) (\text{Bit } \otimes \text{Qubit})$.

A typing context of type Ctx is a partial map from variables (represented concretely as natural numbers) to wire types, which is represented as $\text{list } (\text{option } \text{WType})$. In this representation, the variable i is mapped to W if the ith element in the list is $\text{Some } W$, and is absent from the map if the ith element is None.

The disjoint merge operation \uplus ensures that the same wire cannot be used in two separate parts of a circuit. Mathematically, it is defined on two typing contexts as follows:

\[
\begin{align*}
[] & \uplus \Gamma_2 = \Gamma_2 \\
\Gamma_1 & \uplus [] = \Gamma_1 \\
(\text{None}::\Gamma_1) & \uplus (\text{None}::\Gamma_2) = \text{None}::(\Gamma_1 \uplus \Gamma_2) \\
(\text{Some } W::\Gamma_1) & \uplus (\text{None}::\Gamma_2) = \text{Some } W::(\Gamma_1 \uplus \Gamma_2) \\
(\text{None}::\Gamma_1) & \uplus (\text{Some } W::\Gamma_2) = \text{Some } W::(\Gamma_1 \uplus \Gamma_2)
\end{align*}
\]

Since disjoint merge is a partial function we represent it in Coq as a relation on possibly invalid contexts, $\text{OCtx} = \text{Invalid} | \text{Valid Ctx}$. For convenience, most operations on contexts are lifted to work with OCtx values, and so the type signature of the merge operation \uplus is $\text{OCtx} \rightarrow \text{OCtx} \rightarrow \text{OCtx}$.

Wires in a context Γ can be collected into a pattern $\text{Pat } \Gamma w$ to construct the wire type W. A pattern is just a tuple of wires of base types, meaning that all variables in a pattern have type Bit or Qubit. We use Coq’s dependent types to express logical predicates that constrain how patterns can be constructed.

\(^3\)The set of gates need not be fixed; Rennela and Staton [18] explore how to use gates to extend QWIRE with recursive types.
Inductive Circuit' : OCtx → WType → Set :=
| output' : ∀ {Γ W}, Pat Γ W → Circuit' Γ W
| gate' : ∀ {Γ Γ₁ Γ₂ W₁ W₂ W},
 is_valid (Γ₁ ⊔ Γ) → is_valid (Γ₂ ⊔ Γ) → Gate W₁ W₂ →
 Pat Γ₁ W₁ → Pat Γ₂ W₂ → Circuit' (Γ₂ ⊔ Γ) W →
 Circuit' (Γ₁ ⊔ Γ) W
| lift' : ∀ {Γ Γ₁ Γ₂ W W'}, is_valid (Γ₁ ⊔ Γ₂) →
 Pat Γ₁ W → (interpret W → Circuit' Γ₂ W') →
 Circuit' (Γ₁ ⊔ Γ₂) W'.

Figure 1: Definition of QWIRE circuits using an explicit representation of variable binding. We call this type Circuit', reserving the name Circuit for the higher-order abstract syntax representation (Figure 2).

Inductive Pat : OCtx → WType → Set :=
| unit : Pat (Valid []) One
| qubit : ∀ (x : N) (Γ : Ctx), SingletonCtx x Qubit Γ → Pat (Valid Γ) Qubit
| bit : ∀ (x : N) (Γ : Ctx), SingletonCtx x Bit Γ → Pat (Valid Γ) Bit
| pair : ∀ Γ₁ Γ₂ W₁ W₂, is_valid (Γ₁ ⊔ Γ₂) → Pat Γ₁ W₁ → Pat Γ₂ W₂ →
 Pat (Γ₁ ⊔ Γ₂) (W₁ ⊔ W₂).

The pair constructor (for which we use notation (p1,p2)) ensures that the wires in p1 are disjoint from those in p2 by calling out to the is_valid predicate, which checks whether the result of the merge is well-defined. The qubit and bit patterns are variable constructors that are only valid in contexts that contain the exact variable being introduced. The predicate SingletonCtx x W Γ ensures that the context Γ contains only the single wire x of type W.

