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ABSTRET

SwitdhWare is a set of softare technologies which will enable rapidveep-
ment and deplanent of n& network services.By making the basic netwk
service selectable on a per user (omeper paclet) basis, the need for formal
standardization is eliminateddditionally, by making the basic netwk service
programmable, the deplment times, today constrained by capital funding limi-
tations, are tremendously reduced (to the order of aodtwlistrilution times).
Finally, by constructing an adinced, robst programming efronment, en the
service deelopment time can be reduced.

A SwithWare switch consists of input and output ports controlled by a soft-
ware-programmable element; programs are contained in sequences of messages
sent to theSwitdWare switch’s input ports, which interpret the messages as pro-
grams called‘Switdhlets'. This accelerates the pace of neth evolution, as
evdving user needs can be immediately reflected in the argtimfrastructure.
Immediate recomjurability also enhances the adaptability of the oekwnfras-
tructure to ungpected situations.

A network huilt from SwitdhWare switches is amctive network

Intr oduction

The pace of netark evolution (not switch eolution, networkevdution) proceedsdr too slovly.

To a khrge dgree this is a function of standardization. Standardization is a necessary step in net-
work design to ensure interoperabiligs a retwork’s uility increases with the number of inter
connected nodes. Since todaynternet architecture mandates the implementation of IP in all
routers and hosts, and requires a 5-8 year standadldgslopment — deployment processeq.,

IETF - Cisco - Internet Service Praders), it is inflible and golves slavly.

The Internet Protocol (IP) forces interoperability byimiefy a standard paek format and

addressing scheme which igedaid on netvorks comprising the internetsk. Sinceit must
operate on the least capable of rats, it is designed to f&fr a minimal set of functions; addi-
tional services are added byedays on IPThree undesirable consequences of this design are:

1.

2.

It must run gerywhere €g. @ hosts and switches). There areotwubconsequences:
changing IP means changingegything, and geryone must share the same service model.

Useof overlays €g., the reliable streamwverlay of TCR or multimedia multicast with
MBONE [12] ) is forced for people who ddreccept the communal service modeg,,

they
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want or need a diérent service.
3. IPhas no semantics for passing data-link layer information to the end-points.

Overlays are problems for twedditional reasons. Firstyverlays may be indifcient because the
underlying netwrk does not tak the functionality of the werlay into accounteg., packet loss
versus cell-loss [40] for IP/AM. Second partitioning of resources is harder because we must
split the partitioning of resources within ameday from the partitioning of resources among
overlays.

A second alternate, semming from our werall goal of accelerating nebtwk evolution, is to
create a virtual netork infrastructure, consisting @witd\Ware switches. This alternat, if
realized, has profound consequences for the engineering of futueketivhese are:

1. Programmable serviceso accelerate netark evolution.

2. Extensibility so thatlogical overlays can be implemented within the switches rather than as
true overlays at the endpoints. Programmability alone is naéresibility; for ekample,
extensibility is missing in control sof@ve for telephone switches [30fk seems most use-
ful to provide userextensibility, so that nev applications not imagined by the designers can
be easily added, and we cawid the risks of a‘harrov-gauge’ i nfrastructure.

3. Security as this is both an increasing concern as meks become more widely applied,
and increasingly difcult as thg become more compte For us,robustnesds an aspect of
security

4. Partitioning, to control resource allocation and scheduling under a programrmalitg.

5. Portability, so that softvare switching performance caadp pace with component technol-
ogy cunes, such as processor performance, and carryaseftswitched applications along
the same upslope.

We propose aSwitdh\Ware switch, which preides a programmable element, essentially a com-
puter to perform switching functions and address this list of goals. Extending the role of comput-
ing in the netwrk is the ley o accelerating thewlution of network infrastructure; a compelling
example is the rate ofvelution of the World-Wide Web with its simple HTML language and
Common Gateray Interface scripts.

The approach suggested in this paper isxéension of that used tov@utionize telephon
in the early 199@. Adwanced Intelligent Netarking [39], deeloped in part by Bellcore, sepa-
rates the implementation of teleplyaservices from basic switching by wiag the service con-
trol to an adjunct processor from the switcBince each call can wohavea dfferent service,
the need for standardization ofwieervices has been eliminateBeployment times are greatly
reduced, since a weservice is essentially data entered into the database of the adjunct processor
Development times areven reduced by enabling service piders and users to deé and
develop new services, and by a graphical programming irsteef dgeloped by Bellcore.The
telephory industry has seen weproduction quality service creation times drop fromerawo
years to as little as wweeks as a result of AINThe SwitdhWare switch will extend the
approach used by AIN to greatly increase thvellef programmability in the switch, by reducing
the need for a call model which constrains AIWe will also apply the technique to internet-
work routers and AM switches, which ha rot been attempted by AIN.

2. Switchingand the Pace of Network Evolution

The pace of netark evolution proceedsdr too slavly, relatve © the technological changes in
the underlying transmission systems, where laboratory resuktsdached &rabit/second band-
widths, and relatie to the applications depyed at the edges of the neirk, such as the bvid-
Wide Web and its supporting technologies such as tha [E6] Programming languagelhe
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element interconnecting the links and end-nodes is a switch; logically (although atypically) it is
possible to vier routers, bridges, etc. as specialized switches.

