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ABSTRACT

We defineprocess migration as the transfer of a sufficient amount of a process’s state from
one machine to another for the process to execute on the target machine.

This paper surveys proposed and implemented mechanisms for process migration.We pay
particular attention to the designer’s goals, such as performance, load-balancing, and reliability.
The effect of operating system design upon the ease of implementation is discussed in some
detail; we conclude that message-passing systems simplify designs for migration.
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1. Intr oduction

An image is a description of a computation
which can beexecutedby a computer. A processis an
image in some state of execution. At any giv en time,
thestateof the process can be represented as two com-
ponents: the initial state (theimage ) and thechanges
which have occurred due to execution. We note that
the completestateof a computation may include infor-
mation which is inaccessible, for example data kept in
tables internal to the operating system.

Process migration is thetransferof some (signif-
icant) subset of this information to another location, so
that an ongoing computation can be correctly contin-
ued. Thisis illustrated in Figure 1:
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Figure 1: Process Migration

The flow of execution of the process which is
being transferred is illustrated in Figure 2:
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Figure 2: Flow of Execution of Migrating Process

Note that we have illustrated the case where the
process does not begin execution on the destination
host until all of its state is transferred; in fact, it is pos-
sible for the "migrating" process to begin execution on
the destination almost immediately. This could be
done by transferring relevant registers and setting up an
address space; the remainder of the state would be sent
later or demand-paged as needed.The advantage of
complete state transfer is that the source machine can
release resources immediately upon completion of the
transfer.

We can define constraints on the computation so
that the subset transferred is sufficient to provide cor-
rect computationwith respect to the constraints.

If we transfer the state of a process from one
machine to another, we hav e migrated the process.
Process migration is most interesting in systems where
the involved processors do not share main memory, as
otherwise the state transfer is trivial. A typical environ-
ment where process migrationis interesting is
autonomous computers connected by a network.

Process migration is desirable in a distributed
system for several reasons, among them:

• Existing facilities may not provide sufficient
power; process migration can provide a simple
solution to the problems that exist as a result
of the weakness in the facilities. For example,
several existing implementations of distributed
file systems do not provide transparent access
to remote files; that is, the behavior of a
remote file can be differentiated from the
behavior of a local file - they hav e different
semantics. Since the usual semantics are
defined on the local processor, moving an
active process to the relevant processor pro-
vides a mechanism by which semantically cor-
rect remote access (e.g., with exclusive-access



-2-

"lock" mechanisms) can be accomplished.

• Long running processes may need to move in
order to provide reliability, or perhaps more
accurately, fault-tolerance, in the face of a cer-
tain class of faults about which advance notice
can be achieved. For example, the operating
system may deliver to the process a notifica-
tion that the system is about to shut down. In
this case, a process which wants to continue
should either migrate to another processor or
ensure that it can be restarted at some later
time on the current processor.

• Moving processes may serve as a tool for bal-
ancing the load across the processors in a dis-
tributed system.This load-balancing can have
a great effect on the performance of a system.
Eager, Lazowska, and Zahorjan16 indicate that
there is an opportunity for performance
increases. They derive asymptotes which
define the window of opportunity for balanc-
ing, and they point out that the more commu-
nication necessary for the distributed system to
perform the balancing, the worse the perfor-
mance becomes.Several algorithms to per-
forming the load balancing have been sug-
gested, for example, the Drafting Algorithm of
Ni 27 and the algorithm used in the MOS sys-
tem, developed by Livny and Melman 22.
Since a small subset of the processes running
on a multiprocessing system often account for
much of the load, a small amount of effort
spent off-loading such processes may yield a
big gain in performance.Empirical data gath-
ered by Leland and Ott20, and Cabrera9

strongly support this.

• Whenever the process performs data reduction
on some volume of data larger than the pro-
cess’s size, it may be advantageous to move
the process to the data.For example, a dis-
tributed database system may be asked to

Surprisingly, there are many such situations.For exam-
ple, an application which requires a dedicated node to
ensure real-time response, such as robot control, may
cause a notice to be posted to other computations, which
can then choose alternate nodes to continue their execu-
tion. Anotherexample is presented above.

MOS is mentioned in a later section of this paper, but the
discussion does not provide details on the load balancing
algorithm.