Circuits Like patterns, circuits are indexed by an input context and an output type. There are only three syntactic forms for circuits: output, gate application, and dynamic lifting. Figure 1 defines circuits as an inductive data type indexed by the input typing context and the output wire type.

An output circuit output p is just a pattern. A gate application, which we write with syntactic sugar as gate p2 ↦ g ⊙ p1; C, is made up of a gate g : Gate W₁ W₂, an input pattern p1 : Pat Γ₁ W₁, an output pattern p2 : Pat Γ₂ W₂, and a circuit C : Circuit' (Γ₁ ⊔ Γ₂) W'. The intended meaning is that p1 is the input to the gate g, and its output is bound to p2 in the continuation C. Thus the variables Γ₂ that made up p2 are also free in C, whereas the variables Γ₁ in p1 are no longer available in C, enforcing linearity. The is_valid predicates enforce that all of the context arguments to circuits must be well-defined.

The lift operation, which we write lift_ x ↦ p; C takes as input a pattern p : Pat Γ W and a function fun x =⇒ C that takes the classical interpretation of that data and produces another circuit. The intended semantics is that the circuit will measure the wires p (if they are not already bit-valued) and pass the result as ordinary Coq data to the function. In particular, both bits and qubits will result in boolean values being provided to the continuation, and tensors will be interpreted as pairs.

A boxed circuit, written box_ (p ⇒ C) is a pair of a pattern and a circuit.

Inductive Box' : WType → WType → Set :=
| box' : ∀ {W₁ W₂ Γ}, Pat Γ W₁ → Circuit' Γ W₂ →
 Box' W₁ W₂.

Composition and Higher-Order Abstract Syntax The minimal embedding of QWIRE in Figure 1 lacks a number of features of the language, including composition and unboxing. The unbox operator takes in a boxed circuit and an input pattern and produces a circuit. It has the following signature:

Definition unbox {Γ W₁ W₂} (b : Box' W₁ W₂) (p : Pat Γ W₁) : Circuit' Γ W₂.
The intended β-reduction rule should have the form $\text{unbox } (\text{box } (p \Rightarrow C)) p' = C[p'/p]$ where $C[p'/p]$ is some appropriate instance of substitution of the variables in p' for those in p in the circuit C.

The traditional solution to this problem involves defining a number of substitution functions and proving appropriate typing relations for each operation. Although this approach is viable, it is often tedious and introduces a large amount of complexity, especially in linear systems. An alternative approach is the technique of higher-order abstract syntax (HOAS) [16], in which variable bindings in an embedded language are represented as functions in the host language. This means that the language designer does not have to define substitution functions and prove their correctness, and that variables in the embedded language have the same weight as variables in the host language.

The HOAS approach to boxed circuits treats a box as a function from patterns to circuits:

\begin{verbatim}
Inductive Box : WType → WType → Set :=
| box : (∀ {Γ}, Pat Γ W₁ → Circuit Γ W₂) → Box W₁ W₂.
\end{verbatim}

The \texttt{unbox} operation then simply destructs the box and applies the function appropriately.

\begin{verbatim}
Definition unbox (Γ W₁ W₂) (b : Box W₁ W₂) (p : Pat Γ W₁) : Circuit Γ W₂ :=
 match b with box f ⇒ f p end.
\end{verbatim}

We can take a similar approach for the binding pattern in gate application, as shown in Figure 2. In this setting, output of a gate application is represented by a function from the output pattern to a new circuit. The other difference between the HOAS presentation of circuits and the “flat” representation in the previous section is that in addition to proofs of validity about merged contexts, we introduce fresh arguments for the output context of each circuit. This is due to a technical limitation of Coq pattern matching, and the result makes it possible for us to write the examples in Section 2.

