
-- --

Practical Problems with a Cryptographic Protection
Scheme

Jonathan M. Smith

Distributed Systems Laboratory
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389

ABSTRACT

Z is a software system designed to provide media-transparent net-
work services on a collection of UNIX® machines. Theseservices are
comprised of file transfer and command execution;Z preserves file owner-
ship on remote transfer, and more significantly, owner and group identity
when executing commands remotely. In order to secure known vulnerabil-
ities in the system, enhancements were made. In particular, a crypto-
graphically-derived checksum was added to the messages. Afterthe initial
implementation of the checksumming scheme, several iterations of perfor-
mance improvement occurred. Theresult was unsatisfactory to the user
community, so the checksum was removed. Instead,vulnerabilities were
reduced by improved monitoring and maintenance procedures.

1. Introduction

1.1. History

Z was initially implementedcirca 1978 in order to cope with an ever-increasing number
of UNIX systems at a large industrial computation center. The environment was becom-
ing unmanageable; unmanageable in the sense that it was difficult to administer the sys-
tems in a controlled and consistent manner. It was clear that some mechanism which
allowed a user to operate in a true multi-system environment was necessary. Howev er,
there was no consistent network organization. Therewere a variety of subnetworks of
various reliabilities and bandwidths, these included bus-to-bus, channel-to-channel, and
synchronous remote job entry (RJE) links.RJE served as a fully-connected network
(albeit

This work was supported, in part, by Bell Communications Research, (Morristown, NJ) under Pro-
ject DAWN.



-- --

a slow one) as all systems were connected to some mainframe system for various ser-
vices, e.g., bulk printing. The Network Systems Corporation HYPERChannelTM bus is a
very high speed (circa 50Mbits/sec) device that allows machines to be interconnected in a
local area network. In late 1981, an NSC HYPERchannel began to connect all the sys-
tems, and due to its bandwidth, became the primary media forZ communication.Z pro-
vided an easy to use and uniform interface to the network; the physical media used in the
transport is transparent to the user. Use of the media was optimized by a statically-
calculated bandwidth-weighted best-path selection scheme coupled with dynamically-
calculated reliability data.

1.2. Architecture

Z is viewed by a large segment of its user population as a UNIX command with which
they accomplish various tasks across several computing systems.In actuality, Z is a large
collection of both loosely and tightly coupled cooperating software modules, distributed
across all machines on the network. Thecommand invocation is the first link in a long
chain of events.

The Z command line syntax specifies file transfer or remote execution. Thestan-
dard input of the localZ execution can be used to provide input for the remote command.
The Z semantics preserve user ids on the remote system, both for file permissions and
command execution. Oneor more systems can be specified as destinations, and aliasing
is available for compact naming of subsets of the available systems.

TheZ system provides facilities for examining queued jobs, retrying jobs when fail-
ures occur, removing corrupted files, notifying senders upon error or job completion, and
secondary routing on link failure. Various internal machine-to-machine interfaces were
devised to mask incompatibilities between heterogeneous processor families.

The basic architecture of the system is illustrated in figure 1.

1.2.1. Local Actions

TheZ command serves as a gateway to the lower level transport layers of the system.It
‘‘ packetizes’’ the data to be transported, storing such information as can only be gathered
at invocation time, such as the current directory and identity of the invoking user. If a file
name was given as an argument,Z ensures that the file is accessible, and saves other
information, such as the file’s ownership, the access permissions, and the file size in char-
acters. Alsoon the command line can be a list of one or more destination systems; some
validity checking is done on these names.Z can also take a command string as an argu-
ment.

Based on the arguments and the identity information,Z builds a header, which is
used by other modules.Any data to be transmitted is then appended to the header. The
bound data ‘‘packet’’ i s passed to a ‘‘gatekeeping’’ module,Zqer. Zqer is invoked as the
last action of theZ command with theexec() system call.It takes the formed data packet
and enqueues it in a known spool directory, where the transport control module,Zdemon,



-- --

will f ind it when woken by a signal fromZqer. Zqer contains knowledge of a spooling
directory, spooling and sequencing protocols, and interprocess communication proce-
dures. Sincethese actions are required both by local invocations ofZ and by the remote
receiving node, good software engineering suggested a common module.