That is, it analyzes and reduces the volume of data by
generating some result.

perform a join operation on a remotely-
located dataset of size N.If the join is
expected to reduce the data volume by a sig-
nificant amount and the database is sufficiently
large, it may be advantageous to move the
local process object to the remote file object
rather than fetching the remote file object for
processing by the local process object.
Another example is a process which performs
statistical analysis of a large volume of data.
In the case where the process object is moved,
our data transfer consists of
size(process)+size(processed data); while the
data transfer in the case of the remote file
object being transferred to our site is
size(remote file).

• The resource desired is not remotely accessi-
ble. This is particularly true of special-
purpose hardware devices. For example, it
may be difficult to provide remote access to
facilities to perform Fast Fourier Transforms
or Array Processing; or this access may be
sufficiently slow to prohibit successful accom-
plishment of real-time objectives.

The next sections discuss several systems which
have been designed to support process migration.
While some of the systems are operational and others
are only paper designs, the basis for inclusion was an
innovative solution to some problem.The implementa-
tion status is noted in each section.

2. LOCUS

The LOCUS operating system45 developed at
UCLA provides a facility to migrate processes; the
LOCUS developers refer to this facility as "network"
tasking. Thisdevelopment is described in Butterfield
and Popek8.

The LOCUS operating system is based on
UNIX, and attempts to provide semantics equivalent to
a single machine UNIX system.Kernel modifications
provide transparent access to remote resources, as well
as enhanced reliability and availability.

The version of UNIX upon which LOCUS is
based has very limited interprocess communication
facilities. Themajor mechanism is thepipe, a one-way
link connecting two processes, areader and awriter ;
the kernel provides synchronization between processes
by suspending execution of the writer(reader) and
aw akening the reader(writer) when the pipe is
full(empty). Pipeshave the unfortunate characteristic
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that they must connect related processes, where related
is in the sense of common ancestry in a family tree
defined byfork() system calls.This deficiency is reme-
died in other versions of UNIX32, 18. Other mecha-
nisms for communication exist, such as signals but
these are clumsy, carry little data (about 4 bits per sig-
nal), and depend on privilege or inheritance relation-
ships between the communicating processes.

LOCUS addresses the access of remote resources
through modification of the file system interface. This
is consistent with LOCUS’s basis in UNIX 34 , as
UNIX resource access is primarily through files.
LOCUS provides transparent access to remote
resources by divorcing the location of the referenced
object from its name; the LOCUS file system appears
to the user to be a single rooted tree.Path name inter-
pretation results in a file handle, roughly equivalent to a
UNIX i-node44. This handle has associated with it a
file group ; a file group is similar in function to a UNIX
file system, except for the following significant differ-
ences:

• There may be multiple copies of thefile group,
each on different nodes of the system.

• A given copy of the file group may be incom-
plete; that is, it may contain only a subset of
the files contained in the entirety of thefile
group.

For example, a tape drive attached to a particular
LOCUS node might be accessed via the name
/dev/tape12 ; the name resolution process (which may
include several remote references in the course of
traversing the directory tree) would result in a handle
which would be used in (perhaps remotely) controlling
the device. Notethat multiple copies of whatever is the
result of the resolution process cannot exist in this case,
since there is in fact only one copy of the physical
device available.

UNIX file system semantics are such that the fol-
lowing is true:

— Name interpretation is done in order to return
an object which can be used to access the
named resource, thefile descriptor.

— All access is performed by means of the file
descriptor, e.g. data transfer.

— The name spaceis distinct from theobject
space, in the following sense:

• objects may have sev eral names, vialinks

• objects exist which have no name. An
obvious example is thepipe ; a less obvi-
ous but still common example is provided
by this sequence of 2 system calls, the first
of which obtains a descriptor for the file
"name" and the second which removes
"name" from the namespace.

fd = open( "name" );
unlink( "name" );

The descriptor remains valid, thus this a
popular method for creating temporary
files which do not exist past program ter-
mination.

The motivation for file descriptors is the quick lookup
of the state information the kernel maintains about the
file, as well as saving the overhead of path name inter-
pretation on each file operation.As files can be
accessed a byte at a time, this overhead is potentially
enormous.