Programmability of switching elements led to major progress in voluteon of our
national netwrk infrastructure. Anxeellent case study of telecommunications switching infras-
tructure [28] is the \&stern Electric 3B20D processor [47] and the associated ONpldiple
Environment Real ime (DMERT) [19, 17] operating systenThis system \as emplged in the
Bell Systems$ 5ESS switch systems which remain in widespread use. DMERased on the
earlier MER' operating system [24], and ptides both a real-time and timesharingisznment.

The 3B20D dfered useprogrammable microcode so that high-performance applications could

in fact create a custom or emulated machine architecture within thextcohtie 3B20D pro-
cessing unit; this as used to support code andides from earlier switchabrics such as the 1A
attached processing unit. Up to four concurrent instruction sets were supported; an instruction set
could be selected with a single wnatimicrocode instruction.

This system reflected the importance of saftvin implementing the national telecommu-
nications architecture, as itas designed from the start to be deative exeution platform for
software. The programming model alled programs to be loaded at run-timet, &f course \&s
not accessible to arbitrary users of the phone system.

What has changed in our moderwviesnment is the need for awnety of programmed, cus-
tomizedservices and the model of updating centrafice switches using aan full of magnetic
tapes is no longer appropriate.

2.1. Asoftware goproach: the Advanced Intelligent Network (AIN)

As we remarkd earlierthe approach suggested in this paper isxéension of that used towe
olutionize telephowy in the early 199®, Adwanced Intelligent Netarking [39], which vas
developed in part by Bellcore. The use of an independent control processor in the swithing f

ric gaveservice designers access to databases and other processorgltoqaibprocessing fea-

tures. The response to a telephone call can then be represented as a state machinegesvhich tak
actions as information is input during a cdixamples of services that can bevpded with this

model would include routing of a call to the nearest shop in a chain of Pizzergedervices.

The call processing ould reference a Geographic Information System, and could be enhanced
with vendor preided data such asalability of drivers.

The deep, and fundamental restriction on the applicability of this approach is its use of the
call model, which isdr too restricie for the netwrk infrastructure we h& row, which is
evdving from circuits to pacsts, and if the&SwitthhWare approach is tadn, bgond to typed data
objects.

2.2. Why not the Internet model?

As we agued in the Introduction, this sloevolutionary pace is a function of standardization.
The Internet Protocol (IP) forces interoperability byiniefy a standard paek format and
addressing scheme which igedaid on networks comprising the internetwk. Sinceit must
operate on the least capable of rats, it is designed to f&fr a minimal set of functions; addi-
tional services are added byedays on IP

The diffi culty with this model is that it isxremely dificult tointerposenew protocol func-
tionality. This can be illustrated with thexample of Domain Name Service (DNS). The pres-
sures on DNS are tremendous anéliiko increase. Manapplications are dependent on it, and
the World Wide Web’s use of location-dependent naming places further pressure on DNS perfor
mance. Thefuture will bring personal netwwks of perhaps hundreds of processors and
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intelligent sensors - such a neik's dements will need names for management and function
location. DNS will not scale to such artent without caching, and yet the appropriate caching
functionality cannot beuilt without interposed protocols for DNS cache management (including
security features to prent spooing) and WWW proxies. These features require sarfew
embedded in the information nedk.

An excellent &kample of interposed functionality can bewlnafrom electronic mail sys-
tems, which can interpose toolsdithe “vacat i on” program to alter mail handling when peo-
ple are on trael. Such systems ka been etended with programming to priale priorities based
on addressees and message sizes, which are transparent to the sender

2.3. SwithhWare Programming

For any workable communication, there must $mmeagreement; standardization is essentially

an agreement about what the agreement is. The IP protocol has been successful in standardizing
paclet formats, bt because its standardization process operates at a political tempo rather than a
technological tempo, the pace obhkition has been held back.eelieve that a PostScript-li

[43] concept, which raises thevé of abstraction of the standard, 8witth\Ware services rather

than IP services, is the method for staying on the technologg.daarsing the lesl of abstrac-

tion also gves a nuch greater toehold for netrk management, speiciélly for automated self-
diagnosis and repairhis is true becaugd) behaioral assertions are simpler to stg&, moni-

toring software is easier to write, arfd) the chain of assertions that lead to diagnosis and repair

is less compbe

For most rapid ®olution, networks must be userustomizable, and for users to ari
deployment of n&v services, the netark must be on-the-fly programmabl&hat is, it must be
programmable by the paets that flev through it. While not all paegks need contain code,
paclet sequences can contain modules of programming, as in the mobile agents prototyped by
Knabe [22]. These code objects are used tovte customized services to thedeof an indi-
vidual useror if predictions of hundreds of processors or intelligent sensors per person are true,
perhaps composites of hundreds of such services.