With this machinery in place, we can define composition as a meta-operation on circuits. For conciseness, we give its definition as a sequence of β-reduction rules, omitting the proof arguments.

\begin{verbatim}
Fixpoint compose {Γ₁ Γ₂ W W'} (c : Circuit Γ₁ W)
 (f : ∀ {Γ₂ Γ₂'}, (Γ₂' = Γ₂ ≔ Γ) → is_valid Γ₂' → Pat Γ₂ W → Circuit Γ₂' W')
 : is_valid Γ₁' → (Γ₁' = Γ₁ ≔ Γ) → Circuit Γ₁' W' :=
 compose (output p) f = f p
 compose (gate g p1 h) f = gate g p1 (fun p2 ⇒ compose (h p2) f)
 compose (lift p h) f = lift p (fun x ⇒ compose (h x) f)
\end{verbatim}

\textbf{The QWIRE type checker} In type-checking QWIRE circuits, we are asked to solve equations of the form $\Gamma_1 \approx \cdots \approx \Gamma_n = \Gamma_1' \approx \cdots \approx \Gamma_n'$ and is_valid $(\Gamma_1 \approx \cdots \approx \Gamma_n)$, in order to enforce the linearity of wires.
The first of these goals can be discharged with an automated proof tactic for solving systems of commu-
tative monoids. In the higher-order abstract syntax version of circuits, these predicates may also contain
evars, existentially quantified Coq variables. By starting at the leaves of the typing derivation, we can
ensure that every equation of the form $\Gamma_1 \sqcup \cdots \sqcup \Gamma_n = \Gamma_1' \sqcup \cdots \sqcup \Gamma_n'$
has at most one evar. We can then cancel out all variables that appear on both sides of the equation, and unify the evar with what remains
on the opposite side.

Once repeated applications of \texttt{monoid} have replaced all existential variables with regular Coq variables, we can prove goals of the form \texttt{is_valid}($\Gamma_1 \sqcup \cdots \sqcup \Gamma_n$). We take advantage of the fact that a set
of finite contexts is disjoint if and only if the contexts are all pairwise disjoint. Our custom tactic for
solving these goals extracts all proofs of pairwise disjointness from hypotheses and then reduces the goal
to a conjunction of pairwise disjointness claims \texttt{is_valid}($\Gamma_1 \sqcup \Gamma_j$). It then applies proofs of these claim,
where available, from the hypotheses.

4 Denotational Semantics

4.1 The Matrix Library

The denotational semantics of \mathcal{Qwire} is implemented using a matrix library created specifically for this
purpose. Matrices are simply functions from pairs of natural numbers to complex numbers.\(^4\)

\begin{verbatim}
Definition Matrix (m n : \mathbb{N}) := \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{C}.
\end{verbatim}

The arguments m and n, which are the dimensions of the matrix, are not used directly in the definition,
but they are useful to define certain operations on matrices, such as the Kronecker product and matrix
multiplication, which depend on these dimensions. They are also useful as an informal annotation that
aids the programmer. We say a matrix is well-formed when it is zero-valued outside of its domain.

\begin{verbatim}
Definition WF_Matrix {m n} (M : Matrix m n) : \mathbb{P} := \forall i j, \ i \geq m \lor \ i \geq n \rightarrow M i j = 0.
\end{verbatim}

This library is designed to facilitate reasoning about and computing with matrices. Treating matrices
as functions allows us to easily express otherwise complicated matrix operations. Consider the definitions
of Kronecker product (\otimes) and complex conjugate transpose (\dagger), where \texttt{Cconj} is the complex conjugate:

\begin{verbatim}
Definition kron {m n o p} (A : Matrix m n) (B : Matrix o p) : Matrix (m*n) (o*p) :=
 fun x y => A (x \slash_left o) (y \slash_left p) * B (x \mod o) (y \mod p).
Definition ctrans {m n} (A : Matrix m n) : Matrix n m :=
 fun x y => Cconj (A y x).
\end{verbatim}