Zdemon is a process which constantly waits for an event to occur: this event is the
signal thatZqer sends to it, alerting it to the fact that there is work to do. When there are
no files to process in its spool directory, it remains in an idle state, waiting on an ‘‘event’’,
the ‘‘signal’’ sent to it by theZqer process.WhenZdemon receives this signal, it scans
the known spool directory, looking for the work which should have just appeared.When
started by a command line, or when woken by analarm signal or a signal fromZqer,
Zdemon searches the well-known directory where invocations ofZqer have placed the
packetized data.

Zdemon examines the header information of the enqueued packet to determine its
next action. If the packet is to be processed locally, a Zxmit0 is spawned. TheZxmit0
carries out the local action; it is given the file as a parameter, and determines how to pro-
cess it from the enqueued header.

If the packet is to be passed on to another node, theZdemon selects a transmission
medium. Atransmission route to the destination system is selected, and based on this
route, some lower level transport mechanism is used byfork() -ing aZxmit sub-process
of the appropriate flavor. TheZxmit job manages the details of transporting the packet to
the remote system and ensures its correct receipt.It uses the underlying transport mecha-
nism both to actually transmit the data and to perform certain actions at the destination.
Among these actions is the execution of a copy of the programZrecv.

1.2.2. Remote Actions

All of the transport mechanisms which theZ system uses provide at least a minimal form
of remote command execution. Whena Z job arrives at a destination UNIX machine, it
generates aZrecv process.Zrecv executesZqer to letZdemon know that there is work to
be done.Since this is now a ‘‘local’’ j ob,Zdemon executesZxmit0 to carry out the spec-
if ied action.Effectively, Zrecv serves as a ‘‘friend’’ to the traveling process: it appears as
if Zrecv is a local-to-local invocation ofZ, requested on behalf of the remote (sending)
machine. Thisdesign is modular and elegant; job-handling is correct with respect to
local or remote destinations, while being ignorant, for the most part, of the details.

The details of transmission are handled byZxmit modules, which prepare a message
for transmission over their respective media, and proceed to carry out the transmission.
All of these modules must provide some mechanism for invoking theZrecv module on
the remote system once the data/ command packet has arrived.

These modules are perhaps the lowest ‘‘layer’’ of theZ architecture, since unlike the
others, they hav eto concern themselves with details of the communications link, such as
fi le size limitations.In most cases, theZmit modules merely invoke commands which
are provided as part of a link’s operational subsystem.If the RJE medium is used, inter-
mediary, non-UNIX system "hops" may have to be made.



-- --

Z
command

Z
spool

local
network
service

data
transfer

remote
network
service

Z
spool

Zxmit0

Zqer

Zdemon Zrecv+qer

Zdemon

Figure 1: Z Architecture
So thatZ can maintain user id’s across systems, several modules must possess

super-user (unlimited file access) privileges. Whilepassive interception is potentially
dangerous, as it provides information, we were rather more concerned with active inter-
lopers; those who intend tomodifydata and/or commands.

1.3. Security Problems

In 1983, we became concerned about the security ofZ, and immediately recognized sev-
eral potential vulnerabilities.These stemmed from several architectural features, as can
be gleaned from figure 1. The fact that the system preserves user identity is the major
reason for a security threat.First, the ability to execute commands remotely means that a
breakin on one system can be extended to others.Second, the complete interconnectivity
provided by Z meant that a breakin on one system could be extended to all of the
machines. Ifa Z packet could be modified enroute to its destination, then the user id or
any message contents could be set to interesting values. Thus,the points of vulnerability
[8] were those which had the potential for message alteration.

First, the spool had to be kept secure, or otherwise files with arbitrary contents could
be written. Second, the local network services had to be kept secure.This was more of a
problem than it appeared; these systems often spooled jobs internally, and their access-
control strategies were not easy to change.To verify the claims we made about the lack



-- --

of security inherent in the system, we obtained root permissions from an ordinary
account. Thiswas done through altering a file spooled by the RJE mechanism.The file
resided in the UNIX spool for about 0.5 second, and was enciphered with a simple modifi-
cation of a Caesar scheme.Unfortunately, the software preserved user ownership of the
spooled file, so that a user could modify the file. Thiswas necessary due to the design of
the RJE software. Breakingthe cipher was trivial, and by repeatedly sending messages
and polling, a file was captured, modified, and transmitted to its (unsuspecting!) destina-
tion. Simplyprotecting this spool directory and modifying the RJE software was insuf-
ficient; the RJE jobs were spooled on the mainframe as well, where we could not guaran-
tee security.