3. SwitchWare Applications

We ae implementing prototype services irbawithhWare system to sho feasibility These ser
vices hae the properties of being useful to a subsat, ot necessarily all users of the eeti
network. Serviceswvhich are useful to all or most users of the roekylike smple unreliable
datagram forarding, or unreliable multicast are susceptible to being included in a traditional
bearer service such as IBervices which are highly speculatj too forward looking, or simply

not well understood are good candidates for being implemented in we eativork. Several
example services which match these characteristics are described belo

3.1. Self-payinginformation transport

The idea of Self-paying information transport (Iveésist using the acrgm) is to hae an

object which is to be transported through the oektwnclude some form of electronic payment
information as part of the objecA simple analogy wuld be to the stamp on a letter toda&y
transportable object (such as a paasr a virtual circuit) wuld contain, as part of the control
information (.e., the packt header or VC setup messages) some sort of electronic payment
information. This could be either e-cash, e-check, or an electronic credit card nih&pay-

ment information wuld then be xamined by theSwitthWare, and if suficient payment as
offered, the object auld be serviced by th&witdiWare. Note the service might be to prde
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computing by recuting the object in th&witd\Ware, or to provide communications by switch-

ing the object, to prade storage for state information the object may wish teeléathe Switd-

Ware switch, or some combination of these. The payment information may then be altered (some
e-cash subtracted) as the objectdrses the netark.

This type of service is speculai enough that it wuld not be possible to consider stan-
dardizing it in a bearer service toddjoweve, it is ot hard to ewision either commercial or
military scenarios where it might be useful. In commercial situations, vida® the possibility
of creating a dynamic maekin netvork bandwidth, which may be more economicalliyosént
than todaysdirly static tarif structure where prices only change iietl times of the dayA
provider with an underutilized netwk might lover his prices, thus attracting objects into his
network. A provider who was werloaded could raise prices until the demand subsided to match
available capacity

Since payment is really a complorm of priority it's possible that in a military applica-
tion, the payment may instead be interpreted as an authorization and.pRedtyests that car
ried insuficient priority in times of high demandowld be either déred a laver grade of ser
vice, delayed, or possiblyen dropped. ar more dynamic schemes might be constructed as
required. This scheme could be used, fanaple, to control QoS-based scheduling inside the
SwitdhWare run-time system.

3.2. Network management

Many network management tasks consist of collecting and collating data, sugbnase@unts.
To provide the most useful netwk management data, such aseption indications, intelligence
must be used talter out uninteresting (uxeeptional) gents. An easy &y to write a netark
management system, assuming that appropriate authentication and protection casede ide
to write a netwrk management program using modules constructed from sequenga®-of °
gram’ packets.

Fault management is aewy important and difcult task, particularly so for lge netvorks
and for correlatedailures. Correlatedailures may be caused by bothvenonmental &ctors,
such as earthquek or &plosions, or by malicious intruder$Ve kelieve that actve retworking
can be used to sigreantly improve fault detection and management capabilities in thear&tw

Existing netvork monitoring for &ult detection consists ohthering a knen set of mea-
surements. Th&ault management systentitérs and correlates these measuremeAtproblem
with this approach is that &’dfficult to integgrate netwrk elements that operate with fdifent
fault management system&letwork elements are designed to operate with one $pdaiilt
management systenflso, differing design philosophies may peat the intgration of seeral
fault management system3hese incompatibility issues also neakdifficult to evolve the fault
management system, because it i aift to add a netark element that does not conform with
all existing elements.

Active retworks can preide the desired flability, because thealult management system
can be changed as necessary without the needny about backard compatibility Existing
systems can be recagiired as necessary simply by changing the code useduitrnhanage-
ment. Actve retworking also may all for hierarchical &ult managementAs faults are being
isolated and ideni#d, the &ult management system can be refocuseddammme in more detail
those netwrk elements that may be operating incorreciyfferent \ersions of &ult detection
code can be loaded into selected meknelements for eachve of the hierarchicaldult man-
agement process.
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3.3. Active Network Striping f or Software Salable Bandvidth

One of the major challenges to the vision of »&tNetwork technology and virtual infrastruc-
tures is proiding compelling @amples of the usefulness of the onytlflg programmable infras-
tructure. SwitthhWare provides the opportunity fosoftwae salable bandwidthto be denred

from the virtual infrastructure. ariations on the same technique can address delay jitter (by
resynching typed paeks withSwitthWare) and reliability.

Two interconnectedwitthhWare switches and attached host computers arenshio Figure
1
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Figure L Interconnecte@®witdhWare Switches

While adding stripinghardware to all switches in a netvk is unlikely to be cost-ééctive [48,
49], theSwitthWare infrastructure can be programmed topde striped servicesA software-
implemented solution auld stripe most é&ctively by using multiple intedices to send multiple
concurrent paaits. Thussimple pseudocode of Switdlet for sender striping (asynchronous
Send() ), would be:

When Arrives(Packet, | nPort)

Send( ( SequenceNunber , Packet), Qut Port);
QutPort := (QutPort + 1) Mdd Channel s;
}

and the receer would eecute:
VWhen (Arrives((SequenceNumnber, Packet), | nPort))

{
If (1 nOder(SequenceNunber, Expect ed))
{
Send( Packet , Qut Port);
Expected : = Expected +1;
Wi | e( CheckQueue( QueueNane, Expect ed))
{
DeQueue( ( Expect ed, Packet));
Send( Packet , Qut Port);
Expected : = Expected + 1;
}
}
el se

Queue( (SequenceNunber, Packet), QueueNane) ;
}

The key dosenation to mak aout packt striping is that it ¢érs the possibility of multiplying
the throughput\ailable between processors in proportion to the number of stripes.
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Figure 2 An embedde@&with\Ware switch

This multiplication can be accomplished with no change in the lejwatherassuming that

the interbices are attached to processors able to support their memory bandwidth demands, the
focus is on algorithms for deciding which ineeré(s) to use, and when to stripersus simply

using a single connectiokigure 2illustrates striping in an embedded switch.

