The Software Design Laboratory

Jonathan M. Smith

Distributed Systems Laboratory
Computer and Information Science
University of Pennsylania
Philadelphia, R 19104-6389

ABSTRACT

Software Design Laboratory is an ungexduate
practicum in softare design, which focuses on principles
and practices of lge-scale softare design.Concepts
and examples borraved from elsehere in Computer Sci-
ence are applied to the construction of a sicguift pro-
ject, namely a command interpreter resembling the
Bourne shell. The course focus is on long«d software
systems of a size requiring grougoef. We therefore
address maintenance, testing, documentation, code read-
ability, version control, and group dynamics.

1. INTRODUCTION

There is a transition invery Computer Science curriculum between
introductory courses which are suitable for non-majors and more
advanced coursesThe former typically introduce one or more pro-
gramming languages (ofteragtal, lnt sometimes Lisp, Scheme, or
some other language), touch upon basic data structures (e.g., trees
and queues), and introduce fundamental algorithms (e.g., sorting and
searching). Thassignments are small: theither demonstrate lan-
guage features omibd toy applications of algorithms and data struc-
tures. Thg are, naturally individual assignments.The latter
courses, designed for Junior and Senior Majors, are typically elec-
tives, and der in-depth treatment of some topic in Computer Sci-
ence. Thesemay range from Programming Languages, Operating
Systems, and Ariigial Intelligence to Analysis of Algorithms, and
tend to reflectdculty interests more than introductory courséke

more practically-oriented courses often use projects or case studies to
reinforce concepts discussed in cla$fe instructors may stimulate

the adanced undgraduate to participate in researctiods by
means of a project course or a directed independent. sklidgy of

these projects use the C programming language, or\&atdexisich



-2

as C++, and»>gpect a vorking knavledge of the oix® operating
system. Theavork in such courses may be done in groups, or it may
be done in collaboration with ae#i researchers who ha sgnificant
software eforts. Ata high level, this describes the situation at Penn
and maw other schoolst.

We have developed a course irsoftware design which we
believe fits well at the point of the transitionMe all this course a
“ Laboratory’ for its training in thepplication of principles. In this,
it is like laboratories déred by other disciplines such asyBics and
Chemistry Unlike traditional laboratories, the focus is less on the
experimental method than on learning from a singkereded gperi-
ment. Thelearning is directed twards construction of signdant
long-lived systems, as opposed to construction of wWaay exam-
ples.

A number of obsemtions helped shape the course:

1. Signifcant softvare engineering tasks\ea bng lifetime, charac-
terized by a design phase, an implementation phase, and a long
“ maintenance phase’ln real systems, thémaintenance phase’
accounts for most of the mongpent, and thus there is typically
significant efort spent in the design phase to ease maintenance.
One dificulty with long-lved systems is that efronments change
and ne&v features are required. Thus, one must design for mainte-
nance, coupled with the notion of soéire re-use. A course should
structure assignments in such aywthat preious work must be
reused, as in an implementation done in phases. At each phase, the
previous code is used, or the intruckothde is used (necessitating
reading and understanding a system which is more canasle
time goes on), as a platform.

2. Testing stratgies, and design straies which enable and ease test-
ing must be introducedn mary cases, design avtiies are essen-
tially independent of an implementationytball implementation
phases demand testing. The choice of test cases, and the choice of
testers, is crucial to fefctive testing.

3. Documentations essential, because nyamvaved in the design
and engineering of sigmifant systems do notamt to read the pre-
cise statement of problem solution embodied in the code in order
to obtain adequate understanding for their role.yThant to
understand precisely only the intés required for performance
of their avn tasks. The rest may be useful for the big picture. This
documentation can tekmary forms:

» embedded commentary
® UNIX is a reyistered trademark of Unix System Laboratories.

T This course started at Columbia Wabsity and has continued tovave & the
University of Pennsylania.



-3-

» associated ifes in a tat-processing language such tasff or

TEX.

