
Implementation and Performance of an ATM Host Interface for
Workstations

C. Brendan S. Traw and Jonathan M. Smith

Distributed Systems Laboratory, University of Pennsylvania
200 South 33rd St., Philadelphia, PA 19104-6389

ABSTRACT

This brief paper outlines our strategies for providing a hardware and software solution to interfacing
hosts to high-performance networks. Our prototype implementation connects an IBM RS/6000 to a
SONET-based ATM network carrying data at the OC-3c rate of 155 Mbps. We have measured
application-to-network data rates of up to 130 Mbps.

1. Introduction

Despite rapid advances in workstation processor and
memory subsystem performance, the next generation of high
speed (Gbps), wide area networks threatens to exceed the data
management capabilities of the hosts. To assist these hosts,
specialized host interfaces are being developed at Penn,
Bellcore [4], Carnegie-Mellon/Fore Systems [3], and else-
where.

The host interface work at Penn has been centered on
developing a high-performance host interface for workstation
hosts in the AURORA Gigabit Testbed environment [2]. We
have chosen to focus on workstations since we believe that
they will be the predominant processor class connected to
such networks.

1.1. Goals and Design Philosophy

One important outcome of the work is a high-
performance host interface for IBM RS/6000 [1] workstations
in the AURORA testbed, but our research goals are somewhat
more ambitious and far-reaching. In particular, we wanted:
(1) a hardware/software architecture which is flexible and
allows experimentation with portions of the protocol stack; (2)
a focus on architectural solutions to achieve good
cost/performance, so our results scale across technology
choices; and (3) low absolute cost, so that large-scale replica-
tion can be achieved.

We believe that the resulting host interface meets these
goals. The design philosophy for our architecture is based on
providing a "common denominator" set of services in dedi-
cated hardware. All per cell activities such as CRC creation
and verification, segmentation, and reassembly are performed
in high density programmable logic. The host is responsible
for all higher level activities. This combination meets our

goals and provides an excellent balance between performance
and flexibility.

Since we last reported on this work [5], we have been
carrying this philosophy through to a realization. Here, we
update our discussion of the architecture, detail the host
software, and present some initial performance results.

2. Hardware

This Host Interface is comprised of two logical sections,
each of which occupies a standard sized Micro Channel board
in the RS/6000. These two logical sections are the Segmenter
and the Reassembler. The brief description of the architecture
below documents how the Class 4 adaptation layer is sup-
ported by the architecture described previously.

ATM
Header Generator

Adaptation Layer
Header Generator

Data Buffer
512 by 32

FIFO

Segmentation
Controller

SONET
Framer

E→O
OC-3c

M
i
c
r
o
c
h
a
n
n
e
l
I
n
t
e
r
f
a
c
e

M
i
c
r
o
c
h
a
n
n
e
l
B
u
s

Figure 1: Segmenter

2.1. The Segmenter

A block diagram of the Segmenter is presented in Fig-
ure 1. When data is to be transmitted into the network, the vir-
tual circuit identifier (VCI) to be used is loaded into the
header generator. A multiplexing identifier (MID) is loaded

Reprint - 1st Workshop on High-Performance Communications Subsystems (HPCS)!

- 2 -

into the ATM adaptation layer (AAL) header generator if the
data to be transmitted is Class 4. The host then sets up a
streaming mode (an optimized form of DMA) transfer to
move the data which is to be transmitted from a pinned buffer
in host memory to the FIFO buffer on the Segmenter. While
this transfer is occurring, the Segmenter produces the header
check CRC and formats the control information into the
appropriate ATM and AAL header formats. As soon as suffi-
cient data has been placed into the FIFO buffer, the segmenta-
tion controller removes the data for the first cell from the
FIFO buffer and appends an ATM header, AAL header and
AAL trailer. If the cell is carrying Class 4 data, the payload
CRC is calculated as the data is moved to the SONET framer
and placed in the appropriate field at the end of the cell. This
process is repeated until the FIFO buffer is drained.

Linked List
Manager

Pointer Memory.
.
................

.

.

CAM Lookup
Controller

CAM 512 by 48.
.
................

.

.

Dual Port Reassembly
Controller

Dual Port Reassembly Buffer
32K by 32. ...

..

...................................