3.4. Self-CheckingActive Networks (SCANS)

DARPA-sponsored netark security research in the 1970s led to ther®ser [36] idea, where
network paclets were chead for correctness with respect to a protocol grajattive Networks
malke this feasible. Active Network technology can be used to construct siable netvork
infrastructures based on the idea‘sélf-checking’ systems. Théyasic approach is to use high-
level specifications to generate Agg Network programs that can be used to self-check the oper
ation of the netwrk.

As suggested by earlyask of Cerf [8], Farber and Postel [37], protocols are represented as
graphs that shv the protocok flow of control and message emissiorBistributed systems use
such protocols to operateras the netverk, giving rise to a‘protocol grapH, a common and
powerful formal representation of protocol$ravesing paths through the protocol graph results
in valid sequences of messagés an eample, consider the modulésB, and C constituting a
protocol, shan belav in Figure 3



A

if( conditionA) then B else C

B:

if( conditionB ) then C el se STOP;
C B

Figure 3 Simple Protocol with Modules A, B and C

Figure 4 Graphical Representation of ControMiéor Modules A, B and C

and a dexied graph inFigure 4

If each arc treersal generates a message, then we can test sequences of messages ty see if the
represent alid state sequencegor example, if we see4- C, C- B}, we know the system is
following a \alid path through the graplOn the other hand, if we seA{ B, C- B}, then some

failure has occurred, whether it be the loss of a glaoksulting in a missing transition, or an
invalid transition.

An important property of the path ¥&sal<->message sequence model is that the number
of paths in a real protocol isastly fever than what is possible for an arbitrary set of modules.
Whereas complete static analysis of the protocol will requiemening all possible paths
between these modules (a humber thatvgrexponentially in the lengths of the paths consid-
ered), checking that the protocbehavior is correct only imolves the gamination of a number
of paths that is proportional to the number of messages sent in the protocol. Furthermore, the reg-
uisite checking can be performed in a distrdadl Bishion leading toven greater dicieng. Dif-
ferent portions of the netwk obsere dfferent sequences of messages. Thus it is natural to
design a highly distrilted monitor Such a design has the addedaatage of being #étient and
scalable. W can dewe decking criteria directly from the protocol graph, and deduce a mes-
sage flov for each point in the netwk. Thesanodels can be coserted to Actve Network pro-
grams that belve & a ®t of sophisticated paekfilters under the direction of the original proto-
col.

This checking of state tvarsals can be applied broadly in an AetiNet, hence the name
Self-Checking Actrte Network (SCAN). SCANs can be considered a distie¢ll analogue of
watchdogs [25] and some of theyideas were skched out (without thevailability of Active
Networks) by Piclens and &rber in their Ogrseer [36] schemelf an invalid sequence is
detected, the infrastructure performs aweptional action, for>ample, raising an alarm, or
blocking further messaged-or network security unusual and ungected message sequences
can be used to detectdar classes of intrusionsSCANs prwide the ability to protect the net-
work agpinst maw active dtacks. Br example, Keromytis and Smith [21] ke devdoped a
method by which arbitrary cryptographic protocols can be maittstbp. Rathethan release
information, &il-stop cryptographic protocols terminate when anvadditack is detected. The
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method uses cryptographic hashes #didate sequences of messages by reflecting message
dependencies in the haslalves. Thepaper demonstrates the technique onession of
Netscapes Secure Socét Layer (SSL) and suggests some applications to IP$etmytis’
method is easily depjable on SCANSs, as it uses a similar model falidity (valid sequences)

and checking is easily performed at multiple points in the er&tvall of which can‘fail-stop’

when attacks are detectedhis approach simplis the task of cryptographic protocol design, as

it allows the designer to focus on passitacks and malicious insiders.

SCANs can perform autonomous local @tes which lead to a desired global beioa
For example, consider a denial-of-service attack based on repeated attempts to open a TCP con-
nection without subsequent action [1) SCAN could specify TCRB expected behaor [46]
using a state graph in whichS&¥N must result in further actiong,g., a SYN- ACK reply fol-
lowed by anACK. When intermediate SCAN nodes see awalid state sequenceSYN,
SYN, . . .) they can discard subsequent patk Thisresults in logically ‘pushing’ the attack
back to its entry point into the SCAN, andomls wasting the resources of mamtermediate
nodes.

3.5. Otherapplications

Another application of the multiple channel approach is for reliab@itysider the tw intercon-
nectedSwitdh\Ware switches shwn in Figure 1 If three channels orth of capacity are required,

we can implement the striping algorithm on the three channels, and utilize the fourth as an
error/loss correction channel, as in RAID systems [2B§, for eample, we could (using
SwitthhWare's capacity for processing), for each three mslsent on the three stripes, compute a
fourth paclet consisting of the Exclus-OR of the three paeits comprising the stripe. Then, if

ary 3 of the four packts arrve in time, the data can be re@ed and fonarded.