2. A Server-based solution

After studying the problem, we came to some conclusions:

1. Whileadministrative control was not completely ours (as was the case with interme-
diate mainframe systems) the system was at risk.

2. We were far less interested in protecting against traffic analysis than in protecting
against modification.

3. Sendingenciphered messages was undesirable for several reasons, including (1)
recovery from errors, (2) use of intermediate nodes needing source and destination
data, and (3) system status reporting.

4. In addition, requirements were that the user interface could not change, e.g., by
requesting a password.

After examining the literature on data security [5, 2] we decided that the right approach
was to use a cryptographicchecksumin order to detect data modification. Thechecksum
is computed by encrypting the data and then computing a checksum from the encrypted
text. Thus,the messages could be sent in cleartext, with a checksum prepended to the
header. Modifications could be detected, and modified messages discarded.The
improved error-detection was a byproduct.Since changes to either the header (uids) or
the message (binaries for system programs) were dangerous, the entire packet had to be
involved in the checksum.The initial implementation used a 32-bit checksum.

A variety of encipherment schemes were examined, and experimental implementa-
tions were done to evaluate the performance of the schemes.Even after implementation
in assembly language, a cryptosystem using large primes consumed unacceptable
amounts of CPU time, even for very short strings.DES [4, 5] was examined, but once
again the throughput of the implementation was insufficient. Whileit is clear that DES is
intended to be implemented in hardware, the chips available at the time were expensive
and slow. In addition, we had three architectures to contend with, and kernel changes
would have been necessary. We sped up the UNIX library implementation of DES by a
factor of 3 using hand-optimized code and small assembly-language routines.Recent
research [1] indicates that speedups up to a factor of 20 or more can be accomplished by
applying some mathematical sophistication in the software implementation.Our speedup
reduced the CPU time required for encrypting a one megabyte file from about 2340



-- --

seconds on an AT&T 3B20STM (the 3B20S is roughly comparable to a DEC VAXTM

11/780) to about 830 seconds.Execution of a simple command which counts the charac-
ters in a file requires about 5 seconds of CPU time, so the contribution of file reading
code is low. Considerable computation was necessary to convert byte-oriented files to
bitstreams of one bit per character. Use of techniques such as cipher-block chaining
would slow an implementation down further.

Bishop’s factor of 20 speedup should reduce this time to about 120 seconds of CPU
time. Unfortunately, Z was often used for transfer of files which were up to a megabyte
in size, and response times (comprised of CPU times and delays caused by scheduling,
processor sharing, and I/O) measured in minutes were unacceptable.We finally decided
that a modification of the UNIX crypt command would be the best solution.Even though
crypt has recently been shown to be insecure, the rotor ciphers, once set up, allow
extremely rapid encipherment to take place. Whileour work preceded Reeds and Wein-
berger’s [7], we seem to have anticipated some of the elements of their approach; we var-
ied the rotor-shifting steps in a password- dependent way in order to frustrate analysis of
blocks of text for which one of the rotors remains fixed.

Since we were convinced that encryption technology would improve, we wanted to
add the encipherment to the system in such a way that new solutions, e.g., DES chips,
could be incorporated easily.

2.1. Encryption Server

The change in the architecture is illustrated in figure 2.



-- --

Z
command

Z
spool

local
network
service

data
transfer

remote
network
service

Z
spool

Zxmit0

cksum
server

Figure 2: Z Architecture with checksum server

The server was passed a filename argument using a secure FIFO queue.The filename
was for the packet whichZ had just gathered. Insertionin the queue by a process woke
the server, which enciphered the file, computed the checksum, and passed back the result
to the calling process.The passwords were per-system, stored in a secure file, which the
server checked frequently for modification. Thepasswords were encrypted using DES
[6], and served as seeds to the rotor generation for the Enigma-clone.If the file hadn’t
changed, the encryption was cached, for performance reasons.It’s clear that a public-key
system would have been more effective for this task, but the available systems performed
too poorly.