Associated with a running process are such data
as:

1.)
A table of currently open file descriptors,
with which are associated other kernel state
such as the current position within the file.

2.)
A current working directory, used to facili-
tate abbreviated relative path names.

3.)
A process identifier.

4.)
Pending signals, which are not handled until
the process is next run.

5.)
Zero or more child processes, created
through fork(), from each of which an exit
status value can be obtained.

6.)
Kernel table entries which are used to pro-
vide various system services, for example,
virtual addressing.

7.)
Miscellaneous data, such as parent process
identifier, CPU utilization, et cetera.

Process creation is done via thefork() system
call, which creates a new process executing the same
program image as the caller (the return value of the call
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allows parent and child processes to identify them-
selves as such).Exec()replaces the code and data of a
running process with a named program image.These
calls are modified in the LOCUS system so that the
newly created process may begin executing at an alter-
nate site; mechanisms exist with which a set of possible
execution sites may be associated with a process.

In addition, a system callmigrate()was added to
permit a process to change its location while executing.
Exec() can be performed across heterogeneous CPU
types, as the new process state is derived from an
image file which can be specific to each processor type;
fork() and migrate() cannot, as existing state informa-
tion such as registers and the instruction stream cannot
be translated.A complete discussion of the heteroge-
neousexec() mechanism is provided in Butterfield and
Popek8.

As the LOCUS system provides global access to
objects at the kernel level, the descriptors in the posses-
sion of the migrated process are still valid. Other
UNIX semantics requiredmore implementation effort
to preserve. In particular, the delivery of signals and
shared file pointers are difficult as a result of the
semantics ofinheritance; signalling a child process
requires that the current location of the child process be
known or discovered. Thiscan be difficult where the
child process has migrated, perhaps more than once.
The file pointer problem requires that new system file
table entries be created for a migrated process; see
Thompson44 for details.

3. DEMOS/MP

DEMOS/MP is a distributed system developed at
the University of California, Berkeley 30. DEMOS/MP
is based on the message-passing paradigm, where com-
munication between active processes is carried on by
means of kernel-managedmessages. It is based on the
earlier DEMOS system for the CRAY-1 5 which used
message passing as the communication mechanism.
Messages are passed by means oflinks associated with
a process; a process willing to accept messages creates
a link ; the link can be passed in a message.Links are
managed by the DEMOS/MP kernel; the kernel partici-
pates in all link operations even though conceptual con-
trol remains with the process the link addresses (its cre-
ator). Linksare context-independent in the sense that a
link always points to this originator, even if i t has been
passed to another process.

Associated with the link is amessage process
address,consisting of a <process identifier, last known

address> pair. The globally uniqueprocess identifier
is in turn composed of a <creating machine, local
identifier> pair. When a process is moved to a remote
system, the following sequence of events occurs:

1.)
Remove the process from execution. This
state is marked, but the system state (e.g.,
BLOCKED, RUNNING) is left untouched;
arriving messages are placed on the message
queues associated with each link.

2.)
Ask thedestinationkernel to move the pro-
cess. Notethat control is held by thedestina-
tion kernel up until Step #6.

3.)
Allocate process state on thedestinationpro-
cessor. The newly allocated process state has
the sameprocess identifieras the migrating
process. Resources such as the swap space
are reserved at this time.

4.)
Transfer the process state information main-
tained by the kernel.

5.)
Transfer the program.Memory allocation,et
cetera, are taken care of by the primitives for
data transfer. Control returns to thesource
kernel at completion.

6.)
Pending messages are forwarded to thedesti-
nation ; the location portion of the process
address for the message is changed to reflect
the new location.

7.)
On thesource, all state data (e.g., memory) is
deallocated. A degenerate process state,
called theforwarding address,points to the
last knownmachine to which the process was
migrated (This information can be updated
later, if newer data arrives). This is the
clean-up.

8.)
The process is restarted on thedestination.

4. XOS

X-TREE is an architecture for the design and con-
struction of distributed microprocessor computer sys-
tems. Itprovides a model for building powerful, low-
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cost systems comprised of many identical microproces-
sor chips, communicating using a tree structure.Com-
puters using such a tree-structured architecture exist
and are operational in research environments21, 35 For
example the DADO-2 processor 38 developed at
Columbia University is composed of 1023 Intel 8751
processors connected in a binary tree structure.
Input/Output devices in the X-TREE architecture are
attached to the leaf nodes of the tree.This is illustrated
in Figure 3.