* pointers to releant literature embedded as comments in the pro-
gram text

* Roadmaps or meta-documents describing relationships between
modules

All of these things aid human understanding, because big systems
need more than aviepeople on the sameawvdength.

4. Codingstandards,\en loose ones, help program readahilityis
important to read code, and code must be written in suciyaas/
to be read; style sheets help this.

The course has successfully accomplished these goals for a number
of semestersThe student leaes the course with a thorough under
standing of a tool-rich programmingw@mnment that man profes-

sional programmers consider axcellent one. More important, the

will have worked on a project of signdant scope, tilt a signifcant
software artifict, and will understand the group nature of systems
building. Formal methods are addressed as a methodolugya
known solution.

Software Design Laboratory'$oftware Lab’) is an undegrad-
uate course, and thus feifs signifcantly from graduate-iel soft-
ware engineering training, e.g, ahg Institutes row-defunct
[Ardis1987a, Mckemanl1987a] Master of Sofive Engineering
(MSE) program.For such courses a highenvig of prerequisites and
background could bexpected, and sfitient attention paid to all
aspects of the softwe lifeg/cle. Suchgraduate courses presumably
have the adantage of prior studenixposure to Computer Science,
and thus can direct more eggrtovards softvare engineering, and
less tavards the “glue” connecting softare design to other areas of
Computer ScienceSome of these other courses, in particular the
“ Software Hut’ [Horningl977a, Wrtmanl1987a], hae aldressed
group structure and interaction issues in gecgiht fashion than Soft-
ware Lab, lut for the thrust of our course thesefeliénces do not
seem appropriateAn interesting obseation is made in the 1987
article [Wortman1987a] on the ofonto course, where &ktman
states:

"We rnow feel that the emphasis onying and selling soft-
ware in the original softare hut project ave the whole
project the wrong orientationThe course we teach is
about the design and implementation of safey not about
software marlkting."

Kant's [Kant1981a] course, with students ranging from freshmen to
graduate students was different portions of the lifeycle than Soft-
ware Lab Her article proides a course outline, with interjected-te
tual comments. The feedback was similar; namelythe course



-4 -

required too much wrk for the number of creditsHer group size
was 5 versus our 3.

Software Lab is consistent with the sawresults gthered by
Leventhal and Mynatt [Leenthal1987a] in that it is téred to Junior
and Senioteve students, focuses orlLater-Life-Cycle” issues, is
project-oriented, the grade is kég based on success with the pro-
ject, and the substantial project is intended for actual Weedffer
in that the requirements for written reports are lessened (this stems
partly from the project, anxesting well-documented piece of soft-
ware) and no oral reports ox@aminations are required.

Bentley and Dallens [Bentley1987a] setting is similaalthough
their course déring appears to be slightly later in the$/Point cur
riculum than Softwre Lab is in ours.We rote their approach of
using mag smaller ercises to teach sof@ave engineering princi-
ples. Thiscontrasts with Softare Lab approach of using a single
large project, partitioned into deopment stages.

Morris’s [Morris1988a] course isery similar to Software Lab;
he recognizes marof the same needs, and took similar approaches.
The major diference we see ag the choice of project, a majleer-
sus Softvare Labs command interpreter (discussed in the second
section). Sincéhe command interpreter is a programming language,
and its functionality is tightly ingrated with the features ofNLK,
our ercise efectively bundled up learningx@eriences from seral
domains. Aswve agued earlierthis efectively integrates a softare
design practicum with other portions of our Computer Science cur
riculum. Thus,it both huilds upon and reinforces that curriculum,
and gves the student kneledge of lasting &lue.

The remainder of the paper igganized bginning with a rather
detailed presentation of course material in the second seckioa.
course is summarized irafile | at the end of the sectiofhe third
section discusses the course management issues and relateseSoftw
Lab to laboratory xercises in classical scientf disciplines. The
fourth section concludes the paper and relates the cewasmm-
plishments to its educational goals.

2. COURSE DETAILS

The course presentation is designed so thetred material wuld
not become obsolete upon completion of the course; theredople
ment of both a project and a general purposébox, of both code
and techniques.

