
-- --

Traffic Characteristics of a Distributed Memory System

Jonathan M. Smith and David J. Farber

Distributed Systems Laboratory
University of Pennsylvania, Philadelphia, PA 19104-6389

ABSTRACT

We believe that many distributed computing systems of the future will use distributed
shared memory as a technique for interprocess communication. Thus, traffic generated by
memory requests will be a major component of the traffic for any networks which connect nodes
in such a system. In this paper, we study memory reference strings gathered with a tracing pro-
gram we devised. We study several models. First, we look at raw reference data, as would be
seen if the network were a backplane. Second, we examine references in units of ‘‘blocks’’, first
using a one-block cache model and then with an infinite cache. Finally, we study the effect of
predictive prepaging of these ‘‘blocks’’ on the traffic. We provide a novel representation of
memory reference data which can used to calculate interarrival distributions directly. Integrating
communication with computation can be used to control both traffic and performance.

Keywords: Distributed Computation, Distributed Memory, Traffic Characteristics, Networking,
Computer Networks

1. Introduction

A long-range goal of research is the development of distributed computing systems which are well-matched to
underlying network technology. Ideally, these systems would work ‘‘well’’ in any environment. However, speed
mismatches between components such as computers, memories, software, and the network fabrics dictate certain
choices for a high-performance result. Network technology promising speeds in the one billion bit per second
(‘‘Gbps’’) range is on the very near horizon [4]. The remaining variable is the software interface between the com-
puters and the network fabric, and in the attempt to remove this as the bottleneck in distributed system performance,
The University of Pennsylvania’s Distributed Systems Laboratory and others have proposed distributed shared
memory (DSM) as an appropriate model for high-speed interprocess communications. This DSM proposal stems
from the observation that the minimal cost communications path between two processes is achieved with shared
memory; we try to extend this approach into the network domain.

1.1. Setting

To be concrete, we imagine many high-performance workstations, connected by a point-to-point Gbps net-
work shared by means of high-speed switches. In fact, we expect this imagined network to be realized in a near-
future Gbps testbed. One likely topology of AURORA† is shown in Figure 1. The Gbps network will link four sites:
� Bellcore’s Morristown Research and Engineering Laboratory in Morristown, NJ
� IBM Research’s Computer Science Laboratory in Hawthorne, NY
�����������������������������������

† AURORA is a joint research effort undertaken by Bell Atlantic, Bell Communications Research, Inc., IBM T.J. Watson Research Center, Mas-
sachusetts Institute of Technology, MCI, Nynex, and the University of Pennsylvania. AURORA is sponsored as part of the NSF / DARPA Spon-
sored Gigabit Testbed Initiative through the Corporation for National Research Initiatives. NSF and DARPA provide funds to the University par-
ticipants in AURORA. In addition, Bellcore is providing support to the Distributed Systems Laboratory through the DAWN project.

-- --

- 2 -

� MIT’s Laboratory for Computer Science in Cambridge, MA
� University of Pennsylvania’s Distributed Systems Laboratory in Philadelphia, PA

MIT

Work
Station

Central
Office

Video
Wall

IBM

Work
Station

Central
Office

Video
Wall

3090/600
GF11

Bellcore

Work
Station

Central
Office

Video
Wall

Penn

Work
Station

Central
Office

Video
Wall

OC12

Figure 1: Possible configuration for AURORA testbed

As the illustration shows, we expect each participating site to have a variety of equipment connected via the testbed
backbone. The ‘‘Video Walls’’ are Bellcore-developed devices for telepresence, comprised of paired wide-screen
NTSC television displays, a pair of cameras, microphones, and studio-quality loudspeakers. Supercomputing facili-
ties are embodied in the GF11 and 3090/600 computers at IBM’s T. J. Watson Research Center. Each site will also
have a number of workstations, some subset of which will have direct, non-multiplexed access to the Gbps network.
The host interfaces (HIs) of these workstations will receive and transmit packets. The machines will treat the HI as
a direct memory access (DMA) device, meaning that the HI is able to read and write processor memory without pro-
cessor intervention. In addition, the HI may allow portions of its own memory to be processor-addressable. The
organization is illustrated in Figure 2.

-- --

- 3 -

Bus

Memory

Processor

HI
memory
objects

network
packets

Figure 2: Proposed Host Interface design

The idea is that the workstation and HI technology will support interprocess communication (IPC) across the net-
work fabric with as little processor intervention as possible, and as we argued earlier, the minimal IPC cost is
achieved with shared memory. Thus, the workstations will both make and service remote memory requests, treating
the network as an extension of the processor bus.