Such modules can carry out nyalasks. Br example, consider the sensor fusion required
to detect an automobile on the other side of a bend; a CCD camera, IR camera (at night) or other
sensor could be feeding a broadcast nétwAn application injected into the neivk by your
automobile could run a motion detection algorithm on the real-time video feed and signal a mon-
itor in the automobile with an approach speed indicationasniwg tone.An actuator for a rear
window defroster in a caarea netwrk might fuse information from a smart thermometer with
light diffusion measures to automatically turn on; directional remote motion detection could dim
the high beams, etAAnother ékample is personal multicast topologies; it is easy to write a small
program which mees itself from SwitdhhWare switch to switch [41], replicating itself selecty
to output ports to create a geaicket multicast.

Still more applications include:

»  Speech coding caarsion for interoperation of national telecommunications infrastructures;
this would be accomplished witBwitthhWare libraries or DSPs if higher performance is
needed.

»  Self-adaptation of paeks to netwrk dynamics such asifure and congestion, as yhe
could carry algorithmic code specifying appropriate responsesuoss.

e Subnet-speci€ compression, as bandwidth and latecharacteristics dictate aomuch
effort should be spent compressing.

» Data type-spedit routing and stream synchronization. As aample video frames might
choose a higher bandwidth link with a greater loss rate, while motion control streams for
interactve telerobotics [4] wuld select a path with o bandwidth lut high reliability and
low delay jitter
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4. Securityand SwitthWare

Security of information means that the right information gets to the right people at the right place
at the right time, meaning that securigylires occur when these conditions are not e,

wrong people, wrong place, wrong information, wrong tirBecurity filures can include unau-
thorized vieving of information, denial of service [32], and insertionaléé information.These

sorts of &ilures [9] will become more common unless securitesignednto a system.

Application Modules

Protection

Traditional
Opeimating
System

Scheduler/
Multiplexer

Figure 5 A multi-applications dements share a processor

While cryptograpi provides potential end-to-end pacy, it has no eect on denial-of-service
attacks, which can pvent correct and timely defery of important information; such attacks
must be precludedConsider for gample the difculty of preventing trafic analysis when
paclet switching is usedTypically, messages or paets must hee headers in the cleaeven if
the data portion is protected by a cryptographieapyi transformation. lis easy to imagine a
sequence of paeks where theirst paclet contains a program capable of obtainingya fkom a
trusted authorityused by theSwitdiWare to decode the headers of subsequent giacik the
train.

Active retworks ofer the netwrk users a pmerful tool for impraing network perfor
mance and fiability. Howeve, the paverful capabilities of the system mide paverful tools
to malicious intruders.Consequentlynetwork security and authentication become correspond-
ingly more important.Network elements must assure thay @ode thg execute was produced
by an authorized sourcé\lso, ary fault detection and management systems must be abde to v
ify the validity of ary network monitoring data that are reced from network elements.

Although security and authentication mechanisms are being proposedymetaarking
forums, actre retworking may allev us to design a single intgated security mechanism fall
network resources.This eliminates the need for multiple security/authentication systems that
operate independently at each communication protocol. ldiygrould also allev us o address
the traditional need for separation of the transport and management planes, whidehasep-
arate for reasons of securiperformance and modularityrhe dificulty is the resource manage-
ment. Ary switching system, no matter wosimple or complg, represents aulti-application
consisting of a number of tasks, which may be concurrent eidaa with the illusion of being
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SO via time-drision multiplexing of a shared elemenkigure 5 illustrates a multiapplication
mapped onto a single shared processor

The dashed line dfigure 5illustrates a crucial design decision; to control mulijlg of
the machine resourcesg., to associate code awttions with interrupts, to operate on netk
adapters and persistent state resident on secondary storagejedimg systems used to create
a resource protection boundary between applications, whiah d&aess to avirtual machine’,
and the multipleing mechanism, which has access to all system resources amtkeprihe vir
tual machine.

4.1. Accesgontrol by O.S. or Compiler? — Multiplexing Implications

Unfortunately this multiplexing architecture has w&re performance limitations, in particular for

the boundary crossing operation between the application and the operating systekerthe *
nel”). Multiplexing performance is crucial in switching. A great deal of recent research has tried
to alleviate these costs while preserving the protection semantics of the operating system [13,
14]. To obtain an order of magnitude estimate of the penalty for this boundary crossing, we com-
pared system calls with an ideal scheduling methed,co-routine scheduling.The method

used vas the &cilitiesset j np() andl ongj np() provided by the C libraryThey provide the

ability to achiee a mon-local goto, that is, one which crosses routine boundareds. np()

saves the current "state" of the programe( a mnimal set of rgisters, floating rgisters, frame
pointers, etc) into g np_buf structure (described iMusr/i ncl ude/ setj np. h) and

I ongj np(), given aj np_buf , restores the spe®@( state, including the program counter

On an SGI Challenge L, when the program is run on a 3,334,216 ibetgtuni x), it
requires 2.43 seconds ofeeution time; a ersion of the program which merely reads and writes
takes 0.69 seconds. Counting ow context switches per character we get
(2*3334216)/(2.43-0.69) or 3,832,432 cotite per second, or 260 nanoseconds per gbnte
switch. Measurements of a microbenchmark which reads 0 byted fileny nul | repeatedly
shav that eachr ead() requires 17 microseconds, with 14.7 microseconds consumed by the
operating system. This suggests that we can xbstgtch between threadst least 60 times
fasterif we get the programming language model right, and further optimizations should be able
to reduce costs to approximately a procedure call.