Cell
Manager
SONET
Framer.

..

...............

E→O
OC-3cBody

Header

M
i
c
r
o
c
h
a
n
n
e
l
I
n
t
e
r
f
a
c
e

M
i
c
r
o
c
h
a
n
n
e
l
B
u
s

Figure 2: Reassembler

2.2. The Reassembler

The Reassembler is composed of four major subsections
(Figure 2) which operate in parallel to form a cell processing
pipeline.

The cell manager verifies the integrity of the header and
payload (if the cell is carrying Class 4 data) of cells received
from the network by the SONET framer. It extracts the VCI
from the header and the MID and length from the AAL
header. We currently ignore the 4-bit sequence number in the
Class 4 adaptation layer as we believe it is insufficient to pro-
vide a reliable means for cell loss detection. The body of the
cell is placed in a FIFO buffer for later movement in the dual
port reassembly buffer.

The CAM lookup controller manages two CAMs which
provide lookup support for a total of 256 simultaneous virtual
connections and the reassembly of 256 datagrams. The host is
able to flush undesired virtual circuits and datagrams from the
reassembler through the CAM lookup controller.

A reference resulting from the CAM lookup operation is
passed to the linked list manager (LLM). The LLM, as its
name suggests, establishes and maintains a linked list data
structure for each of the virtual circuit and datagrams that is
being received. Data received from the network is placed at
the end of the appropriate list while the host reads data from
the beginning of the list.

The LLM allocates space in the reassembly buffer for
data coming into the reassembler from the network and passes
the location to the dual port reassembly controller. The cell
body which was placed into the FIFO by the cell manager is
removed and written into the reassembly buffer.

The host is able to read data from a particular virtual
circuit or datagram by specifying a list reference to the LLM
which determines where in the reassembly buffer the data is
stored. The location is passed to the reassembly buffer con-
troller which removes the data from the buffer for transfer into
host memory over the Micro Channel.

3. Software

The current host interface support software consists of
an AIX character-special device driver. We used AIX’s capa-
bility to support dynamically-loadable device drivers; this
allowed us to work despite the unavailability of kernel source
code. The driver is configured into the system at boot time
when the device is detected. The host interface presents a
unique device identifier when probed, and this identifier is
used to gather descriptive information (including driver rou-
tines) from a system object database. Configuration includes
allocating addresses for use by the device; the device uses
these addresses for its control registers and to support stream-
ing mode transfers.

The interface is initialized when the device special file
/dev/host{n} is first opened (n is a small integer, 0 on our test
system). Initialization consists of probing the device at a dis-
tinguished address which causes it to be reset, as well as per-
forming various set-up operations for the device driver
software. The operations currently include pinning the driver
software’s pages into real memory and allocating two 64K-
byte contiguous buffers which are also pinned. After initiali-
zation, the device and driver are ready for operation; while
routines for all appropriate AIX calls (e.g., read(), ioctl(),
etc.) are provided, only write() is currently fully supported.
The code fragment in the Appendix illustrates how a program-
mer would access the device; this particular fragment is taken
from the measurement apparatus we used for the data of Sec-
tion 4.2.

When the write() call is invoked on the device, data is
copied from the user address space into one of the 64K
buffers. When a status flag indicates the device is inactive, a
streaming mode transfer is set up by initializing a number of
translation control words (TCWs) in both the RS/6000 and in
the Micro Channel’s I/O Channel Controller (IOCC). The
TCWs allow both the device and the CPU to have apparently
contiguous access to scattered pages of real memory. This is
illustrated in Figure 3.

After the TCWs and other state are set up, the device is
presented with the data size and buffer’s address, and the
transfer begins. At this point, the driver marks the other
buffer inactive and returns control to the user process. This
combination of a hardware-provided state flag and double-

Reprint - 1st Workshop on High-Performance Communications Subsystems (HPCS)!

- 3 -

...

RS6000 TCW

REAL

MEM.

PAGES

.

.

.
...

IOCC TCW

Figure 3: Illustration of TCW usage
buffering permits overlapped operation of the host interface
and the host processing unit.

While this architecture supports overlapped operation,
the copying between user and kernel address spaces is a major
impediment to high-performance operation. The provision for
TCWs in the IOCC allows large contiguous transfers directly
to and from the address space of an AIX user process. We
have a prototype device driver which supports such transfers,
which we expect to be stable by January, 1992. Short tests
have shown improved performance over what we report in
Section 4.