X1

X2 X3

X4 X5

I/O I/O

Figure 3: X-TREE Ar chitecture

One of the specific goals of the XOS operating
system25 designed for the X-TREE architecture is to
provide support for process migration.The idea is that
this could aid in effective utilization of the connection
tree by reducing traffic in the tree. Traffic would be
reduced by clustering communicating processes
closely; in this way, communications which spanned
long stretches of the tree would be minimized, thus
reducing the global traffic.

XOS uses the paradigm of processes communi-
cating viamessages and message streams. A process

This is not the only method for connecting I/O devices.
DADO-2, for example, does not use this method, while
the NON-Von-4 proposed connecting them at an interme-
diate level.

exists on only one processor at a time although it may
migrate from one processor to another during the
course of its computation.The process is described in
its entirety by theProcess Work Object(PWO). A sin-
gle capability (theprocess pointer) points to the PWO;
the PWO encapsulates all of the information necessary
for process control. The compact representation
enables both rapid context switches and the ability to
swap the process to disk and from there on to another
node of the X-TREE. This transfer can also take place
directly between the nodes, without the intervening
swap. Itshould be clear that these actions are sufficient
to migrate the process to another processor.

The interprocess communication is similar to
that of DEMOS5 in that it is message-based, unidirec-
tional, and capability accessed.Remote and local com-
munication appear the same to processes.

All messages are sent to aport, owned by some
process. Whena process wishes to receive messages, it
creates a port object and passes send capabilities for
that port to other processes.It can do this either by:

— saving the capabilities in commonly-
accessible (i.e., "well-known") objects; or

— handing them off to a "switchboard" process
with which every process can communicate.

Note that when a process moves, all processes
communicating with it have to update their pointers to
its port objects, which have moved with it. The point-
ers are treated ashints to the sender; they may be
wrong. If a send arrives at the wrong node, a special
NAK is sent to inform the sender that the process has
moved. In this case, the port object is fetched from the
disk, and the send retried; this continues until the "rov-
ing" process is found, i.e., the message catches up with
it.

Interestingly, XOS supports both Datagram and
Stream (Virtual Circuit) types of communication.

5. V

The V kernel14, 19, dev eloped at Stanford Univer-
sity, is a  message-oriented kernel which provides uni-
form local and network interprocess communication.It
is modelled after the earlier Thoth13, 12 operating sys-
tem which influenced the choice of kernel primitives.
These are:

• Send( message, pid )

• pid = Receive( message )
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• <pid, count> = ReceiveWithSeg-
ment( message, segptr, segsize
)

• Reply( message, pid )

• ReplyWithSegment( message, pid,
destptr, segptr, segsize )

• MoveFrom( srcpid, dest, src,
count )

• MoveTo( destpid, dest, src,
count )

• SetPid( logical_id, pid, scope
)

• pid = GetPid( logical_id, scope
)

Processes are identified by means of a globally
unique process identifier, or pid, where global is meant
to be interpreted within the context of a given local net-
work. A < host id, local unique id> pair comprise the
pid ; thus the mapping frompid to process location can
be done rapidly. Interprocess communication is
designed to be performed via fixed sizemessages ;
these are 32 bytes in length.The typical interaction
between two communicating processes A and B is
illustrated in Figure 4:

Process A: Process B:

Send( Amsg, B )

Receive( Amsg )

{processing}{blocked}

Reply( Amsg, A )

Receive( Amsg )

Figure 4: Typical Interprocess Communication in V

Process A remains blocked until process B posts a
reply; note that the synchronous nature of communica-
tion allows copying directly between process address
spaces as well as re-use of the message "Amsg".Thus
no kernel buffers are necessary and queueing problems
are thus reduced.Messages are queued for receiving
processes in FIFO order. The other message primitives
are for larger data transfers, for example page or file
access. Experiencewith earlier designs led to this dis-
tinction between small messages and a facility for data
transfer. The non-communication kernel primitives
manipulate pids; scopes are local or remote;

logical_ids are, e.g.,fileserver or nameserver;thus,
SetPid() could be used to identify a particular pro-
cess to the network as afileserver. Much of the design
of the V kernel is motivated by high performance; par-
ticular attention is paid to the efficiency of the kernel’s
execution time with respect tonetwork penalty, a mea-
sure of the difference in cost between performing an
operation locally and performing it remotely.