We use Coquelicot’s \texttt{Complex} library \[4\] for our representation of complex numbers. This representation
has the advantage of being a straightforward extension of the Coq real numbers, allowing us to easily ex-
tend the Coq Standard Library’s powerful Linear Real Arithmetic solver (\texttt{lra}) to both complex numbers
and matrices. The tactics we define (termed \texttt{clra} for complex numbers and \texttt{mlra} for matrices) allow us
to trivially prove that complex conjugate and complex conjugate transpose are involutive:

\begin{verbatim}
Lemma conj_involutive : \forall c, Cconj (Cconj c) = c. Proof. intros. clra. Qed.
Lemma ctrans_involutive : \forall {m n} (A : Matrix m n), A\dagger\dagger = A. Proof. intros. mlra. Qed.
\end{verbatim}

\(^4\) As a Coq technicality, note that matrices are only equal up to functional extensionality.
4.2 Density Matrices

QWIRE programs are interpreted as superoperators over density matrices, following the denotational
semantics described by Paykin et al. [14]. We use a density matrix representation over the standard
unit vector representation (used for example by Boender et al. [3]) because density matrices represent
probability distributions (introduced via measurement) over quantum states directly, as opposed to the
unit vector representation which must be embedded inside a probability monad.

We start with some preliminary definitions. A unitary matrix is a well-formed square matrix A such
that $A^\dagger A$ is the identity.

Definition is_unitary $\langle n \rangle \ (A : \text{Matrix } n \ n) \ := \ \text{WF_Matrix } A \ \land \ A^\dagger \times A = \text{Id } n \ n.$

A pure state of a quantum system is one that corresponds to a unit vector $|\phi\rangle$. An equivalent repre-
sentation is that of square matrices ρ such that $\rho \times \rho = \rho$.

Definition Pure_State $\langle n \rangle \ (\rho : \text{Matrix } n \ n) \ := \ \text{P} := \ \text{WF_Matrix } \rho \ \land \ \rho = \rho \times \rho.$

A density matrix, or mixed state, is a linear combination of pure states representing the probability
of each pure state.

Inductive Mixed_State $\langle n \rangle \ (\rho : \text{Matrix } n \ n) \ : \ P :=$
| Pure_S : $\forall \ \rho, \ \text{Pure_State } \rho \ \rightarrow \ \text{Mixed_State } \rho$
| Mix_S : $\forall \ (\rho : \text{R}) \ \rho_1 \ \nu_2, \ 0 < \rho < 1$
$\rightarrow \ \text{Mixed_State } \rho_1 \ \rightarrow \ \text{Mixed_State } \rho_2 \ \rightarrow \ \text{Mixed_State } (p .\, * \ \rho_1 .\, + \, (1-p)%R .\, * \ \rho_2).$

Note that every mixed state is also well-formed, since scaling and addition preserve well-formedness.

A superoperator is a function on square matrices that takes mixed states to mixed states.

Definition Superoperator $m \ n \ := \ \text{Matrix } m \ m \ \rightarrow \ \text{Matrix } n \ n.$

Definition WF_Superoperator $m \ n \ (f : \text{Superoperator } m \ n) \ :=$
$\forall \ (\rho : \text{Matrix } m \ m), \ \text{Mixed_State } \rho \ \rightarrow \ \text{Mixed_State } (f \ \rho).$

Any $m \times n$ matrix can be lifted to a superoperator from n to m as follows:

Definition super $\langle m \ n \rangle \ (A : \text{Matrix } m \ n) : \ \text{Superoperator } n \ m \ := \ \text{fun } \ \rho \ \Rightarrow \ A \times \rho \times A^\dagger.$

4.3 Denotation of QWIRE

Types, Contexts and Gates In order to interpret circuits as superoperators over density matrices, we
will also give types, contexts, gates, and patterns interpretations in linear algebra. For clarity we write
$[[___]]$ for the denotation of a variety of QWIRE objects, which we express via a Coq type class.