The idea of the server architecture was to emulate the semantics of a remote proce-
dure call. In this way, the server process could be transparently replaced by another
server process with the same functionality which used hardware encryption or other tricks
to get better response times.

2.2. Problems

The basic design of the server was well thought out, and in another systems environment,
may still be the right way to go, because the advantages in terms of software engineering
are manifold, e.g. modularity, information-hiding, et cetera.Unfortunately, encryption is
a CPU-intensive activity; hence, the UNIX system scheduler assigns the server process



-- --

lower and lower priority as time goes on, and it becomes "slower" with respect to
response time.Improved scheduling technology could remedy this problem, but it was
neither available nor administratively desirable, except for our application’s use.

Since the process (Z) waiting for a reply (the checksum) cannot assume that the
server is up, it can time out on the write to the server’s request queue, using thealarm()
facility. While it can retry, if the server is sufficiently slow the request may not be ser-
viced ‘‘in time’’. If this occurs, the packetizing software will assume server failure and
therefore fail to packetize the request.On the other hand, if timeouts are not facilitated,
the software may appear to be so slow that users will find alternate means of data trans-
port. For large files and a busy server, the response times were measured in minutes.

In addition, the server proved to be an administrative nightmare: it was hard to
understand without a great deal of expertise in encipherment, systems programming, and
network software; it created ‘‘mysterious’’ f iles when it wasn’t keeping up with the
request queueing rate; and it was dependent on the sanity of several files. Consequently,
a re-design was done which preserved most of the positive features of the server design,
while improving response time and reducing administrative effort.

3. Re-design, no server

The major goal of the redesign effort was (initially) to increase the reliability of the server
process, and hence reduce the administrative effort. After a painstaking analysis of the
alternatives, it was decided that the server module should be removed and the encryption
services be provided by in-line code rather than interprocess communication.While on
the one hand, the burden of performing a DES encryption on the cleartext password could
not be shared between users of a server, the following were true:

• A small data transfer would not be penalized in real-time response for following a
large data transfer in the request queue.(The large transfer would cause an external
server to accumulate a large amount of CPU time, thus penalizing it in the schedul-
ing discipline.)

• The DES encryption is not necessary, provided that any cleartext password is
encrypted before being put into a secured file.

• Per system passwords were eliminated, as this proved to be of l ittle use in practice.
One password is used for all systems on aZ network; eliminating a system would
then require changing the password on all machines except the one to be cut off.

• While re-engineered to be robust, the interprocess communication was complex, and
slow in response time. Putting the code in-line permitted several optimizations,
which led to significant performance improvements, a factor of 3 to 5.

The necessary code to perform checksumming and encrypting of file contents was moved
inline. ThePack() andUnPack() calls were designed so that callers would be ignorant of
their methodology; this proved to be true in practice, as not one line of the calling mod-
ules had to be re-coded to reflect the fact that the server had been eliminated.The inter-
process communication code was eliminated and theCheckSum()call made directly. The
encryption algorithm was modified to remove a reflecting rotor from the encipherment



-- --

process, thus removing a memory access and two arithmetic operations from the process
of encrypting a byte.This was done without reducing the cryptographic strength of the
algorithm, as the reflecting rotor mainly aids decipherment.The checksumming routine
was also re-coded for greater efficiency; the net result was thatZ required about 20 sec-
onds of CPU time to queue a 1 megabyte file on an AT&T 3B-20S. A command line (no
fi le access) requires a little more than a second of CPU on the same machine.The addi-
tional CPU overhead in each invocation is therefore directly proportional to the resource
utilization of the request: this seemed fair. Unfortunately, much Z use is administrative,
and a traffic analysis showed that the average packet size was about 100K bytes, implying
about 2 seconds of response time penalty for using encryption.We felt that this was
acceptable, but extensive testing with the user community raised vocal complaints.
Thinking these spurious, we surveyed the user community, and concluded that the
encryption feature, weakened as it was through:

1. Lackof public key technology,

2. Useof a cipher system known to be breakable, and

3. Increasingdependence on protected files,

was no longer viable.