Facilities for process migration exist in the V
system43 ; the designers refer to these as facilities for
preemptable remote execution, the idea being that
remote execution is a good thing but shouldn’t cause
users to lose control of their workstations. Thepre-
emptable remote execution facilities of the V kernel
allow idle workstations to be used as a "pool of proces-
sors". Threebasic issues are addressed in the design:

1.)
Programs should have a network-transparent
execution environment, where the names,
operations, and data with which the program
can interact comprise this environment.
Environments including directly addressed
hardware devices such as graphics frame
buffers present a problem.

2.)
Migration of a program should not introduce
excess interference, either to the progress of
the process involved, or to the system as a
whole. Migrationrequires atomic transfer of
a copy of the program state to another host.
Atomic transfer ensures that other system
components cannot detect the existence of
multiple process copies.Suspending the
execution may lead to failures due to delays
in interactions with other processes, and
hence the time must be kept short.

3.)
A migrated program should not exhibit
dependencies on previous locations, in the
sense that the previous host should not con-
tain state information about the process, e.g.,
location pointers necessary to forward mes-
sages queued at the previous host. Other-
wise, it is argued, there is still a load imposed
on the host, which reduces the benefits of
migration. Inaddition, previous host failure
may cause a program to fail due to dependen-
cies.
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In V, the execution environment is transparent,
because:

• The address space is virtualized by the kernel
equivalently across nodes, and is thus transpar-
ent.

• All references outside the address space are
performed using network-transparent interpro-
cess communication primitives and globally
unique identifiers, as described previously.
The exceptions are the host-specific kernel
server and program manager.

• Programs which directly address a device can-
not be migrated.This is typically not a prob-
lem, as most programs access devices through
globally accessible device servers which
remain co-resident with the device.

• The exceptions to the transparent access, the
kernel server and the program manager, pro-
vide identical services to all processes; they
can always be located by virtue of their mem-
bership in "well-known" process groups.

The V implementation reduces the amount of
time a process is suspended bypre-copyinga large
amount of state; the designers note that with multi-
megabyte virtual address spaces, the amount of state
implies a great deal of data transfer. Migration of a
process is actually migration of thelogical hostcon-
taining the process.A logical host is defined by an
address space in which multiple V processes may run.

The procedure to migrate alogical hostconsists
of the following 5 steps:

1.)
Locate another workstation (via IPC with
members of the program manager group) that
is willing and able to accept the migrating
logical host.

2.)
Initialize the new host to accept the logical
host.

3.)
Pre-copy the state of thelogical host to be
migrated to the new site.

4.)
Freeze the migratinglogical hostand com-
plete the copy of i ts state.

5.)
Unfreeze the new logical host,delete the old

logical host,and rebind references.

Of particular interest are the mechanics of setting
up the new logical hostand pre-copying its state from
the previous host.The new logical hostis set up with a
distinct logical host id; this allows it to be accessed
distinctly from the previous logical host,e.g., by the
CopyTo() and CopyFrom() primitives for data
transfer. When pre-copying is completed, thesource
logical hostis frozen, and thedestination logical host
assumes the previous logical host id,in order to facili-
tate relocation of thatlogical host. Pre-copying is
implemented (once adestination logical hosthas been
set up) by the following algorithm:

repeat
{

transfer all state in the
old logical host
which has changed since
the last state transfer
to the new logical host;

}
until( changed state is small );
Figure 5: V Pre—copying Algorithm

Each iteration of this loop should be more rapid, as the
amount of data transferred should decrease, thus
decreasing the amount of state data that thesource logi-
cal hosthas opportunity to modify.

At termination of this loop, the copy operation is
completed, by:

• copying the remainder of the frozensource
logical host’s changed state.