The following books comprise the course reading list:

* “The UNIX Programming Environment” [ Kernighan1984a], cho-
sen because it illustrates use of theptUtools and libraries on a
realistic @ample, namely a small programming language.

» “The Psychology of Computer Programming” [ Weinbeig1974a],



-5-

chosen because it focuses on thet that programming (softwe
design) is a human acitly, and that as the size and comyptg of

the system increases, the nature of the proper support tools
changes from programmer support tools to group support tools.
Also stresses reading programs, arefdless programming’
(groupthink). Batch programming discussion is unfortunately a bit
dated.

* “The Mythical Man-Month” [ Brooks1975a], \ws chosen for its
readable and insightful discussion of the OS/360 sot#wleelop-
ment and lessons learnedVhile mary points echo Winbep,
chief programmer teams are quitefeliént than goless program-
ming.

In addition, the follaving books and articles are background reading:

“The UNIX Operating SystenT Ritchie1978a],'The UNIX Shell”

[Bournel978a], ‘UNIX Implementation’ [ Thompson1978a], and

“The C Programming Language” [ Kernighan1978a] is also sug-

gested for students warhiliar with C and Wix:

In the net eight subsections, we present the assignments that
are gven and their intended role All assignments wolving pro-
gramming are speddfd as a MIX manual page, a clear and concise
form of speciication that the student is to banfiliar with. An
example manual page for a programming assignment is included as
Appendix I.

2.1. Associative Memory

The frst order of isiness is pragiency in writing, and especially in
reading the language used in the course, T@e students are advised
to consult Kernighan and Ritchie [gnighan1978a] and arevgn a

“ Style Sheet for Cwhich suggests a stylistic caamtion for writing

C source and bilding well-documented multi-module programs.

A program implementing an‘a'ssociatve memory’ is ds-
tributed to the class, in source forfihe program prompts the user
for an input; the input is a neline terminated string of characteris.
the input contains &’ characterthe characters to the left of the'’
are treated as @ame and the characters to the right are treated as a
value, which is associated with that namk there is no =’, and the
input contains a$’ characterthe characters to the right of tt& are
treated as aname; the associatedalue is retrieved and printed if
there is one.If neither =" or '$’ are present, the program merely
prompts for another inputlt accepts input lines until an end def
condition is raised.The <name, value> pairs are stored as singly
linked lists of structured records.

Thus, reading the well-commented source code introduces the
students to strings, records, terminal 1/0O, simple parsing, subroutines,
dynamic memory allocation, and pointersM@ts a source of trouble



-6-

to the student).The lecture material emphasizes the necessity of
reading source coddJsing the cowentions of the style sheet helps
to write readable source code.

The assignment is to modify the program so that it preserv
<name, value> pairs across wocations, i.e., it maintains them on
disk storage.This introduces the student to operations on named disk
files, and forces an understanding of the list maintenance code.

2.2. Env Command

Other than theile operations required to manipulate tkeame,
value> pairs across wocations, the student has encountered little of
UNIX. The second assignment is teav(l) command, which is
awailable with System V NiX, but not with most ersions of 4.[X]
BSD, which is used for teaching.he environment is a set okname,
value> pairs that are madevalable to subprocesses; it is a subset of
the <name, value> pairs accessible to the shell usér provides a
method for users to pass information to subprocesses witkplit-e
itly specifying options on a command line, e.g., the terminal is speci-
fied withTERM=hp2621; all screen-oriented programgamine this
vaue to determine appropriate terminal control sequenddse
assignecknv command has thevncation syntax:

env [-] [name=value]* [command [argument]*]

where containing braeks indicate that the contents are optional, and
“* " |sthe usual Kleene standicating zero or more repetitionhe
commandargument speciés a WIX command to xecute. Wth no
command argument, the program prints the strings contained in the
current emironment, otherwise the command iseeuted with the
specifed string settings in its gmonment. Thename=value argu-
ments specify ne settings, and the- ", if present, spedis that the
current emironment is to be ignored.