Class Denote source target $:= \ \{ \ \text{denote} : \text{source} \ \rightarrow \ \text{target} \ \}.$

Notation "$[[\ x \]"] := (\text{denote } x) \ \langle \ \text{at level } 10 \ \rangle.$

We interpret every wire type as the number of primitive (Bit or Qubit) wires in that type, so
$[[\text{Qubit} \ \odot \ (\text{One} \ \odot \ \text{Bit})]] = 2$. Contexts and Ctxs are similarly denoted by the number of wires they contain.

Every gate of type $\text{Unitary } W$ corresponds to a unitary matrix of dimension $2^{[W]} \times 2^{[W]}$. We omit the
implemented gate set and their corresponding matrices here, but in the development we prove that every
denoted unitary satisfies the is_unitary predicate defined above.

A gate of type $\text{Gate } W_1 \ W_2$ corresponds to a superoperator as follows:

Definition denote_gate $\langle W_1 \ W_2 \rangle \ (g : \text{Gate } W_1 \ W_2) : \ \text{Superoperator } (2^\langle W_1 \rangle) \ (2^\langle W_2 \rangle) :=$
$\text{match } g \ \text{with}$
| U u \ => \ super \ [[u]]$
When we previously wrote as \(\text{denote} _\text{gate} \) is simply \(\text{denote} _\text{gate'} \ 0 \).

Patterns and Flat Circuits Patterns of type \(\text{Pat} \ \Gamma \ \omega \) are interpreted as permutation matrices of dimension \(2^{\lceil \Gamma \rceil} \times 2^{\lceil \omega \rceil} \). These matrices are constructed via multiple applications of a swap matrix, as follows: In general we will want to swap the positions of two arbitrary qubits in a system; to swap qubit 0 with qubit 2 in a 3-qubit system, we invoke \(\text{swap} \ 2 \ 0 \ 2 \ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \) for \(\text{swap} \) operation that applies the gate to the first part of a quantum system. The interpretation of this circuit is the superoperator obtained from the denotation of \(\text{gate} _\text{gate'} \) and \(\text{ls} \): is then turned into an association list \(\{ (0,1); (1,0) \} \), mapping variable \(i \) to \(\text{ls}[i] \). These pairs are then interpreted as a series of calls to \(\text{swap} \).

As for gates, the function \(\text{denote} _\text{pat} _\text{in} \) follows a similar algorithm, but allows us to interpret a pattern \(p \) inside a larger context of variables. Its signature is as follows:

\[
\text{Instance Denote_Pat} \ (\{ \text{Pat} \ \Gamma \ \omega \}) := \\
\{ \{ \text{denote} := \text{denote} _\text{pat} _\text{in} (\text{Valid} \ [\]) \} \}.
\]

Finally, we interpret circuits as superoperators on density matrices. To do this, we start with the “flat” representation \(\text{Circuit'} \) that does not use higher-order abstract syntax. The higher-order abstract syntax representation is useful for defining the meta-level operations on circuits, but the “flat” circuits from Figure 1 use concrete variables, thus making them a useful intermediate representation for the semantics.

Consider an output circuit \(\text{output'} \ p \), where \(p : \text{Pat} \ \Gamma \ \omega \). The interpretation of this circuit is the superoperator obtained from the denotation of \(p : \text{super} \ [p] \).

Next, consider a gate application \(\text{gate} _\text{gate'} \ p2 = g \ p1 : \text{C} \) where \(g : \text{Gate} \ \Gamma1 \ \omega1, p1 : \text{Pat} \ \Gamma1 \ \omega1, p2 : \text{Pat} \ \Gamma2 \ \omega2, \) and \(\text{C} : \text{Circuit'} \ (\Gamma2 \ \omega) \). The interpretation of \(\text{C} \) has type \(\text{Superoperator} \ (2^{\lceil \Gamma2 \rceil} \ \omega) \ (2^{\lceil \omega \rceil}) \), so we need to compose \(\text{C} \) with a superoperator from \(2^{\lceil \Gamma1 \rceil} \times 2^{\lceil \Gamma1 \rceil} \) to \(2^{\lceil \Gamma2 \rceil} \times 2^{\lceil \omega \rceil} \) and \(2^{\lceil \Gamma1 \rceil} \times 2^{\lceil \Gamma2 \rceil} \) to \(2^{\lceil \Gamma1 \rceil} \times 2^{\lceil \Gamma2 \rceil} \), which we obtain by composing \(\text{denote} _\text{gate} _\text{gate'} \) with the results of \(\text{denote} _\text{pat} _\text{in} \), to rearrange the quantum system appropriately.