Overlapped operation from user address spaces is some-
what trickier than from copies kept in kernel buffers, due to
the risks inherent in concurrent access to shared state by the
device and the process. Two obvious approaches are: (1)
blocking the process until streaming is complete, and (2) trust-
ing the process to not access the data (e.g., the process could
do its own double-buffering). The first approach prevents a
single process from using the hardware’s capability for over-
lapped operation. This seems unwise, since most applications
use the CPU to transform data which travels to and from the
network. The second approach assumes too much, and could
cause crashes with inconsistent kernel data. A third approach
is to force the process to block (cease execution) when it
accesses a ‘‘busy’’ buffer. In this way, ‘‘well-behaved’’
processes can achieve maximum overlap, while AIX is pro-
tected from the indiscretions of ‘‘poorly-behaved’’ processes.
This is easily accomplished by tagging the active buffers
TCW entries with ‘‘fault-on-write’’; the process is then
blocked until the streaming transfer is complete and the page
fault can be resolved. This combines the good features and
removes the complications of the other two schemes, and is
the approach we are currently pursuing.

4. Performance Measurements

4.1. Hardware

As of November 1991, the segmenter has been proto-
typed except for the AAL header generator; the reassembler is
more than half done. At this stage, performance measure-
ments of the hardware and software have been made:
� Header generation in the Segmenter requires 5 clock cycles

(250 ns).
� In the Reassembler, the cell manager is able to verify cell

integrity (CRC check) and extract the control fields in one
cell time (2.6 µs).

� The longest per cell operation performed by the CAM
lookup Controller requires 11 clock cycles (550 ns).

� From simulation results, it appears that the longest per cell
linked list operation requires 12 clock cycles (600 ns).

Since multiple cell managers can be used in parallel, it would
appear that the bottleneck of the reassembler pipeline is the
LLM. Thus, there is a cell processing latency of about 4 µs
and an overall bandwidth of about 700 Mbps.

By far the worst bottleneck in the hardware portion of
the system is the Micro Channel bus. Utilizing the fastest
mode of data transfer on the bus, 32 bit streaming, we have
achieved a sustained transfer rate of 130 Mbps with one ver-
sion of our device driver (which unfortunately crashes the sys-
tem intermittently; a more conservative driver was used for
the measurements of Table I). A typical transfer cycle on the
RS/6000 model 320 would be as follows:
� 1.6 µs to transfer sixteen 32 bit words
� 2.0 µs to reload the buffers in the RS/6000’s I/O Channel

Controller (IOCC).

These measurements were made using an HP 16500A logic
analysis mainframe with 10 nanosecond resolution. This duty
cycle would suggest that the maximum obtainable bandwidth
of 320’s Micro Channel’s bus is a little under 142 Mbps. We
expect that later models of the RS/6000 will contain an
improved IOCC to allow higher bus performance.

4.2. Software

Using the program outlined in the Appendix, we ran a
script which varied the buffer size and number of repetitions
of the write() call necessary to write 67.1 megabits to the
interface. The script was run on a lightly-loaded IBM
RS/6000 Model 320. Benchmarking by an unrelated process
connected through an Ethernet connection noted little or no
performance degradation, even when competing for I/O
resources (e.g., a several megabyte FTP).

� ���
Buffer Elapsed Bandwidth
Size Time (Mbps)� ���
1K 2.88 23.3
2K 1.65 40.7
4K 1.03 65.1
8K 0.76 88.3
16K 0.71 94.5
32K 0.65 103.2
64K 0.58 115.7	 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

Table I: Results for 67.1 Megabit transfers

Each of the seven tests in the script represent about 67

Reprint - 1st Workshop on High-Performance Communications Subsystems (HPCS)!

- 4 -

million bits worth of transfer, so that 1K byte transfers are
giving about 23.3 Mbits/sec, and 64K byte transfers are giving
about 115 Mbits/sec. These tests were of short duration, the
clock is relatively imprecise, and not all of the variables were
controllable. However, these experiments are repeatable to the
accuracy given, lending credence to the measurements.