4. Conclusions

There were several benefits which accrued from our work. Therewriting of the software
resulted in a more robust, readable, and elegant system.Various dangling pointer errors
were corrected, and buffer size checks were added; this serves to remove other obscure
security problems.The desire for end-to-end encryption, or something close, led to a
complete, and better redesign for the packet header; it was re-encoded entirely in ASCII.
This resulted in better portability in a heterogeneous machine environment. Thecalls to
the encryption routines were commented out of the source code, a total of 4 lines of ‘‘C’ ’;
no other modifications were necessary. Sev eral utility programs had either been inappro-
priately placed in the directory hierarchy or gav e inappropriate levels of privilege to
users. Thesewere changed.

Administrative rigor was applied to reduce the security threat.Vulnerable directo-
ries were checked carefully for permissions; they are now monitored on a regular basis.
As newer networking technologies are phased in, the old methods, such as RJE, which
used potentially unsafe intermediary nodes, are being phased out.Careful administration
is used [3] at present to prevent surprises.

Our application points out some of the serious problems with applying crypto-
graphic technology in practice.First, while a cryptographic checksum is the obvious
solution, it was clearly an afterthought, and had to be added to an existing architecture.
Second, the uses of the system can put severe performance constraints on an otherwise
workable system.Our problem was the relatively frequent transfer of large data files, and
the demands of timesharing users for good response times.We tried to cure this by weak-
ening the cryptographic checksum scheme, but the results were unacceptable, so security
is maintained primarily by administrative vigilance.



-- --

However, when the networking technologies such as EthernetTM are broadcast
media, ‘‘promiscuous-listeners’’, and more seriously, ‘‘modifiers’’, start to resurface as an
issue. Thus,the increased computational cost of creating a system with a higher crypto-
graphic ‘‘work factor’’ begins to seem more reasonable.The economics of
cost/performance might justify special-purpose hardware, e.g., for DES encipherment.
The tradeoffs between security and response-time should be examined carefully, and fre-
quently.

In particular, a useful and productive area of research would be one which resulted
in a set of curves which related cryptographic strength to some useful performance met-
ric. Onesuch metric, alluded to in this paper, is the number of arithmetic operations
required per byte of a large file. The analysis represented by the performance curve
allows a system designer to compare systems and select an appropriate system for the
application. Without such analysis, most cryptographic work is likely to remain of inter-
est mainly to mathematicians; practical work requires getting the details right.

5. Notes

® UNIX is a Registered Trademark of AT&T Bell Laboratories.

3B20 is a trademark of AT&T.

VAX is a trademark of Digital Equipment Corporation.

HYPERChannel is a trademark of Network Systems Corporation.

Ethernet is a trademark of Xerox Corporation.

6. References

[1] Matt Bishop, ‘‘A n Application of a Fast Data Encryption Standard Implementation,’’
Computing Systems1(3), pp. 221-254 (1988).

[2] D.R. Denning,Cryptography and Data Security, Addison-Wesley (1982).

[3] F. T. Grampp and R. H. Morris, ‘‘UNIX Operating System Security,’’ AT&T Bell
Laboratories Technical Journal 63(8, Part 2), pp. 1649-1672 (October 1984).

[4] A. G. Konheim,Cryptography: A Primer, Wiley-Interscience, New York (1981).

[5] C. Meyer and S. Matyas,Cryptography: A New Dimension in Computer Data Secu-
rity, Wiley-Interscience (1982).

[6] R. Morris and K. Thompson, ‘‘UNIX Password Security,’’ Communications of the
ACM 22, pp. 594-597 (November 1979).

[7] J. A. Reeds and P. J. Weinberger, ‘‘File Security and the UNIX System Crypt com-
mand,’’ AT&T Bell Laboratories Technical Journal 63(8, Part 2), pp.1673-1684 (Octo-
ber 1984).

[8] D. M. Ritchie, ‘‘On the Security of UNIX,’’ i n UNIX Programmer’s Manual, Section
2 (1983). AT&T Bell Laboratories



-- --

-- --