\[
\begin{align*}
\text{denote} _\text{gate'} \ (\Gamma2 \ \omega) & \circ \ \text{super} \ (\text{[p2]} \uparrow \ \text{Id} \ (2^{\lceil \Gamma1 \rceil})) \\
& \circ \ \text{denote} _\text{gate'} \ (\Gamma1) \ g \ \text{super} \ (\text{[p1]} \ \text{Id} \ (2^{\lceil \Gamma1 \rceil}))
\end{align*}
\]

Finally, consider a lift circuit, \(\text{lift'} \ p \ f \), where \(p : \text{Pat} \ \Gamma1 \ \omega \) and \(f : \text{interpret} \ \omega \to \text{Circuit'} \ (\Gamma2 \ \omega) \). When \(\omega \) is a qubit, \(\text{interpret} \ \omega \ = \ \text{bool} \), and the lift operation would measure the qubit and sum over the results of \(\text{[f true]} \) and \(\text{[f false]} \). More generally, consider
Definition \(f' : \text{interpret } W \to \text{Superoperator } (2^\wedge \Gamma_1 \uplus \Gamma_2) \) \\
\(\begin{aligned}
&= \text{fun } x \Rightarrow \ket{x} \circ (\text{super } (\text{kets } x)^\dagger \otimes \text{Id } (2^\wedge \Gamma_2)) \circ (\text{super } \text{denote_pat_in } \Gamma_2 p))
\end{aligned} \)

Here, \(\text{kets } W : \text{interpret } W \to \text{Matrix } (2^\wedge W) \) is the basis representation of the input value of type \(\text{interpret } W \).

By transposing \(\text{kets } x \) and expanding it via the \(\text{super} \) operation, we pick out the partial density matrix corresponding to that measurement branch. Next, since all wire types are finite, we can enumerate all values of type \(\text{interpret } W \) in a list via the operation \(\text{get_interpretations } W \). By mapping \(f' \) over this list, we obtain each of the actual measurement branches as superoperators. Now we can simply perform pointwise addition of the superoperators, and compose with the pattern \(p \) to organize the wires in order.

\(\text{J lift' } p f \text{K} = \text{fold_left Splus (map } f' (\text{get_interpretations } W)) \text{SZero} \)

A flat box is also interpreted as a superoperator: \(\text{[box' } p \text{C]} = \text{[C]} \circ \text{super } [p]^\dagger \)

HOAS Circuits

To denote the HOAS version of circuits, we first map them to our representation of “flat” circuits, which involves instantiating the output patterns of HOAS gates with a particular concrete pattern. We do this via an operation \(\text{fresh_pat} \) that takes as input a context and a type, and produces a pattern of that type whose domain (\(\text{fresh_pat_ctx} \)) is disjoint from the input context.

Definition \(\text{fresh_pat } (\Gamma : \text{OCtx}) (W : \text{WType}) : \text{Pat } (\text{fresh_pat_ctx} \Gamma W) W. \)

Using \(\text{fresh_pat} \) we can define a function that converts HOAS circuits and boxes into flat circuits and boxes. We leave off implicit proof and \(\text{OCtx} \) arguments for legibility.