The program added the folling to the students education:

1. Understandingf the INIX command line ayjument handling dis-
cipline. Thussimple parsing is a@red.

2. Processnanagement, since the mechanism for setting thieoen
ment \alues uses thexec() system call.

3. Furtherunderstanding of thelé system, since command lookup
required search throughvseal directories, specéd through the
PATHervironment \ariable.

In addition, the student is able to nealse of whateer string man-
agement utility routines tyehad deeloped for theifst assignment.



-7 -

2.3. Design Document

The frst two assignments are to be done widually; they are exer-

cises to ensure dufient exposure for contribtions in a group set-
ting. The students are assigned readings describing the command
interpreter [Ritchie1l978a, Bournel978a] whose subsatildvbe
implemented. Groupare formed; students are alled to form 3-4
person groups with their acquaintances; groups of the remaining indi-
viduals are formed at random; the ideal size is 3.

Given their readings, the students are requested to submit a
design document describing their approach to designing the program
described in the literaturelhis is done both to ensure thatythed
read the literature and to create some group cohesion; there is no
intention to hold them to the desigihey are expected to detail data
structures, algorithms, and user inded featuresAt this point, thg
are introduced to seral paverful UNIX tools for program construc-
tion, make, a dependeng-specifying tool for recompilationtex, a
lexical analyzer generator; arydcc, a parser generatorWhile they
are gven gopropriate readings, a mordegdtive ool is to gve them
an xample. Theexample is theifst assignment redone using the
tools; eperience with the assignment helped the students to see the
vaue of these tools.

2.4. Command Execution and /O Redirection

The frst iteration of command interpretervé®pment required that

the student pnade an interactie facility for executing commands
with aguments and spe@fl I/O redirections.These redirections
allow commands operating on the standard output and impsttb

have the fle values speciéd on the command lineéThe syntax pro-
vides mechanisms for reading, writing, and appending to named disk
files, as well as the ability to operate onvpyesly openediles spec-

ified by a small‘file number. Thereis additional syntax for inter
active entry of files immediately prédous to commandx@cution.

The assignment alleed the students to use the mechanisms
developed in theenv assignment to create an interaetiiommand
interpreter The nev learning consisted mainly of the use of the
tools, which for aifst-time user is non-trial. Their understanding
of file manipulation technique is greatlypanded.

2.5. Metacharacters for filename pattern-
matching

The secondersion of the command interpreter added metacharacters
to the command line syntaMetacharacters, e.g. the wild card char
acter **” | are used to pattern matclehames so that lists of gu-
ments can be spe@f in a compactalshion. Br example, “pr

*[ch] 7 will print the C sourceilies and headers in the current



-8-

directory These patterns can be arbitrarily complicated; see Bourne
[Bournel978a] for detailsThe design of these additionsvatved
several components, of which the most important are a pattern
matcher and an intexte to the WX directory structure, so that
multi-directory patterns such agu*/faculty/j??/t[12]* 7
could be properly\auated.

Class time is spent ongelar pressions and metacharacters,
e.g., the Kleene . Once the rgular epression notion is under
stood, the construction of a pattern matcher becamexanise in
coding. Thestudents are advised tiost implement a single directory
pattern &pansion routine, which could then be rectelsi applied to
the multiple directory caselhus, the students argposed to:

1. Reular epressions (which tlyehad frst encountered withex ),
and more signi€antly, their implementation.

2. Rattern matching algorithms.
3. Hierarchical ife systems.

The efect of this &posure is ery positive, in that the student sees
the adantage of such compact notations apula epressions, and
the simplicity and peer of the hierarchicallé system in gractical
setting.

An important feature of the approach is the gnétion of nev
features into an»asting software framevork. Thus, good design
decisions and engineering practice, e.g. documentation, pay of
later assignmentsPoor decisions makintegration more difcult,
and may force substantial redesigihus the students argposed to
the issues of softare maintenance in a most practiaation.