To understand the characteristics of traffic generated by such a design, it is crucial to understand the charac-
teristics of computer memory referencing, as this is reflected directly in the traffic.

1.2. Memory Access

Typical computer environments consist of a set of hardware resources, managed by a supervisory program called
the operating system (OS). The OS provides virtual machines to a number of processes, each of which represents a
programmed sequence of instruction executions on behalf of some computer user. The execution of instructions
involves fetching them and their operands from memory, and perhaps modifying the operands (instruction modifica-
tion is considered dangerous and is often not allowed). Some of the instructions are executed by the OS to provide
services to the process, but ideally most instructions executed are process instructions; other instructions are con-
sidered overhead. As can be seen from Figure 2, computers are organized with processors connected to memory
via a bus, which is essentially a highly parallel network. Processors execute instructions rapidly in comparison to
memory access (which requires a round-trip time over the bus in addition to delays resulting from the memory tech-
nology employed), so designers have employed various techniques to reduce the average access time. First, the
need for memory access is reduced by the provision for on-processor registers. Second, the processor often includes
a small, fast local memory, called a cache, which retains recently-accessed data. Third, the bus width can be
increased (say from 16 bits to 32 bits) to amortize the delay for memory access across more data. Finally, provision
can be made for prefetching memory objects (e.g., the next instruction to be executed) in anticipation of their use in
subsequent processing. Many of these techniques have also been used to bridge performance gaps elsewhere in the
memory hierarchy. For example, disk devices are blocked into aggregates of 512 bytes or more, and OSs typically
provide a main-memory buffer cache for disk blocks. Since disk accesses often involve mechanical motion, the
delays involved are significant and require aggressive management to be made tolerable. Caches are organized as a
number of blocks (or lines) which are addressed based on some property of the objects they retain, such as its
address at some lower point in the memory hierarchy. A step in the memory hierarchy is illustrated in Figure 3.

-- --

- 4 -

Cache Block 1

Cache Block 2

...
Cache Block N

Cache of N Blocks

(Small, Fast, Expensive Memory)

Processing
Engine

Large, Slow,
Cheap Memory

read

write

read

write

Figure 3: Using cache at memory hierarchy boundaries

The important properties of a cache are (1) the size of the blocks that it employs; (2) the number of these blocks that
it has available; (3) the ratio between the cache access time and that of the slower storage it disguises; and (4) the hit
rate of the cache, which is the ratio between the number of times an item is found in the cache (a ‘‘hit’’; if the item
is not found, it is a ‘‘miss’’) and the number of times a reference is made.

The delays involved in accessing data over a wide-area network such as our AURORA testbed, which extends
over 300 miles, require aggressive management. All of the management techniques applied in processor design are
extensible to the network setting as well. The main focus is reducing the frequency of access, which incurs delays.
When memory requests are serviced by the network, the traffic mix is changed significantly as the various manage-
ment techniques are applied. We parameterize the relation between processor memory requests and network traffic
with a measure we call the gap. The gap, measured in units of processor memory references between external
memory requests (e.g., using the network), reflects the success of the management strategy at forestalling external
requests. Thus, if a cache miss caused a value to be loaded, and the next 20 references were cache hits, followed by
a miss, the ‘‘gap’’ would be 20 references. This value is processor-speed independent, and can be scaled appropri-
ately. For example, the processor speed can be used to convert gaps to time intervals, and the size of memory units
fetched can determine the packet size. The gap can thus be viewed as a measure of interarrival times.

1.3. Organization

In an attempt to understand the traffic characteristics of a distributed memory system, we devised an experimental
apparatus which allows us to accurately measure the traffic generated by a node. This apparatus is described in Sec-
tion 2. Sections 3 and 4 consist of measurements and analyses derived via the apparatus. Section 3 focuses on
issues of cache block size and cache size, with some attention paid to data analysis techniques, and Section 4
focuses on a cache management strategy known as prefetching or anticipation. Section 5 concludes the paper and
draws the conclusion that integrating computation and communication can have far-reaching benefits for designers
of both computing systems and networks.

2. Experimental Apparatus

‘‘One real experiment is worth far more than half a century of discussion about the meaning of a
thought experiment....’’ [8]

In the introduction, we proposed a model of a distributed system which consists of a virtual memory distributed
across a set of high-performance workstations on a high-speed network. However, such a system is not available to
measure. Yet, we want usable estimates of traffic in order to determine delays and achievable throughputs.