Allowing the user to program andtend the basic netwk fabric pravides great flgibility and
power, but as with ag power tool it also creates a safety hazard. It is possiblely)ikhat pro-
grams dwn-loaded into a switch or routeould interfere with, corrupt, or suért the trafic of
other users. Thus @&k question in the design @witthhWare is haw this paver can be pnaded
safely

4.2. Systems$ecurity and Programming Environments

Familiarity with the Internet VWUrm [42] or recent security problems [11] found in systems such

as Netscape’Web bravser and the Ja [26] highlight the importance of security in distribd
computing. Althoughhese problems manifested themsslas security breaches, mamthem

were a result of the lack of safety features in the programming language, notably C. Languages
like QVIL and J&a avoid these problems by supportipginter safety In pointer safe languages,
pointerscannotpoint to irvalid locations in memorythus a&oiding "core dumps" and arraye-

runs. Thekey features needed for pointer safety are strong (though not necessarily static) type
checking, array bounds checking and automatic storage managergaritage ®llection
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4.3. Formal Semantics of Pbgramming Languages

“ Formal Methods’is a wbric used to refer to a collection of techniques which seek to apply
ideas from formal mathematical logic to computational problems arising from #uaraw soft-
ware. Suchtechniques ha keen an actie aea of irvestigation for at least tev decades.
Although not a panacea, the techniques de ltae potential of being quite useful, especially in
areas of program speicifition, hardware \erification, and language design.

In the area of language design, researghragramming languge heoryhas deeloped a
collection of tools appropriate to the mathematical spatibn of programming language$he
value of such a speaifation is that it mags properties of the language, the programs written in
it, and its compilers amenable to rigorous or (in limited cases) automated papofal treat-
ments hae keen preided for most widely-used languageBor instance: DoD commissioned
the completion of such a semantics for a substantial portion of its Ada language while, more
recently C++ and other object-oriented languagegehiaeen the subject of focused attention.

It has been less common for a programming languagedeve®pedn the contgt of con-
siderations from programming language theory—Ilanguage designs are usually more influenced
by programming and compilation issugdowever, accounting for theoretical considerations as
part of a design has sigiwént adantages if ensuring certain properties of (programs written in)
the language is of paramount concehm.particulay this is the case when there is a strong need
to guaranteearious safety or security constraintds a motvating example, the programming
language Standard ML (SML) is descended from a Meta-Language (ML) used to guide a goal-
directed theorem-pwing system [16]. The standard [27] as completed in 1987 and is
described via a set of mathematical rul&nce the soundness of the language as a theorem-
proving vehicle was a paramount early concern, the semantics of the languasgeowstructed
with great rigor and attention to deta{Lonsequentlyit is ane of the most rigorously designed
languages being used in sigogint programming projectdt has, for instance, been of interest to
DARPA, which has funded research on its potential use in systems anorkgregramming
[18].

We would like to gpply techniques similar to the ones used to design and specify SML to
similar goals for the&switdh\Ware language. Thisvill make it possible to apply a collection of
techniques desloped by the programming language theory community to the languiager
ticular, it will be possible to formulate and pe\arious safety and security properties based on
the language defition. Thiswill ensure that programs written in the language aratuated
with a correct interpreter will respect such propertiesofs of this kind cannot be wed as a
‘silver tullet—they will be limited in scope and ditult if the SwitthhWare language is laye—
but researchers ka had success with the wiopment of appropriate mathematical techniques
and marshalling of automated tools to attack such problemafimug languagesin particular
work at Penn under the supervision of Carl Gunter has hadisaiSuccess with SML, which
should form a solid starting-point forork on theSwitd\Ware language, which will be imple-
mented as part of theqgerimental €brt in this project.

4.4. Authenticated Type-checled modules

When we apply mathematical methods to the cardéa highly-aailable distrituted switching

fabric, which depends on type-checking, we masefthe challenge of making the formal guar
antees in theace of threats in the netwk [31]. Several authors hee aldressed the need for
secure object storage [15] in such amiemment, and ne cryptographic technologies [10] for
digital signatures are applicable to thiviemnment; in particular a type-chestk module can be
stored in a machine-independent form, which is then either signed directly or supported by a
secure hashing algorithmiNew technologies are becomingadable for message-hashing, such
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as MD5, which can beevy helpful in distribted type-checkingA trusted authority is refer
enced as part of loading amenodule into the systemThis work can easily bild on &isting
work for distributing loadable modules [22]A rogue loadable module can be ledkat as a par
ticularly harmful form of virus, one introduced directly into the r@tinfrastructure, so we can
draw on the considerable avk [38] focused on this topic.