• deleting outstanding interprocess communica-
tion requests.Senders are prompted to re-send
to the new host; V’s interprocess communica-
tion mechanism ensures that senders will retry
until successful receipt of a reply.

As described so far, this approach only deals
with state in the address space, kernel, and program
manager. Relevant state which is not in some globally
accessible server, e.g., a network file server, is migrated
with the logical host in order to remove dependencies
on previous hosts.This includes open files located on
disks local to a node; they are considered extensions of
the program state.The previously described mecha-
nisms could therefore be used to move them as well.It
is noted, however, that the files could be arbitrarily
large, thus introducing considerable delay. A given file
may already exist on the destination, thus saving
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copying; if the remote copy is a different version of the
file, the copy may be destructive and hence undesir-
able. A program may have the symbolic name of the
file stored internally, thus preventing changing the sym-
bolic name upon migration.This issue, of open file
migration, is currently not addressed, as the V System
consists of diskless workstations.

6. WORMS

The notion of a worm process is described in
Shoch and Hupp36 . The idea is somewhat different
than the other process migration schemes discussed in
this proposal, in that other schemes have aimed to be
tranparent to the process which is being migrated,
while the worm mechanism and supported processing
are very much aware of the underlying network and its
topology. Their basic model of a worm process is: "A
program or computation that can move from machine
to machine, harnessing resources as needed, and repli-
cating itself when necessary".Shoch and Hupp pro-
vide an example which is referred to as "The Blob",

"... a program that started out running in
one machine, but as its appetite for com-
puting cycles grew, it could reach out, find
unused machines, and grow to encompass
those resources.In the middle of the
night, such a program could mobilize hun-
dreds of machines in one building; in the
morning, as users reclaimed their
machines, the "blob" would have to retreat
in an orderly manner, gathering up the
intermediate results of its computation.
Holed up in one or two machines during
the day, the program could emerge again
later as resources became available, again
expanding the computation."

We make two observations before discussing the
details of worm processes:

1.)
The worm program makes decisions about
where and when to move.

2.)
The program logic is aware of the distributed
nature of the computation.

6.1. What’s in a worm?

The worm is so-called as a result of the organiza-
tion of the computation; the computation is broken up
into segments;the segmentsare distributed across one

or more machines.The name derives from the ability
of a segment to regenerate the entire worm if the need
arises. Thesegments of the worm remain in communi-
cation with each other while the computation is carried
out; the mode of communication is described later,
when theworm mechanism is discussed.The worm
mechanismis the support mechanism designed to cre-
ate (e.g., allocate machines for) and maintain the worm
segments, and is thus distinct from the user programs
built on top of the mechanism.The mechanism is dis-
cussed in the next section.

6.2. Worm Mechanism

A worm consists of the following logical pieces:

— Initialization code to run when the worm is
started on the first machine.

— Initialization code to run when started on any
subsequent machine.

— The main program, incorporating the mainte-
nance portions of the worm mechanism.

The tasks of this mechanism are as follows:

1.)
Locating other machines.(The physical con-
figuration of the testbed is a set of over 100
Xerox Alto 42 workstations, connected via
the Xerox experimental Ethernet24 .) The
first task of a worm is to fill out its full com-
plement of segments. A simple protocol
using a special packet format is used to find
free machines; communication is point-to-
point.

2.)
Booting an idle machine.The idle machine
is instructed to reboot from the network;
instead of the normal file-server supplied
bootstrap procedure, the worm supplies itself
as bootstraping code.Thus, the worm code
copied will be an exact copy of the running
segment which is attempting to obtain a new
machine. Somenecessary initialization is
performed by the new segment after arriving
at the new node.

Special in the sense that it is customized to this applica-
tion, rather than using a packet format from a general pur-
pose protocol.

There is logic in the worm mechanism which allows a
newly arrived segment of the worm to detect the fact that
it is on a new node.
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3.)
Intra-worm communication."I’m alive" sta-
tus packets are sent via brute-force multicasts
which are used to update status tables in
receiving segments; the "death" of a segment
causes, after a time, a new copy of the dead
segment to be spawned by one of the remain-
ing segments. Notethat in the case of a net-
work partition, two (or more, depending on
the nature of the partition) complete worms
may be created, if the worm is split across the
partition.