2.6. Multiprocess computations and symbol
manipul ation

In the third iteration, there are éwadditions to the command inter
preter These are the addition of syntax and functionality for con-
necting processes via pipes, and inclusioraoilifies for setting and
retrieving named string-alued \ariables.

This assignment posed particular conceptual problems for the
students; we attrilie it to their frst encounter witltoncurrency, vir-
tual or otherwise.Use of thefork() primitive in previous eercises
helped, bt less than it might va snce thg are gven a @nonical
code sgment containing the commdork()/exec() sequence. The
inclusion of fcilities for \ariables dre on their earlier gperiences
with the *associatve memory’; mary groups re-used the code.

2.7. New parsing and execution for “ quotes”

The fourth andihal additions to the command interpreter are the
three types of quotation marks emydd by the Wix Shell, single



-9-

quotes ('), back-quotes (°), and double quotes (") [Bournel978a].
This addition is chosen for the folling two (major) reasons:

1. Itforced a careful redesign of theileal analysis routines and their
interface to the parser and interpret@ther than to add|”, the
symbol for separating pipeline components, there had been no
changes necessary to theidal analyzer since the initial assign-
ment.

2. Theimplementation of the back-quote, which spesifa string-
valued result to be obtained byeeuting the contained commands,
forced the students giue things together carefullyln particulag
the easiest ay of implementing this feature is with a gopf the
command interpreterwoked through a pipeline.

Attention is gven to issues such as the order wélaation applied to

the \arious features, and the demands this made on the implementa-
tion stratgy, for exkample the command stringp=*; echo $a  ”.
Progress through the programming assignmemtartts the complete
project is illustrated in Figure 1.

1. Associatre Memory

\
2. Erv Command

\
3. Design Document

\
4. Command BExcution & I/O Redirection

\
5. Metacharacters

\
6. Pipelines and &fiables

\
7. Quotes (Final Programming)

\
8. Lessons Learned

Figure1l: Steps twards inal project

2.8. “Lessons Learned”’

Mistakes (and triumphs), in retrospect, are among the nadgable
learning @periences. Accordinglythe students submit & éssons
Learned’ document, summarizing their pos#i and ngaive experi-
ences withtools and methodologiedn order that thg understand



-10 -

what such a document is to contain, a realistaa®le is gren based

on the instructos problems in constructing the command interpreter
As always, there is a wide separation between the best anst wf
these documents; the best are remarkably frank and insigthful, while
the worst are obious or mere restatements of the distréal exam-

ple.

What is most xciting is that may students disceer and formulate
principles of good design and dejging methodologiedor them-
seles, with @amples thg havetaken to heart because thiead huilt
them.

Table | gives a simmary of the course phaseswhan Figure 1.
Phases 1-2 are indidual efort, and Phases 3-8 are groufodf The
final project is complete by Phase 7, and Phases 3 and Seneaé
documentation steps. Project construction is from Phases 3 through 7.
Phases 1,2,3,5 and 8 are ainl one week for completion; Phases 4,
6 and 7 are alleed two weeks. Inpractice, the course schedule may
slide a bit during the semestbut adjustments are easily made.

Description Role Readings

1. Associatre Memory Familiarize with UNIX,C, [Bourne78a]
values in in-core DB, simple parsing & 1/0, [Ritchie78a]
add persistence reading code, comments Style Sheet
2. Change shellariables Bthnames, processes, [Thompson78a]
passed to subcommands | design from speditation
3. Describe approach to Force understanding of [Kernighan84a]
problem in a report problem & start group ark
4. Single-processxecution | learnex, yacc, UNIX
with redirection syntax 1/0 calls,fork()/exec(), SCCS
5. Argument pattern Directory structure & rgular [Brooks75a]
matching &pressions, reuse, testing
6. Writer Outs Reader In | Concurreng, synchronization,
named string ariables Macraubstitution,

string manipulation
7. “ - execute string Escapes, gression testing [Weinbeg74a]
" - escape white space recursve rocesses,
" - escape eerything parsestate ariables
8. Abstract from mistats Learningprinciples from
& successes in document | examples

Table I: Summary of Course Phases

Figure 2 illustrates the major reuses of code by relating reuse to the
implementation phases offile I. The relationship is illustrated by
enclosure; if Box N encloses Box M, PhaseshMbdde was used in
Phase N.