We chose to use an existing workstation, namely, a Hewlett-Packard HP9000 Series 300. These workstations
are configured with 16 megabytes of main memory, and operate a UNIX variant, HP-UX Version 6.5. This worksta-
tion serves as a traffic generator. Using such a workstation (with its circa 3 million instructions per second (MIPS)
performance) is not as far-fetched as it might at first seem, as (1) all RISC (reduced instruction set computer) tech-
nology [15, 16] workstations we are aware of operate UNIX or a variant; (2) operational distributed shared memories
[12, 21] using UNIX as a base exist; and (3) our measurement methodology, described next, is speed-independent.
One potential flaw in the analysis is that RISC architectures have many registers and compilers generate code with
heavy register usage in order to reduce memory traffic. This flaw is partially addressed by the fact that many

-- --

- 5 -

workstations will continue to be CISCs (complex instruction set computers), and partially by the fact that we
address caching† later in this article.

To measure the traffic generated during a session, we constructed a tracing tool, rw_trace. The use of a
software tool is desirable, since hardware bus monitors may miss traffic which is captured by on-processor caches.
Our tracing tool executes binaries without recompilation. Rw_trace is invoked with a command string [3] and an
output file as parameters, e.g.,

rw_trace -foutput emacs file

The command string consists of a command name (in this case, ‘‘emacs’’) followed by a list of parameters.
Rw_trace uses the UNIX debugging interface, ptrace(), to execute the command in a ‘‘single-step’’ fashion. At each
step, the current program counter is fetched and used to fetch the current instruction. The instruction and its
operands are decoded (as per [13]) to generate a ‘‘memory reference string’’ consisting of <byte address,
read/write> 2-tuples. This memory reference string is written to the specified output file (the output must be sent
elsewhere so that use of interactive programs remains possible while tracing). The only references not captured (at
present) are those made through system calls such as read() and write(), most of whose activity is captured in the
trace by later copying in and out of the program’s buffers.

In order to reduce the amount of data we must present, we will limit our discussion to traces derived from a
single command. After a large number of commands were traced (both out of curiosity and to test the tracer!), we
found that the command generating (1) the most complex, and (2) most voluminous, memory traffic was the GNU
[20] (GNU is an acronym for Gnu’s Not Unix) Emacs screen editor. On our system, the executable file is the larg-
est (593920 bytes of executable code) of the frequently-executed programs. The program generates over a million
memory references between invocation and display of a window for editing files. Our version of the editor is espe-
cially complex, as it includes code to interface with the a window management system [7] and creates and manages
its own window when started in an X window. In the next section, we describe our observations which are derived
from tracing the execution of this editor.

3. Traffic Properties

The gross memory traffic created by the editor is indeed voluminous; a trace of the editor’s execution references
approximately 28,000,000 bytes of data, although of course many of these bytes are accessed repeatedly, and many
of them are accessed in the aggregate form of 32-bit word data objects. If the editor is being traced, the execution
cycle requires about 9 hours of clock time, due to the overhead incurred by single-step execution, context-switching,
and instruction decoding. Untraced, the editor takes about 1 second of OS time, and 2 seconds of user CPU time to
start; this is accomplished in about 6 seconds of wall clock time. Thus, about 4.7 megabytes worth of referencing is
done, per second. Measurements show that, on average, each instruction causes approximately 8 bytes of memory
access to take place. With no caching of any type, this means that the offered traffic is a steady-state phenomenon,
driven by the instruction execution rate of the CPU. Thus, for a 3 MIPS workstation such as this, assuming that the
requests can be serviced infinitely fast, 24 megabytes, or about 200 megabits per second of traffic are generated. Of
course, assuming that the server is infinitely fast is ridiculous, as it may be servicing requests from slow disks or
other high latency devices. These latencies can be folded into the network latency. Assuming that there is a round-
trip delay per request of 5 milliseconds, and that each instruction execution consists of two fetches, one for the
instruction, and one for its operands, we can execute one instruction every 10 milliseconds, or one hundred instruc-
tions per second. Thus, we must use bigger aggregations of data and caches.

The next two subsections look at caches of one block and ‘‘enough’’ blocks (i.e., infinite) under the following
assumptions:

1. All writes are preceded by a read of the same block

2. All writes are retained until necessity (e.g., a full cache) forces a write-through. This is the ‘‘copyback’’ pol-
icy; dirty cache blocks are flushed at program termination, generating a burst of network traffic.

3. Blocks are 4096 bytes in size, as on the HP9000.
�����������������������������������

† These large register sets behave much like a compiler-managed cache memory for data objects.