4.3. Conclusions

It’s clear from Table I that software is the limiting fac-
tor to system performance. Larger block sizes let the
hardware stream effectively, and smaller sizes force the AIX
system to context-switch frequently. This can be seen by exa-
mining the relative performance gain for each doubling in
block size. The performance is almost doubled as block size is
increased from 1K bytes to 2K bytes, but the increase from
32K to 64K gives only a 10 percent gain.

For many sources of traffic, the 64K byte blocks, and
hence the performance figures, seem unrealistic. We are look-
ing at device driver strategies which can give us good perfor-
mance with smaller block sizes, perhaps by optimizing the
device driver strategy for stream-startup.

To the best of our knowledge, this is the fastest meas-
ured software/hardware combination for ATM, and we intend
to continue tuning so that we can focus on the right issues for
our OC-12 (622 Mbps) follow-on. Our approach of pursuing
architectural solutions, such as concurrent operation (as in the
parallelism in the header processing pipeline), allows us to
take advantage of improvements in technology which would
allow higher clock speeds. We have found (from using the
software and logic analyzer concurrently) that a major factor
limiting hardware performance is the Micro Channel bus.
This is due to the delay induced in fetching data from the
Micro Channel IOCC. It is not entirely clear (as of November
1991) why this is happening: it may be software structuring or
limitations inherent in the IOCC and its relationship to system
memory. We hope to be able to report a precise characteriza-
tion of the problem and its solution in 1-2 months.

5. Notes and Acknowledgments

We would like to thank Bruce S. Davie for his detailed
and constructive criticisms of this work and its presentation in
this paper.

AURORA is a joint research effort undertaken by Bell
Atlantic, Bellcore, IBM Research, MIT, MCI, NYNEX, and
Penn. AURORA is sponsored as part of the NSF/DARPA
Sponsored Gigabit Testbed Initiative through the Corporation
for National Research Initiatives. NSF and DARPA provide
funds to the University participants in AURORA. Bellcore is
providing support to MIT and Penn through the DAWN pro-
ject. IBM has supported this effort by providing RS/6000
workstations. The Hewlett-Packard Company has supported
this effort through donations of laboratory test equipment.

RS/6000, AIX and Micro Channel are trademarks of

IBM.

6. References

[1] H. B. Bakoglu, G. F. Grohoski, and R. K. Montoye,
‘‘The IBM RISC System/6000 processor: Hardware
overview,’’ IBM Journal of Research and Development
34(1), pp. 12-22 (January, 1990).

[2] David D. Clark, Bruce S. Davie, David J. Farber, Inder
S. Gopal, Bharath K. Kadaba, W. David Sincoskie,
Jonathan M. Smith, and David L. Tennenhouse, ‘‘The
AURORA Gigabit Testbed,’’ Computer Networks and
ISDN Systems 25(6), (to appear) (January 1993).

[3] Eric Cooper, Onat Menzilcioglu, Robert Sansom, and
Francois Bitz, ‘‘Host Interface Design for ATM
LANs,’’ in Proceedings, 16th Conference on Local
Computer Networks, Minneapolis, MN (October 14-17,
1991), pp. 247-258.

[4] Bruce S. Davie, ‘‘A Host-Network Interface Architec-
ture for ATM,’’ in Proceedings, SIGCOMM 1991,
Zurich, SWITZERLAND (September 4-6, 1991),
pp. 307-315.

[5] C. Brendan S. Traw and Jonathan M. Smith, ‘‘A High-
Performance Host Interface for ATM Networks,’’ in
Proceedings, SIGCOMM 1991, Zurich, SWITZER-
LAND (September 4-6, 1991), pp. 317-325.

7. Appendix: Experimental Apparatus

/*
* testwr.c - main block
* (no declarations or set-up shown)
*/

if ((fd = open("/dev/host0", O_WRONLY)) == -1)
{

perror("Couldn’t open dd");
exit(-1);

}

gettimeofday(&tv1, &tz);

for(i=0; i<repeats ; i++)
{

if (write(fd, buf, count) == -1)
perror("write failure");

}

gettimeofday(&tv2, &tz);

clock = elapsed(tv2, tv1);

printf("elapsed time: %d microseconds\n",
clock);

Reprint - 1st Workshop on High-Performance Communications Subsystems (HPCS)!