-11 -

6

7

Figure2: Re-use between implementation phases

3. DISCUSS ON OF THE COURSE

There are seral important components we see in a laboratory set-
ting, namely (1) ®periments; (2) replication ofxperiments; (3)
obsenration and deduction; and (4glassical’ | aboratory techniques,
such as maintaining laboratory notebooks or logs.

The course met for twsessions per weekThe frst session is
interactve, and the second is in a lecture formdthis ordering can
take advantage of an inteening weeknd to stimulate questions; stu-
dents &perimented with the material presented in the second day’
lecture. Thdecture material emphasizéekting and observation of
the results; a terminal in the classroom is used of@ffice hours
and help sessions were held in areas with termir&tisdent gperi-
mentation is of tw types. Firstgiven that the students were imple-
menting a shell-subset command interprdtesy could resole ques-
tions about the intended functionality of their saftes in a simple
fashion. Intheir “reverse-engineering’ they could experiment with
the standard shell to test the baba of redirection and quotation
marks. Theadeductions dravn from these xperiments were incorpo-
rated into the design of the student proje&tidents were enthusias-
tic about @perimenting; their xeperiments detected misek in pre-
ceding lectures!Second, the studentxperimented with ng con-
cepts by writing small programd=or example a twial multiprocess
pipeline was implemented to understand synchronization and data
movement. Thismethod of gperimentation is the basis fprototyp-
ing.

Experiments were replicated by the students feeraéreasons.
First, in delngging, a &ilure must be repeatable to be isolated and
diagnosed. Secondpary groups performedxperiments suggested
in class to increase their grasp of the materiscussion between
students led to mgrunexplained phenomena arising as questions in
the net interactve dass session.



-12 -

Obsenation is dealt with in three ays. First,several lectures
and interactions dealt with thexmerimental methods necessary for
reverse-engineering a Ige program.Second, the process of degp
ging software was discussedSome general principles of obsarv
tion, fault-detection, and alilt-reinement were gen. Third, a
detailed lecture on performance measurement and analysigusn.
This took a paper from the sciemtifiterature, gplained the results
and procedures, and themaenined the conclusionsThe lecture
emphasized measurement, presentation, and aldity of conclu-
sions.

“ Classical’ | ab techniques were noways applied, as the set-
ting is not the pysical sciencesOne technique deserving attention
is record maintenanceSuggested documentation included source-
code comments describing methods, and measurements justifying
design decisions, e.g., use of a certain methiduis, the comments
existed as a record of the design decisions andvatioins. The
“Lessons Learneddocument semd as a summary record of the stu-
dents dosenations; some of these were surprisingly detailed.

We wsed electronic communicatiomtensvely; this alloved the
student to obtain answers across the week, rather tham prdset
times. Anon-line hilletin board mechanism all@d posting of
sources, interesting questions, interesting answers, and details of the
assignments. Thisaved dass time for more appropriate interactions.

The choice of anxasting software system had a number of pasti
effects, including:

1. The command interpreter tllewere constructing is completely
documented [Bournel978ajsuch command interpreters are (1)
interactve, (2) programming languages, and (3) irkeds to an
underlying operating system, which piges a virtual machineln
addition, the shell is arxemplary piece of softare design.

2. Thefull interpreter thg were working towvards is the studerdt’
interface to the systemThus, thg become amiliar with its func-
tioning throughuse as well as instruction.Questions about
obscure functional details could be answered by typing in one or
more well-chosenxamples. Experimentatiowas avery worth-
while tool, as it should be in a laboratory courSsveral groups
of students corrected the instructor on interpreter details based on
their independentxperiments (sometimes success can be embar
rassing!).

The instructor completed all assignments, and generally made the

results mailable on-line. This (1) qavefeedback on the complity of

the assignments; and (2\genough insight and mastery of detail to

aid the student in all phases of the design process.