-- --

- 6 -

3.1. One block cache

*
*

*

*

*
* * *

*
* *

*
*

*
*

*

*

100,000 reference blocks

avg.
gap

5 10 15
5.0

5.5

6.0

6.5

7.0

Figure 4: Average gap for 100,000 reference groups

One important observation we can make is that both aggregation (i.e., using larger data units, with the goal of reduc-
ing the average latency of smaller data units) and caching (retaining frequently used data in order to avoid rere-
ferencing) can help and in fact, are widely used to cope with various types of speed mismatches. Of more interest to
us is the effect such techniques have on the traffic offered to the network.

The technique we have used is to study the gap behavior of memory references. When blocking or caching
are applied, a steady stream of traffic will be converted to a sequence of block requests of some size. This size is
typically fixed by the operating system software and thus can be considered constant for any given application exe-
cution. What changes with blocking and caching, is the interarrival distribution, which can be approximated by the
interval between successive memory requests. As we mentioned in the introduction, we measure this interval, the
‘‘gap’’, with the number of memory references made between block requests.

In this paper, we are trying to understand the traffic generated by processor memory references, and factors
affecting that traffic. As we will show, the traffic can be greatly affected by the choice of cache parameters and
cache management strategies. In order to limit the directions we must pursue, we have focused on several extremal
cases of these choices. One extremal case deserving study is that of a single block cache. We used 4096 byte
blocks, as mentioned before. As the traces were very large, we produced aggregate data by considering block refer-
ences in 100,000-block reference groups. Figure 4 shows that the average gap consists of about 5 to 7 references,
or about 1 instruction execution. Thus, this tiny cache is not very effective at this block size.

Suspecting that the averages were disguising some significant behavior of the traffic, we plotted the maximum
gap value, in references, observed across the same set of 100,000 block reference aggregates. This is shown in Fig-
ure 5, where we see that there are some large gaps initially (e.g., 4926 bytes, which is greater than a 4096 byte
block) but none later in the program’s execution.

To study the effect of block size, we reran the 1-block cache traces with a 65536 byte block size, a factor of
16 increase over the original 4096 byte size. If the references are sequential, or remain within 65536 byte bounds,
we should have seen an increase in the gap. However, the average gap and maximum gap values were almost the
same in magnitude! That is, with 65536 byte blocks, the maximum gap observed in the first 100,000 65536 byte
block references remained at 4926.

-- --

- 7 -

*

*

*
* * * * * * * * * * * * * *

100,000 reference blocks

max
gap

5 10 15
0

1K

2K

3K

4K

5K

Figure 5: Maximum gap for 100,000 reference groups

Thus, we have paid an increase of a factor of 16 in traffic for no reduction in the interarrival rate. Note the
implications, for this program mix, of any simplistic prefetching scheme, since the gap value is directly correlated
with the hit rate.

But the model of a single block cache, while instructive with respect to the assumptions about block size and
its effect on cache performance, is clearly far from ideal; aside from the fact that data and instructions form separate
streams (however, a 2 block cache is not much better!) we would want (1) a smaller block size, and (2) a larger
cache size. In the next section, we discuss the impact on network traffic of another extremal case, that is, the case
where enough memory is available to hold all items referenced over the life of the program. While we model the
cache behavior as ‘‘copy-back’’, it is trivial to modify traffic for a write-through cache by treating the written traffic
as we treated, e.g., the 1 block cache case. The writes generate a steady traffic stream corresponding to the rate at
which writes are generated. Since this is relatively easy to model (and our trace data has read/write flagging) we
chose to ignore write-through caching in our study.

3.2. ‘‘Enough’’ cache (infinite)

To analyze the effects of successful caching in the face of increasing main memory sizes for workstations, we chose
the extremal case of ‘‘enough’’ main memory for caching all page references made during execution of the pro-
gram. This is similar to the strategy used by the Andrew File System [9], which caches referenced files on its local
disk to avoid rereferencing over the network. Remember that a gap is the number of memory references made
between cache misses. Thus increases in the gap correspond to decreases in the offered traffic. The distribution of
the gaps is equivalent to the interarrival distributions used in traffic and queueing analysis when the memory refer-
ences are mapped to the network. For a given gap plot, two things matter; the block size for references and the
instruction processing rate of the CPU. The first matters because it defines the ‘‘packet size’’ for analyses, and the
second matters because it allows the gap values (stated in memory references) to be translated to absolute time fig-
ures.