Program Fixpoint from_HOAS \(\Gamma \) \(W \) \(c \) : Circuit \(\Gamma \) \(W \) :=
\begin{align*}
&\text{match } c \text{ with } \\
&| \text{output } p \Rightarrow \text{output' } p \\
&| \text{gate } g \ p1 \ f \Rightarrow \text{gate' } g \ p1 \ p2 \ (\text{from_HOAS } (f \ (\text{fresh_pat } _ _))) \\
&| \text{lift } p \ f \Rightarrow \text{lift' } p \ (\text{fun } x \Rightarrow \text{from_HOAS } (f \ x))
\end{align*}

Program Definition from_HOAS_Box \(W_1 \) \(W_2 \) \(b \) : Box \(W_1 \) \(W_2 \) :=
\begin{align*}
&\text{match } b \text{ with } \\
&| \text{box } f \Rightarrow \text{let } p := \text{fresh_pat } [] \ W_1 \ in \ \text{box' } p \ (\text{from_HOAS } (f \ p))
\end{align*}

The denotation of a HOAS circuit is exactly the denotation of its corresponding flat circuit.

5 A Taste of Verification

When a circuit is closed, that is when it has no input, it represents a preparation of a quantum state. In many cases, a programmer may know what state their program should prepare, and our verification framework allows them to compare the denotation of the circuit with the desired density matrix directly.

Consider, for instance, the coin flip circuit in Section 2. In the online development we prove that the denotation of \(\text{coin_flip} \) corresponds to the matrix \(\text{even_toss}=\left(\begin{array}{cc} 1/2 & 0 \\ 0 & 1/2 \end{array}\right) \) as follows:

Lemma \(\text{flip_toss} : \text{[coin_flip]} = \text{[Id 1]} = \text{[even_toss]} \)

The Coq proof script used to prove this lemma is only twelve lines long, and calls out to a number of specialized tactics, including \text{Msimpl}, \text{Csimpl} and \text{Csolve}, designed to simplify and prove equality between matrices and complex numbers.

The combination of Coq and QWIRE truly shines in its ability to prove more complex properties and prove properties of families of circuits, not merely circuits themselves. For example, consider the Deutsch-Jozsa problem, where we want to verify a property of a family of circuits with any number of
input qubits, that holds for every appropriate unitary matrix U_f. This sort of property requires induction over the number of inputs and the full power of a proof assistant.

Open circuits, which correspond to arbitrary superoperators, are even more interesting from the perspective of verification. Consider the following circuit which composes a unitary gate with its transpose:

```
Definition unitary_trans {W} (U : Unitary W) : Box W W.
  box_ (p ⇒
    gate_ p ← U @p;
    gate_ p ← transpose U @p;
    output p).
```

```
Lemma unitary_trans_id :
  ∀ W (U : Unitary W) ρ,
```

This correctness of this circuit holds for any unitary gate regardless of its input size. The proof of this lemma takes fewer than 20 lines of code, and proceeds using common facts from linear algebra, such as the fact that $\text{Id}_{n\times A} = A$, along with fact that the denotation of U is in fact unitary, that is, $[[U]]^\dagger [[U]] = \text{Id}$. We also rely on the fact that the denotation of every pattern in this circuit is actually an identity matrix.

Another useful sanity check ensures that the denotation of a lift circuit is equivalent to applying a measurement gate. For example, consider `lift_meas`, which measures a qubit via lift and then reconstructs a bit-valued wire from the result of the measurement. The resulting circuit is equivalent to the circuit that simply applies a measurement gate.

```
Definition lift_meas : Box Qubit Bit.
  box_ (q ⇒
    lift_ x ← q;
    gate_ p ← (if x then new1 else new0) @();
    output p).
```

```
Lemma lift_meas_correct :
```

6 Related and Future Work

The Coq development described in this paper is very much still a work in progress. There are a small number of lemmas in the underlying matrix library that we have not formally proved, although they are known facts about linear algebra. In addition, we have not yet formally proved that the denotation of every circuit is a well-formed superoperator over density matrices, or that the denotation of the composition of two circuits is equal to the composition of their denotations.