Grading of all programming assignmentsvioes to the project
completion relied on anven lit between code quality and



-13-

execution testing.The &ecution testing \as done based on the man-

ual page used to specify the assignment, andviieagion of code
quality had both an objeeg portion, consisting of adherence to a
style sheet, and a subje&icomponent, based on the gradqudg-

ment. Theeffect of the subjectity was reduced by diding the
assignments between the instructor and the teaching assistants, with
the dvision occurring randomly on grgiven assignment. Thénal
project was graded wholly by success aildire on a set of 30 tests
designed to »ercise the features speed in the manual pages.
Thus, the quality of the studestresults were ngewed. Subjectie
performance measures, such deretxpended, or document format-

ting skill, were not imolved. Thisis as it should beOne dificulty

which seems to alays occur in group work is unequal contrildions.

This was resoled by assigning all group members the same grade
unless there as a complaint.If there was a complaint, the entire
group was required to be present to discuss reassignment of credit.
Those not present at the discussion were assumed to be in agreement
with whatever conclusion vas reached. This reseld all complaints

in a satishctory manner

4. CONCLUSONS

Aside from introducing the students to C and theXJprogramming
ervironment, the course structure hagesal strong points:

» The student deslops a non-tiial toolkit, consisting of both tech-
nigues and desloped skills with softwre tools.

» The focus on one sigmiant project brings out the point of soft-
ware engineering, which is only apparent with scale and re-use
(much like avil engineering @ersus home carpentry).

» The process ofblding the project is used both to get across the
introductory material (in the inddual assignments) and to bring
in classical softare engineering issues, such as documentation,
tool usage, maintenance, reusahildycetera. In particular forc-
ing integration of n&v features with prgous work demands that
attention be paid tdesign. Of course, bilding on pre&ious work
shaws the alue ofre-use, as illustrated in Figure 2.

* The course is a lab course, and thuseedinglypractical in ori-
entation; discussion of issues such as the communication problems
and solutions of Brooks [Brooks1975a] are postponed until the stu-
dent has encountered them, and can appreciate the solutions.

Discussions with dculty colleagues reinforce the belief that the
toolkit approach hasalue in this setting; a discussion ofital anal-

ysis and parsing certainly mak more sense when the student has
already encountered these topics in practice; with some practical
exposure, historycurrent approaches and theory not only become
more accessibleub more relegant.



-14 -

The results hae keen encouraging in mgmways, it work remains

to be done.The graduates of the coursevaon the one hand, been
well-prepared for project courses andriwon faculty research pro-
jects, as well as for jobOn the other hand, there is a real risk that a
practical course can acquire ‘rdde school’ orientation, and the
instructor must ensure that material of lastiradue is taught.lt is

too easy to focus on technological details, and often hard to discern
true principles from folklore. It tads time, and we are still learning.

5. NOTES AND ACKNOWLEDGMENTS

Rodneg Farrav, Seve Feiner John loannidis, Gerald LeitneGerald

Q. Maguire, Jr and Peter Sweepndelped dgelop and reihe Soft-

ware Lab with the generosity of their ideas and timide students
and teaching assistants of Saite Lab fed back marearning &pe-

riences into the current course.

AT&T donated mawy copies of the ‘UNIX” |ssue (July-August,
1978) of the Bell Systemethnical Journal used inweeal editions
of Software Lab, and equipment donations from&A, Hewlett-

Packard, and IBM hee supported the computing needs.

A number of anoymous referees pvaded useful suggestions.

The complete materials for the course (which changes sligidty e
year) are zailable via anogmous FTP from
dsl.cis.upenn.edu , in the fle “ftp/pub/sdl.tar.Z

6. REFERENCES

[Ardis1987a] M.A. Ardis, “The Ewlution of Wang Institutes Mas-
ter of Softvare Engineering Program|EEE Transactions on
Software Engineering SE-13(11), pp.1149-1155, Special Issue
on Software Engineering Education (Menber 1987).