We began our analysis by pre-processing our reference data into the form of <block number, byte reference
number> pairs. Each pair is generated upon a cache miss discovered in the data; that is, the reference stream con-
tained a reference to a block not contained in the cache. The block number of the 2-tuple is the byte address causing
the miss, divided by the block size (4096). The byte reference number is a running counter of the number of refer-
ences which have been made to this point in the stream. Each of these misses can be assigned a sequence number

-- --

- 8 -

according to the order of occurrence within the reference stream, which we call the miss number . The difference
between byte reference numbers for two successive misses yields the gap. For our Emacs execution, 1732 of these
records were generated, corresponding to 1732 4-kilobyte pages being fetched. We plotted the miss number versus
the gap; this is illustrated in Figure 6.

Miss Number

gap

0 .5K 1K 1.5K

0M

.2M

.4M

.6M

.8M

1.0M

1.2M

Figure 6: Miss number versus gap

We show this figure in order to drive an experimental analysis of the data; in fact, this was our original model for
data presentation and subsequent analysis. However, we have found more effective ways to discern behaviors of
interest, which we develop in the following section. The graph of Figure 6, while no doubt interesting, has the
visual difficulty caused by the outlier (a gap of 1.3 million memory references made without leaving the cache).
Thus, any behavior exhibited by the other references is obscured. We plotted the gap logarithmically, but the result
was a ‘‘cloudy’’ scatterplot, which obscured the data. Smoothing the data was a productive technique. We used the
lowess() routine [5] of the S system [2] with various parameters to smooth the scatter plots. The main value
varied was f, the fraction of the data set used for smoothing at each x point. The larger the f value, the smoother
the fit.

While the figure illustrates a general trend which should hold with a cache, that is, the cache becomes more effec-
tive as it becomes loaded with data, it obscures the detailed behavior of the traffic. The smoothed curve would indi-
cate, for example, that there was never a gap larger than 3000 references, i.e., less than one page size. A lesser
degree of smoothing allows a somewhat more detailed analysis, as Figure 8 illustrates.

The figure clearly illustrates the bursty nature of the traffic which the higher degree of smoothing obscured. There
is still some obscuring of the data due to smoothing, e.g., the 1.3 million reference gap has been scaled down by a
factor of 50 (1732/32=54) but the general behavior is clear. A last attempt to understand the data is given in Figure
9, with f=1/8. In this case, there are several clearly illustrated ‘‘peaks’’ in the gap plot. These peaks and the
corresponding valleys are due to phase changes [6] in the memory referencing during execution of the editor.
Emacs is changing its working set as it moves from one phase of execution to another. When its working set has
been loaded into the cache, the gap rises, as references must leave the cache less frequently. On a phase change, the
shift to a new working set causes the program references to leave the set in the cache, and thus the gap decreases.

The figure illustrates the editor going through 4 phases (the phases correspond to the valleys, where the cache is
warming up, not the peaks, where it has become effective); this phase behavior is consistent with that observed by
virtual memory researchers in the past. The peaks indicate an increase in the interarrival distribution; that is, the

-- --

- 9 -

Miss Number

gap

0 .5K 1K 1.5K

1K

1.5K

2K

2.5K

Figure 7: Miss number versus smoothed gap, f=1/2

Miss Number

gap

0 .5K 1K 1.5K
0

5K

10K

15K

20K

25K

Figure 8: Miss number versus smoothed gap, f=1/32

onset of a peak indicates that the interarrival rate is dropping off, and the termination of a peak indicates that the
interarrival rate is increasing.

-- --

- 10 -

Miss Number

gap

0 .5K 1K 1.5K
0

2K

4K

6K

8K

10K

Figure 9: Miss number versus smoothed gap, f=1/8

4. The effect of anticipation

Anticipation, also known as prefetching, is the idea of pre-loading some buffer area (perhaps the cache) with data in
order to reduce future misses. If the anticipation strategy is successful, data will be available in fast storage when
needed by the program, thus reducing the miss rate. Prefetching has been studied in many settings in the past.
Smith [17] discussed sequential prefetching in the general case of a multi-tiered hierarchy of memories. Based on
traces derived from IBM 370 architecture machines, he showed that prefetching was most effective with small page
sizes (e.g., 32-64 bytes), and suggested the conclusion that the CPU’s cache was therefore the most effective point
at which to implement prefetching. The potential for 10-25 percent increases in CPU speed was reported. Smith’s
article provides a short survey of pre-1978 research in the area which need not be repeated here. Smith [18] also
reported the effectiveness of prefetching in data base settings where sequential access is prevalent. Ritchie and
Thompson’s UNIX operating system prefetches file data when sequentiality is observed in the virtual block numbers
referenced; the actual algorithm is discussed in some detail in Bach [1]. Recently, Kotz and Ellis [11] reported
potential performance increases for multiprocessor systems, specifically a BBN ButterflyTM, by prefetching file sys-
tem data. Based on their data, the improvements in response time they observed exceeded 15 percent in most cases,
with improvements extending up to 70 percent. The best performance occurred when a prefetch was shared by
many processes in subsequent references. However, they also observed that if the benefit of prefetching was poorly
distributed between processes, the total execution time for the workload could increase.