4.)
Termination. Worms release the machines
they are using by causing the machine to
reboot the code a machine runs when other-
wise idle, a memory diagnostic, from the net-
work.

Some features for worm management are also
present; in particular, there is an escape mechanism
which causes the worm to stop whatever it is doing
when a special packet is received over the network.
This was used to avert a catastrophe caused by an
unstable worm (it took over almost all of the machines
on their network), and led to the development of a
worm management utility to detect and prevent contin-
uation of unusual growth. This,along with better error
detection and a larger exchange of information, led to
more stable worm behavior.

The next section discusses several applications
which were built using the worm mechansisms.

6.3. Applications

The first application was an "existential worm".
This served to demonstrate the efficacy of the mecha-
nism; the worm consisted of a multi-segment worm
which ran an essentially null application program.This
served to test the management mechanism, communi-
cation mechanism, stability of the system, and the abil-
ity of the worm to operate despite machine failures.
Machine failures were artificially induced; this served
to demonstrate the robustness provided by a multi-
machine worm.

While there were other applications, we will dis-
cuss only one other here, the "alarm clock worm",
which was an application requiring reliability. The

Brute force multicast is the process of achieving multicast
semantics by use of multiple point-to-point communica-
tions.

worm implemented the alarm by means of an outgoing
call made via a dialer. The interesting features of this
worm are:

— Must maintain a consistent database of the
alarms to be rung.

— Each segment retains its own copy of the
database.

— Newly-created segments are given the current
list (this should happen by default, as the
complete state of the creating segment will
be passed to the new segment) when they
start up.

— New alarm requests are propagated by the
segment which accepted the request.

— Synchronization and locking of the alarm
delivery were made by the segment deliver-
ing the alarm; it began by informing the other
segments that it was about to make the call,
and when finished with the call, it informed
them to delete the entry from their database
copies.

— A segment of the worm had to be found to
place the alarm request into a segment; a sep-
arate user program was written which made
contact with a segment.

7. Application-Dir ected Process Migration

The basic idea behind Application-Directed Pro-
cess Migration23 is that the application involved speci-
fies when it is to migrate, and perhaps where it is to
migrate to. Thus transparency is not desired at this
layer of the system; the migration from point-to-point
must occur under process control rather than transpar-
ently. This is necessary, for example, to provide the
widest possible dispersion of processes across proces-
sors - a mechanism which precludes knowledge of the
process to processor mapping cannot provide this. This
dispersion is a desirable attribute where we wish to
take advantage of available hardware redundancy.

There are essentially two things which must be
specified about migration and associated process repli-
cation:

1.)
Whenthe process is to moved/copied.

2.)
Where the process is to be moved/copiedto.
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One way to coordinate the migration of the pro-
cess is to have the process migrate itself; this can be
done with a checkpoint/restart facility; such a facility is
discussed in the following sub-section.

7.1. Checkpoint/Restart

A checkpoint/restart facility is one which will
allow a process to save its state to acheckpoint; this
checkpoint will later be subjected to arestart procedure
which will resume execution of thecheckpointedpro-
cess at the point at which the checkpoint was made.
Such a facility is referred to as a "Checkpoint/Restart"
mechanism; such mechanisms have been available in
operating systems since the 1960s; see Auslander, et al
1. for a historical perspective.

There are several choices one can make in the
restoral of process state.For example, the
DEMOS/MP system30, 31 described above records all
messages which are sent.Since all communication
between a process and other entities (e.g. the operating
system or other processes) takes place via messages,
recording of these messages essentially captures and
records any information which could have causeda
state change.Thus replaying the messages serves to
bring a process up to the correct state, from the last
time it had been completely checkpointed.This
scheme, of course, relies quite heavily on the reliability
of the recorder. The idea of capturing state changes in
terms of messages, and recovery with message replay,
was also used in the Auragen System, described by
Borg, et al7.

We can use a checkpoint/restart facility com-
bined with file transfer facilities as a simple scheme to
provide process migration.This works as follows:

1.)
A running process creates a checkpoint.

2.)
The data of the checkpoint is transferred to
the remote destination.

3.)
The checkpoint data is used to create an up-
to-date running process on the remote
machine.