[Bentley1987a] J.L. Bentley and J. A. Dallen, ‘Exercises in Soft-
ware Desigr, |IEEE Transactions on Software Engineering
SE-13(11), pp.1164-1169, Special Issue on Sddte Engi-
neering Education (N@mber 1987).

[Bournel978a] S.RBourne, “The UNIX Shell} The Bell System
Technical Journal 57(6, Part 2), pp.1971-1990 (July-August
1978).

[Brooks1975a] FP. Brooks, Jr, The Mythical Man-Month, Addison-
Wesley, Reading, Mass. (1975).

[Horning1977a] JJ. Horning and D. B. 8ftman, “‘Software Hut: A
computer program engineering project in the form o&ime)
|EEE Transactions on Software Engineering SE-3, pp. 325-330
(July 1977).

[Kant1981a] E.Kant, ‘A Semester Course in Sofare Engineer
ing” ACM SGSOFT Software Engineering Notes 6(4),



-15-

pp. 52-76 (August, 1981).

[Kernighan1978a] B.WKernighan and D.M. RitchieThe C Pro-
gramming Language, Prentice-Hall (1978).

[Kernighan1984a] BW. Kernighan and R. P& The UNIX Pro-
gramming Environment, Prentice-Hall (1984).

[Leventhal1987a] L.M. Leventhal and B. TMynatt, ‘Components
of Typical Undegraduate Softare Engineering Courses:
Results from a Suey,” |EEE Transactions on Software Engi-
neering SE-13(11), pp.1193-1198, Special Issue on Sadre
Engineering Education (Nember 1987).

[McKeeman1987a] WM. McKeeman, ‘Experience with a Softare
Engineering Project CourselEEE Transactions on Software
Engineering SE-13(11), pp.1182-1192, Special Issue on Soft-
ware Engineering Education (Member 1987).

[Morris1988a] RobertA. Morris, “An Unorthodox Approach to
Undegraduate Softare Engineering Instructidn Computing
Systems 1(4), pp. 405-419 (1988).

[Ritchie1978a] D.M. Ritchie and K.L. Thompson,The UNIX
Time-Sharing Systefn,Bell System Technical Journal 57(6),
pp. 1905-1930 (July-August 1978).

[Thompson1978a] K.L.Thompson, ‘UNIX Implementation; The
Bell System Technical Journal 57(6, Part 2), pp.1931-1946
(July-August 1978).

[Weinbegl1974a] GeraldWeinberg, The Psychology of Computer
Programming, Van Nostrand (1974).

[Wortman1987a] D.B. Wortman, ‘Software Projects in an Aca-
demic Ewnironment; IEEE Transactions on Software Engi-
neering SE-13(11), pp.1176-1181, Special Issue on Scdre
Engineering Education (Nember 1987).



EXPAND(3) Appendixl EXPAND(3)
NAME

expand() - fle name generation routine

SYNOPSIS

char **expand( word)
char*word,;

DESCRIPTION

expand is used to prade the fle name generationa€ilities
described insh(1). The agumentword is a null-terminated
string of characterslf any of the three charactets ?, or [ is
contained inword, word is regarded as apattern. expand()
returns a list of pointers to alphabetically sortiéel iames that
match the pattern; the list is terminated by a NULL character
pointer If no file name is found which matches the pattern,
expand() returns the list consisting of a pointervtord and the
NULL pointer. The character at the start of aile name or
immediately follaving a/, as well as the charactéitself, must

be matched»plicitly. * Matches aw string, including the null
string. ? Matches ay single character[...] Matches apn one

of the enclosed characteré. pair of characters separated by
matches ayncharacter Igically between the paimclusve.

EXAMPLES

expand( "*.[ch]");
expand( "/usr/aculty/jms/*.d/[a-z]*.?" );

USAGE

expand() should be incorporated into your pi@us assignment,
i0(1), so that input lines containing patterns should xeew@ed
correctly e.g.

$ echo * >filel >file2

should create an emptyefl and an alphabetically sorted list of
file names from the current directory should appeadleB.f