As we argued in the introduction, we are interested in applying anticipation in a somewhat different setting,
namely that of Gbps networks. Gbps WANs are distinguished from Gbps LANs by their higher latency due to pro-
pagation (and other, e.g., switch and repeater) delays. Gbps WANs are distinguished from current lower-speed
WANs by their increased bandwidth, e.g., almost one thousand times a T1 channel. This high bandwidth*delay pro-
duct suggests that approaches such as anticipation might be more profitable than in other settings, for two main rea-
sons. First, a ‘‘miss’’ is very expensive. We have assumed workstations with speeds approaching 50 MIPS, so that
a 5 millisecond round-trip delay (e.g., Philadelphia,PA - Cambridge, MA) represents 250,000 instruction times on
such a machine. Thus, techniques which reduce misses are highly desirable. Second, the high bandwidth makes us
less sensitive to unused prefetches.

Smith [14, 19] has suggested anticipation to reduce the amortized latency seen by a program execution which
is using the network to service memory requests. Anticipation changes the traffic generated by a node in the follow-
ing ways. Successful prefetches increase traffic initially, as they fetch more data than is strictly necessary.

-- --

- 11 -

However, their success means that some future references have been made unnecessary, thus reducing traffic later
in the program’s execution. Unsuccessful references, on the other hand, add traffic without reducing traffic in the
future. Thus, they just raise the level of traffic.

In this section of the paper, we will study the effect of an anticipation strategy in terms of its aggressiveness,
that is, how many blocks are prefetched at each page fault. As has been pointed out by A. J. Smith in the several
paper referenced, software prefetching must be done when a fault occurs; otherwise it cannot be scheduled. We
look at the extremal case of success, which means that we always pick the right pages to prefetch, as if we had some
guide. In fact, for many program executions we can achieve such a guide using reference histories. This idea is
modeled after the RH-Tree scheme devised by Iyengar [10] which works as follows, to build a ‘‘reference-history’’
tree:

1. Each time a page is referenced, if we are at that point in the tree, we increment a counter. If a page that we
have not accounted for is referenced, we create a new branch.

2. To prefetch, we can choose either the most highly probable set of pages or the most likely "path"

Over time, the tree is built up, so that time-varying referencing behavior is built into its history. This data is espe-
cially useful on program startup, when programs almost always follow the same sequence of instructions. That is
the case with Emacs, which faults in the same pattern for its first thousand or so page faults each time. So emacs
was run once to warm up the ‘‘history’’, and once the history was in place, emacs was re-traced assuming a prepag-
ing strategy which used the previous trace data. The variable we applied was the degree of lookahead, which
corresponded to 4 pages of 4096 bytes (‘‘prefetch(4)’’) and 16 pages of 4096 bytes (‘‘prefetch(16)’’). The effect
this has on traffic is two-fold. First, the ‘‘packet size’’ increases by factors of 4 and 16, respectively. Second, the
interarrival times of these packets are greatly increased. We plot data similar to that of section 3.2, assume an infin-
ite cache, and limit ourselves to the 1/8 smoothing case.

4.1. 4 block lookahead

The case of four block lookahead means that whenever we could make a memory request for a single block, we
request four blocks instead. If we successfully predict which three blocks should be fetched in addition to the fault-
ing block, we can achieve both a reduced number of requests (since we are aggregating requests into 4 block
groups) and an increase in the interarrival ‘‘gap’’ we discussed earlier. We retraced the program execution using
data from a previous run, and the gaps were computed as before. The results were smoothed and graphed with vari-
ous smoothing parameters; Figure 10 illustrates the results with the smoothing parameter set at 1/8.

As can be seen from the graph, the shape of the curve is remarkably like that of the miss numbers graphed in Figure
9 with the same smoothing (in fact, the shapes were so similar that we omitted prefetching data smoothed with f=1/2
and f=1/32); some behaviors are a little more visible because there are fewer data points to make up an eighth; in
particular the split in the peak of the last gap is visible. The fact that the shape is similar is not surprising; the
interesting artifacts are actually the scale changes visible on the bottom and sides of the plot. The vertical dimen-
sion of Figure 10 has changed by a factor of five from Figure 9, and the horizontal direction has decreased by a
factor of four (433 misses versus 1732). What this means is that successful anticipation increases the gap, and thus
lengthens the interarrival times. However, depending on the degree of aggressiveness exhibited, the packet size
may be much larger; in this case it was 16334=4*4096 bytes. If the latencies are large and cache misses pace the
program, the execution time will decrease dramatically, since the fault count has gone down by a factor of four.