These three steps carry out the actions illustrated in
Figures 1 and 2.A description of the detailed construc-
tion of such a mechanism is in Ioannidis and Smith17.

8. Discussion

The introduction to the paper30 describing
DEMOS/MP’s process migration scheme makes the
following observation:

Process migration has been proposed as a
feature in a number of systems, but suc-
cessful implementations are rare.Some of
the problems encountered relate to discon-
necting the process from its old environ-
ment and connecting it with its new one,
not only making the the new location of
the process transparent to other processes,
but performing the transition without
affecting operations in progress.In many
systems, the state of a process is dis-
tributed among a number of tables in the
system making it hard to extract that infor-
mation from the source processor and cre-
ate corresponding entries on the destina-
tion processor. In other systems, the pres-
ence of a machine identifier as part of the
process identifier used in communication
makes continuous transparent interaction
with other processes impossible.In most
systems, the fact that some parts of the
system interact with processes in a loca-
tion-dependent way has meant that the sys-
tem is not free to move a process at any
point in time.

This observation gives us some insight into the
reasons why port or message based systems (such as
DEMOS/MP and Stanford’s V system) implement pro-
cess migration more easily than other system designs.
For example, the Amoeba distributed operating system
40, 39 developed at the Vrije Universiteit, Amsterdam,
under the direction of Andrew Tanenbaum, has as basic
components: processes, messages, and ports; processes
are active entities, communicating by exchanging mes-
sages via their ports.Tanenbaum and Van Renesse41

compare the implementation to some other systems.
The Accent33 system developed at Carnegie-Mellon
University (CMU) also uses the paradigm ofmessage-
passingbetweenprocessesthroughports as the means
of interprocess communication; the kernel provides
support for message passing, process creation and dele-
tion, virtual address spaces, and little else.While the
Accent system as described by Rashid and Robertson33

does not support process migration, it has been imple-
mented46.

The reason for the ease of implementation is the
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message-oriented system’s designs; a small kernel of
message-passing routines contains little state not in the
process’s context, and thus there is little at a given loca-
tion that a process can be dependent upon.All of the
changes in the process’s state are the result of passed
messages. Thisproperty is taken advantage of by Pow-
ell and Presotto31 in order to build a reliable dis-
tributed system; all messages are recorded, to be
replayed if a process fails in order to provide it with the
correct state.This idea is essentially "logging" from
Database systems6, 15 applied to the context of process
address spaces.XOS would be expected to have this
same advantage had it been completely implemented; it
is interesting mainly as an example of how process
migration could allow better utilization of a tree-
structured multiprocessor.

LOCUS has more difficulty as the UNIX process
model 44 requires a great deal of context to be main-
tained. However, giv en that the file system is the main
point of interface, and that the file system name space
is global in LOCUS, process migration is eased some-
what. Without such a name space, there are several
troublesome issues; some of these are discussed by
Cagle10, Chen11, and Ioannidis and Smith17.

The MOS system, developed at the Hebrew Uni-
versity of Jerusalem3, 4, 2, is also based on UNIX and
attempts to emulate a single machine UNIX system
using a collection of loosely connected independent
homogeneous computers.MOS has a global name
space; a feature of the implementation is the notion of a
universal i-node pointer; these effectively provide uni-
form (i.e., transparent remote) access to resources, as in
the LOCUS system; thus while the process possesses
context, a great deal of it is location-independent.This
makes process migration less difficult. This same sort
of global naming scheme is employed by the UNIX-
like Sprite 29 operating system.

Typically, the designers have intended their
efforts to be transparent; this is not always the case.
Consider WORM processes, which are aware of their
components and location.State is explicitly managed
by the WORM mechanism, and the programmer of the
WORM develops an application’s fault-tolerance if that
is required.

In any case, these process migration mechanisms
demonstrate that the state of an executing process can

Designers of early message-based distributed systems,
such as Farber’s 26 Distributed Computing System noted
the ease of implementation.

be moved between homogeneous machines, and that
the execution can be continued.The transfer of address
spaces is interesting because the methodology has a
strong effect on the utility of the scheme.For example,
Sprite28 and the checkpoint-based schemes create state
descriptions in the file system; thus mechanisms which
exist to copy files can be used to create replicas of pro-
cesses.
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