5. Concurrency and garbage collection

Garbage collection is crucial becausevitids the possibility that storage will be returned to the
memory allocator while it is still in use. Usingrpage collection alsovaids the possibility that
unused storage will not be returned to the allocamiding the problem of "memory leaks".
Even slav leaks can cause longdd srvers to crash and thealso cause systems to use
resources unnecessarily

Users ofemacs know that cgarbage collectors typically stop the client program while
reclaiming storage, creatinggarbage ollection pauseThese pauses can be of arbitrary length
and sgeral second pauses are not uncommhile annging to the users of interaeé pro-
grams, thg can be catastrophic to real-time control prograf@ensidey for example, a com-
puteraugmented jetighter occasionally losing control for afeseconds at Mach 2And yet,
such applications are also ones in which freedom from crashes related to pointer errors is highly
desirable. Theasic technique for eliminating pauses is tovaltbe collector to run concur
rently with the client, as discussednhe

Threads are prxaded in Ja&a, thus preiding low-level support for parallelism; it seems
likely that this will be one of the Walevel mechanisms used by parallel applications. Unfortu-
nately the dgree of concurrencoffered by such an implementation is limited by the need to
gabage collect the store sequentialNettles,et al.,have devdoped a ne/ concurrent GC tech-
nigue, replicating collection[34]. Basedon ideas from distrilited systems, replicating collec-
tion is a simple and and elant solution to the difcult problem of making cgfng collection
concurrent. Ihas been implemented in the runtime of SML/NJ on both DEC uniprocessors run-
ning Mach and on SGI multiprocessors using IRTXe results of the implementation shthat
GC can mak good adwentage of parallel machines, thus eliminating the concurisottieneck
caused by arbage collection. More importantlthe results she that replicating collection is
very successful at eliminating the long pauses often associated avliagg collection.These
pauses are a substantial reason for higd-leanguages not being used for performance critical
applications [33].These techniques are applicable to otlabgge-collected languagesdifava
and should greatly impve the performance ofagbage-collected languages, andwalkgnifi-
cant speedups on multiprocessors.

6. Relatedresearch

Borensteins ATOMICMAIL [7] system used LISP functions embedded in electronic mail mes-
sages, to supportverlay functions such as automatically generated mailing lists and ageftw
distribution via e-mail. Considerablealue stemmed from combining message transport with
programs applied to interpreting the messages, especially for widely heterogeneougingser en
ments.

The SOFTNET [50] systemasg a packt radio netwrk where paoits of multithreaded M-
FORTH code were interpreted by neixk elements consisting of baprocessor nodes; one ser
viced network events, and the other ran user program$ie nodes were supported by a small
operating system, which protected the r@tvelementseg., to prevent buggy programs from
destrging the packt-switching &bric. Thefocus was proof-of-concept rather than a wholesale
change in netark infrastructure, models and run-time support.
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Erlang [3] is a concurrent functional programming language fgelardustrial real-time
systems, pnading transparent cross-platform distrilon, primitves for detecting run-time
errors, real-timeGC, and dynamic code replacemeifirlang has been depled in switches
built by Ericsson. It does not preide the strong static type checking we propose in our
approach.

A previous Bellcore project, theoliring Machine, is a distnited multimedia communica-
tion system which supported 150 users in both point-to-point communications and broadcast
meetings and lectureS.he architecture has masimilarities to an actie retwork. Network ele-
ments, such as the end nodes, switches, and audio/video bridgese aduiated processors.
All communication functions, such as connection setupéean, were performed by sending
blocks of eecutable LISP code toavious processor platforms in the netiw There vas no for
mal model and no abstraction useful for security and interoperalalittation deeloped.

The SPIN [5] Project is anfeft to kuild extensible operating systemerkels, with the idea
that type-safe Modula-3 code could be loaded into an operating system for reasons of perfor
mance or access to resources. Thiskwreinforces our belief that type-safe modern program-
ming languages are a fertile ground for systems programmingemtiee most performance-
sensitve ewvironment. While it is unlikly we can directly empjoany of the code produced by
the SPIN Project in our fefrts, we &pect that interactions with k&kminded researchers will be
valuable. The setting of a switch infrastructure haged#ht challenges, including the need for
resource partitioning algorithms, disuiled loading of type-cheek modules, security and a
high degree of multipleing/ parallel processing, that are less pressing tokstations.

The Scout Project [29] at the Weisity of Arizona uses an algorithm, patitfing, to opti-
mize the paths through protocoteeutions in a realization. This is aluable technology that
could be emplged in the hilding of SwithhWare, but does not directly address the algorithmic,
security and management issues \&eefin the design of an on-the-fly upgradable onetw
infrastructure. W kelieve that while Scout itself may be able to operate across reanron-
ments, it is preiding a level of abstraction that is too Vo to gain the interoperability adwntages
of our extensions to SML/NJ.