4.2. 16 block lookahead

It is interesting to extend the experiments one step further, and test the effect of anticipating even further into the
‘‘future’’. We do that by prefetching 16 blocks, instead of 4 as in the previous measurements. Figure 11 shows the
effect of this modification; this graph can be compared to Figures 9 and 10.

-- --

- 12 -

Miss Number

gap

0 100 200 300 400
0

10K

20K

30K

40K

50K

Figure 10: Prefetch(4) miss number vs. smoothed gap, f=1/8

Miss Number

gap

0 20 40 60 80 100
0

50K

100K

150K

200K

250K

Figure 11: Prefetch(16) miss number vs. smoothed gap, f=1/8

We see that the splitting of the last peak in gap value is more visible. Once again note the change in scales;
the vertical axis now ranges to a gap of 250,000 references, as opposed to 10,000 in Figure 7. This is due to both
the increase in gaps and to the way smoothing is done; note also the reduction of the horizontal access to
108=1732/16 references. What we have seen here, with a prefetch of 16 blocks, is a continuation of the trends we
have seen before; successful prefetching dramatically reduces the number of packets, increases the sizes of packets,
and increases the gap between misses.

-- --

- 13 -

5. Conclusions and Summary

We have examined memory references as a source of network traffic, with the goal of building distributed comput-
ing systems based on a shared memory model of interprocess communication. For concreteness, we traced the exe-
cution of a memory-intensive screen editor. From these traces, we saw that:

(1) raw memory traffic is very smooth, with each instruction generating about 8 bytes of traffic, on average.
Thus, the traffic rate is paced by the instruction execution rate. With an intervening cache, the traffic reach-
ing the network fabric can be scaled down by the ‘‘miss rate’’, but is still sensitive to the execution rate of the
processor. The cache also removes some of the smoothness of the traffic, as programs generate small
‘‘humps’’ as they move through phases of execution. These phases exhibit sufficient locality of reference to
stay within the cache.

(2) ‘‘blocked’’ memory traffic is less smooth, as it is characterized by less frequent requests for larger objects. In
the minimal (1 block cache) case, the traffic pacing was determined by the locality of reference exhibited by
the executing program. For large blocks, the traffic bursts are larger, but less frequent. While there is insuffi-
cient data presented to draw a firm conclusion, the data suggest that the best application of finite cache space
is achieved by a large number of small blocks. In any case, a higher hit rate translates into a longer interar-
rival time. For the maximal (infinite, or ‘‘large-enough’’) cache case, the traffic rate is initially high, as the
cache goes through a ‘‘cold start’’ phenomenon, and then drops as the cache fills. This dropoff corresponds
to the working set of the program being acquired; the traffic only rises again on phase changes.

(3) anticipatory behavior, used to reduce the penalty imposed by latency in WANs, reshapes the traffic generated
by a cached system in the time domain. In particular, prefetching causes an initially higher traffic rate, with
the eventual result of a lower traffic rate later in the execution. If the prefetches are largely successful, the
traffic resembles an impulse function, with humps at each working set phase transition. If the prefetches are
largely unsuccessful, the reduction in request rate achieved by the cache is thwarted to some degree by the
additional traffic due to unsuccessful prefetching attempts. The extreme case of prefetching success is
prepaging the entire working set.

Since caches are necessary for reasonable performance, and anticipation is one of the few techniques available to
reduce latency in high-speed WANs, we expect that the eventual traffic observed will correspond to cached memory
traffic reshaped by whatever success is achieved by the lookahead strategy. Our presentation of data in the form of
reference ‘‘gaps’’ allows scaling across processor speeds and can be directly translated into interarrival time distri-
butions. The packet sizes are a direct function of the page size, but may be affected by an anticipation scheme.

Certainly, much remains to be done. While we were rather selective in the choice of our application, we have
nonetheless presented data from only a single application, and the multiplexing of traffic induced by multiple
processes on a single processor, and multiple processors, remains to be studied. Individual applications, however,
will represent the primitive traffic sources in any memory-based communications scenario, and thus serve as the
basis of this study.