After completing this work, there are a number of exciting areas to explore in the future.

Verified Compilation

By verifying the equivalence of circuit transformations, such as `unitary_trans_id` from Section 5, we see QWIRE as a prime language in which to compile quantum programs. The area of verified compilers has gained a lot of traction in recent years, inspired by the success of the CompCert C compiler [12]. Towards this direction, Amy et al. [1] developed a verified, lightly-optimizing compiler for reversible circuits, which can encompass unitary quantum circuits.

We can also provide insight into a relationship between QWIRE circuits and QASM [7], a quantum assembly-like language that has gained widespread use in quantum simulators and IBM’s Quantum Experience [11]. The largest difference between QWIRE and QASM is our use of variable binding, using abstract variables such as x, y, and z and allowing qubits to be renamed as in `let_ y ← output x; C'`. In comparison, QASM operates on a concrete set of quantum registers (e.g., qubits 1, 2, or 3) that cannot be renamed. In the development we provide a version of QWIRE that similarly operates directly on named qubits. Our denotational semantics extends directly to this representation, and we can compile from
QWIRE to these “assembly-level” circuits. Future work could formally establish a relationship between the assembly-level version of QWIRE and QASM, allowing us to prove properties of QASM programs, and prove that compilation is sound with respect to the denotational semantics.

A More Efficient Backend Unfortunately, so far we have struggled to prove properties of (non-parametric) circuits with more than a few qubits, indicating that scalability will be a challenge moving forward. A key contributor to the scalability of our theorems is the underlying matrix library, which is not currently optimized in any significant way. Of course, any quantum simulator will be intractable on large enough circuits, as density matrices are always exponential in the size of the corresponding circuit.

In the near future, we will be transitioning the linear algebra back-end of our development to one of several existing projects, in the hopes of making it more efficient. Boender et al. [3] present one candidate, a library developed reasoning about the correctness of quantum protocols using pure states. Another candidate is the Coq Effective Algebra Library (CoqEAL) [5], which is designed specifically to allow matrix computation inside Coq. This library allows easy translation between it matrices and those of the Mathematical Components library [2], which in turn was designed with an eye towards verification. The two libraries together may substantially increase our ability to run and reason about QWIRE programs. We can also simulate QWIRE programs by extraction to OCaml.

Theory of QWIRE In this paper we focus on the denotational semantics of QWIRE, but many other aspects of the meta-theory are left to be explored. Rennela and Staton [18] present a categorical model of EWire, a close variant of QWIRE, as an enriched category. Their model also allows for additional features such as quantum data types in the style of Quipper [10].

The equational theory of quantum circuits is another area left for future work. For example, Staton [21] presents an axiomatization of the relationship between measurement, qubit initialization, and a limited set of unitary gates. In the future we hope to adapt Staton’s work to QWIRE and thereby reason syntactically, rather than semantically, about the equivalence of QWIRE circuits. An equational theory is also key to integrating QWIRE with dependent types [14].

Verifying Higher-Order Programs The use of dependent types was a driving factor for both the development of QWIRE and the choice to embed it in Coq specifically. While dependent types power Coq’s verification capabilities, they’re also key to our representation of circuits. This paper hasn’t focused on dependent types, or high level programming in QWIRE generally, but both will feature heavily in future QWIRE development. For example, in the development we implement a dependently-typed version of the Quantum Fourier Transform, as described by the authors in the previous introduction to QWIRE [14].

Greater use of the host language and classical programming abstractions will also allow to further push the boundaries of quantum verification. While current QWIRE programs can be thought of as “simply circuits,” such direct proofs will become increasingly difficult as we add on layers of abstraction—just as it would be nearly impossible to prove interesting program properties by reasoning about the underlying classical circuits. This will require new approaches to quantum verification, from quantum weakest precondition reasoning ([8], expanded into a Hoare-like logic in [23, 24]), to the forms of equational reasoning described above.
References