The Exolernel [14] project at MIT has been focusing on an operating system restructuring,
where much of the operating system functionality is carried out in libraries. There is still, for
security a reed for a smalldérnel. i believe that the protectiondenel approach has some fun-
damental performance limitations, especially @agsnds the high dgree of multiplging found in
a retwork switch. W kelieve that as the Exadrnel architects attempt to re-virtualize the O.S.
functions, for @ample by proiding multiplexing of an adapter with a processor embedded in the
adapterthat the will run into problems either with theue of abstraction (and therefore inter
operability) or with performance barriers that are vardable on today hardware. What it
seems likly they will contribute is a great deal of kmtedge on ha to craft systems which pro-
vide dedicated application access to adaptors, a model whicBvilidr\Ware run-time may
employ.

The FOX Project at CMU [18] is likely to be an essential supplier of technololysome-
what oversimplify, the research group at CMU has been focused/iargelizing SML to the sys-
tems communityand they havebeen doing this by focusing on interesting problems such as writ-
ing a TCP/IP in Standard ML [6]We look at the CMU wrk as preiding tools. Their imple-
mentation ideas for compilers [44] and run-timeiemments [23] can be wesd as aids and
assists to pnading a high-performance implementation of @witdi\Ware language system; in
essence, our SML/NXtnsions foiSwitdh\Ware ride the compiler technology cuezs well. Our
run-time research compliments their research, and our setting, a high-performance switch as part
of an actve retwork infrastructure, dmas on the strengths of our grou@ur focus in program-
ming language semantics ails us to attack the theoretical problems in a restricted xdptitat
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of an Active Network Switch, that increases our chances of success.

Turner’s goup [35] at Vshington Uniersity propose an approach of interconnectingpo
erful general purpose processors with arMAswitching system. Thus, the harawe has the
ability, in principle, to eecute SwitthhWare-like ftware. W kelieve that the security of this
approach (both for access control and resource denial, such as bandwidtiosjaiy depen-
dent on the security of UNIX rather than yeble statements about security enforced at compile
time, as in our approach. If you can do it once in the compiler do it repeatedly at run time?

7. Statusof the Project

Although SwitdhWare will depend critically on formal and mathematical techniques, we plan to
pursue anxperimental approach for the project as a whole.restructured our wark using
the three language model shobelav:

Switchlet Language

Wire Language

Infrastructure Language

Figure & The 3-language model ofSwitthhWare switch

To understand what we mean by these three languagks,l¢he Switchlet language is the lan-
guage with which users can access the programmable featuresSofitd\are switch, the wire
language is the form in which the Switchlets areveddoetween switches, and the infrastructure
language is the language in which the Swite@\switch itself is programmed. Onemple of
three languages might be avdgrogram written by a useits byte code form, and the C lan-
guage programs which comprise the byte code interpidiey is fact might preide a straight-
forward early implementation @witd\Ware ideas, &cept for the high hurdles of security and
formal semantics which we set for ourgsySome early implementations of aetretwork pro-
totypes,eg., the "Active IP Option" of Tennenhouse and &therall [45], use interpreters such as
TCL.

Our taget for the three languages is a restrictetbion of ML as a Switchlet languages,
with the restrictions implemented via strong type checking. The wire language will be an inter
mediate language in which the semantic properties of the Switchlet language will beepreserv
with type enforcementThe loadable language modulesuld be transported betwe&witdh-

Ware switches, forming trains of agé packets, comprisingswitcdletsin the wire language.or
presere the paver of the semantic model, type-chedkmodules can be digitally checksummed
with a Secure Hash Algorithm prded by a trusted authorityhis tales adantage of theact
that it is easier toerify the proof than to do the proof.

We lelieve that ML can be used as an infrastructure language, albeit with some non-
typesafe calls to l@-level device drivers. Theprogramming language implementation challenge
in SwithWare will be providing good performance for SML when it is used as a systems pro-
gramming language. A recent implementation of SML, the TIL compiler at CMU by Morrisett
and Tarditi [44], strongly suggests that SML implementations with performance similar to C are
feasible.
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7.1. APreliminary Experiment

To gain some gperience and to rank order the issues to be addressed in a full-scale implementa-
tion, we are bilding a small prototype switch, with initial softie supporting 100 Mb/s bridg-

ing. The prototype is mo bridging successfullyperforms self-learning, and we are implement-

ing a kirly complete subset of 802.1D spanning tree protocolsxueranental purposes. All of

the bridging functions are loadable, and are programmed in CAML, a dialect of ML. Thus
CAML is the Switchlet language, CAML bytecodes are the wire language, and C (in the form of
a LINUX kernel) is the infrastructure language. The system is running today on a 4 processor HP
Netsener with 166 Mhz Pentium processors [2], and weeet to hae IP routing features oper
ational to report in aifial paper The idea with the multiprocessor is that the processors act
simultaneously as port controllers an@aition engines for the language.

8. Conclusions

SwithWare is an attempt tovercome the flgibility limitations inherent in todag gpproaches to
internetworking. Theproject attacks the design of neik infrastructure using ideas from com-
munications and computer science, argdl@ts the latest adnces in programming language
technologywhich allov mary run-time checks to be replaced with static checking.

Switdh\Ware, and Switdh\Ware-like gproaches, enable an acceleration in pnétvevolution.
This dramatic speedup is the most importactdr in bringing n& services and capabilities to
all of us in the future.
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