What is perhaps the most important conclusion from our study is the observation that network traffic can be
controlled when it is integrated with the operating system layer which provides memory management services to
computations. We were able to adjust the packet size and arrival rate, and processor scheduling can be used
(although it has not been shown here) to smooth traffic. In addition, successful prefetching strategies can dramati-
cally change the characteristics of a system, as illustrated by the scale change between Figures 9, 10, and 11. We
believe that the ability of the operating system (in particular, the portion of the operating system usually referred to
as the ‘‘memory manager’’) to adjust traffic characteristics under this distributed memory scheme suggests that
memory is a potent network abstraction, and that the integration of communication and computation is a rich and
rewarding ground for study, which we intend to explore further in the setting of the AURORA Gbps testbed.

6. Acknowledgements

Criticism of this work from an early presentation at AT&T Bell Laboratories helped to refine the work. Construc-
tive suggestions and critical reading by H. Rudin and P. Heinzmann greatly improved the presentation.

-- --

- 14 -

7. References

[1] M. J. Bach, The Design of the UNIX Operating System, Prentice-Hall (1986).

[2] Richard A. Becker, John M. Chambers, and Allan R. Wilks, The NEW S Language - A Programming
Environment for Data Analysis and Graphics, Wadsworth, 1988.

[3] S.R. Bourne, ‘‘The UNIX Shell,’’ The Bell System Technical Journal 57(6, Part 2), pp. 1971-1990 (July-
August 1978).

[4] Karen L. Bowers, in Proceedings of the First Gigabit Testbed Workshop, ed. Karen L. Bowers, Corporation
for National Research Initiatives, Washington, DC (December 7-8, 1989).

[5] W. S. Cleveland, ‘‘Robust Locally Weighted Regression and Smoothing Scatterplots,’’ JASA 74(368),
pp. 829-836 (December 1979).

[6] Peter J. Denning, ‘‘Working Sets Past and Present,’’ IEEE Transactions on Software Engineering SE-6(1),
pp. 64-84 (January 1980).

[7] Jim Gettys and Robert Schiefler, The X Window System, 1985.

[8] John Gribbin, In Search of Schrodinger’s Cat: Quantum Physics and Reality, Bantam (1984), p. 222.

[9] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and M. West, ‘‘Scale and
Performance in a Distributed File System,’’ ACM Transactions on Computer Systems 6(1), pp. 51-81, Origi-
nally presented at the Eleventh ACM Symposium on Operating Systems Principles (February, 1988).

[10] Anand Iyengar, A Predictive Paging Algorithm, Unpublished Memorandum, April, 1990.

[11] David F. Kotz and Carla Schlatter Ellis, ‘‘Prefetching in File Systems for MIMD Multiprocessors,’’ IEEE
Transactions on Parallel and Distributed Systems 1(2), pp. 218-230 (April 1990).

[12] Ronald G. Minnich and David J. Farber, ‘‘Reducing Host Load, Network Load, and Latency in a Distributed
Shared Memory,’’ in Proceedings, 10th International Conference on Distributed Computing Systems, Paris,
France (June 1990).

[13] Motorola, MC68020 Microprocessor User’s Guide, Prentice-Hall, Englewood Cliffs, NJ (1984).

[14] Craig Partridge, ‘‘Workshop Report - The Internet Research Steering Group Workshop on Very-High-Speed
Networks,’’ ACM SIGCOMM Computer Communications Review (1990).

[15] D. A. Patterson and C. H. Sequin, ‘‘RISC I: A Reduced Instruction Set VLSI Computer,’’ in Proceedings of
the 8th International Symposium on Computer Architecture (1981), pp. 443-457.

[16] G. Radin, ‘‘The 801 Minicomputer,’’ ACM SIGARCH Computer Architecture News 10, pp. 39-47 (March
1982).

[17] A. J. Smith, ‘‘Sequential program prefetching in memory hierarchies,’’ IEEE Computer, pp. 7-21 (December
1978).

[18] A. J. Smith, ‘‘Sequentiality and prefetching in database systems,’’ ACM Transactions on Database Systems
3(3), pp. 223-247 (September 1978).

[19] Jonathan M. Smith, Anticipation in Very High Speed Networks, Distributed Systems Laboratory, University of
Pennsylvania (1991). Distributed Systems Laboratory Technical Report and Working Paper

[20] Richard Stallman, GNU Emacs Manual, Fourth Edition, Version 17, Free Software Foundation, Inc., 100
Mass Ave., Cambridge, MA 02138 (February 1986).

[21] Ming-Chit Tam, Jonathan M. Smith, and David J. Farber, ‘‘A Taxonomy-Based Comparison of Several Dis-
tributed Shared Memory Systems,’’ ACM Operating Systems Review 24(3), pp. 40-67 (July, 1990).

-- --

