Practical Problemswith a Cryptographic Protection
Scheme

Jonathan M. Smith

Distributed Systems Laboratory
Department of Computer and Information Science
University of Pennsylania
Philadelphia, R 19104-6389

ABSTRET

Z is a softwae s/stem designed to gnde media-tanspaent net-
work services on a collection of\X® machines. Theseservices a@
comprised ofife transfer and commanckecution;Z preservesile owner
ship on emote tansfer and moe sgnificantly, owner and goup identity
when gecuting command&motely In order to secue known vulneabil-
ities in the system, enhancementseverde In particular, a aypto-
graphically-derived bedksum was added to the mgg=sa Afterthe initial
implementation of theheksumming dteme seweral iterations of perfor
mance impovement occued. Theresult was unsatisfactory to the user
community o the dhiecksum was emoved. Insteadyulnembilities wee
reduced by impved monitoring and maintenanceogedues.

1. Introduction

1.1. History

Z was initially implementedcirca 1978 in order to cope with awes-increasing number
of UNIX systems at a lge industrial computation centefhe ewironment vas becom-
ing unmanageable; unmanageable in the sense thasitificult to administer the sys-
tems in a controlled and consistent manniérwas clear that some mechanism which
allowed a user to operate in a true multi-systemrenment vas necessaryHoweve,
there vas no consistent netrk organization. Therewere a wariety of subnetarks of
various reliabilities and bandwidths, these included-to-lus, channel-to-channel, and
synchronous remote job entry (RJE) linKRJE sered as a fully-connected neivk
(albeit

This work was supported, in part, by Bell Communications Research, (MavristdJ) under Pro-
ject DAWN.

a dow one) as all systems were connected to some mainframe systewritarsvser

vices, e.g., blk printing. The Network Systems Corporation HYPERCharifebus is a

very high speeddirca 50Mbits/sec) dece that allevs machines to be interconnected in a
local area netark. Inlate 1981, an NSC HYPERchannelghe to connect all the sys-
tems, and due to its bandwidth, became the primary medi&dommunication.Z pro-

vided an easy to use and uniform inked to the netark; the plysical media used in the
transport is transparent to the uséise of the media as optimized by a statically-
calculated bandwidth-weighted best-path selection scheme coupled with dynamically-
calculated reliability data.

1.2. Architecture

Z is viewed by a lage sgment of its user population as all¥ command with which
they accomplish warious tasks acrossveeal computing systemdn actuality Z is a lage
collection of both loosely and tightly coupled cooperating safwmodules, distribed
across all machines on the netw. Thecommand imocation is theifst link in a long
chain of @ents.

The Z command line syntax spei@$ ile transfer or remotexecution. Thestan-
dard input of the locaZ execution can be used to piide input for the remote command.
The Z semantics preseevuser ids on the remote system, both fte permissions and
command gecution. Oneor more systems can be spaifas destinations, and aliasing
is available for compact naming of subsets of thailable systems.

TheZ system pruides fcilities for «éamining queued jobs, retrying jobs wheuil-f
ures occyrremoving corruptedifes, notifying senders upon error or job completion, and
secondary routing on linkaflure. \arious internal machine-to-machine ingerés were
devised to mask incompatibilities between heterogeneous procassities.

The basic architecture of the system is illustratedumré 1.

1.2.1. Local Actions

TheZ command semls as a @tavay to the laver level transport layers of the systertt.

“ pacletizes’ the data to be transported, storing such information as can ontherep

at invocation time, such as the current directory and identity of trakiimg user If a file

name vas gven as an agument,Z ensures that theld is accessible, and & aher
information, such as thdd’s owvnership, the access permissions, anditbeize in char
acters. Alsmn the command line can be a list of one or more destination systems; some
validity checking is done on these hame&scan also talx a ®@mmand string as angqr-

ment.

Based on the guments and the identity informatiod, builds a headerwhich is
used by other modulesAny data to be transmitted is then appended to the hedter
bound data‘packet” is passed to dgatelkeeping’ module,Zger. Zger is irvoked as the
last action of th& command with thexec() system call.It takes the formed data pask
and enqueues it in a kwa spool directorywhere the transport control modulsjemon,

will find it when woken by a signal fronZger Zger contains kneledge of a spooling
directory spooling and sequencing protocols, and interprocess communication proce-
dures. Sinceghese actions are required both by locaboations ofZ and by the remote
receving node, good softare engineering suggested a common module.

Zdemon is a process which constantlgites for an gent to occur: thiseent is the
signal thaZzger sends to it, alerting it to thact that there is @rk to do. When there are
no files to process in its spool directpiyremains in an idle state aning on an‘event”,
the ‘signal” sent to it by theZqger processWhenZdemon recefes this signal, it scans
the knavn spool directorylooking for the wark which should hee just appearedWhen
started by a command line, or whewoken by analarm signal or a signal fronZger,
Zdemon searches the well-kmo directory where wocations ofZqger hae daced the
pacletized data.

Zdemon gamines the header information of the enqueuedegtackdetermine its
next action. If the paclet is to be processed locallyZxmitO is spavned. TheZxmitO
carries out the local action; it isvgh the fle as a parameteand determines o to pro-
cess it from the enqueued header

If the paclet is to be passed on to another node Zithiemon selects a transmission
medium. Atransmission route to the destination system is selected, and based on this
route, some Mer level transport mechanism is used foyk() -ing aZxmit sub-process
of the appropriate flar. The Zxmit job manages the details of transporting the gtk
the remote system and ensures its correct reckipses the underlying transport mecha-
nism both to actually transmit the data and to perform certain actions at the destination.
Among these actions is thgeeution of a cop of the progranZrecv

1.2.2. Remote Actions

All of the transport mechanisms which thesystem uses pvade at least a minimal form
of remote commandxecution. Whena Z job arrives & a destination WX machine, it
generates drecv processZrecv ecutesZger to letZdemon knw that there is wark to

be done.Since this is ne@ a “local”’ job, Zdemon &ecutesZxmitO to carry out the spec-
ified action. Effectively, Zrecv seres as afriend” to the traveling process: it appears as
if Zrecv is a local-to-local wrocation ofZ, requested on behalf of the remote (sending)
machine. Thisdesign is modular and gant; job-handling is correct with respect to
local or remote destinations, while being ignorant, for the most part, of the detalils.

The details of transmission are handledZbynit modules, which prepare a message
for transmission wer their respectie media, and proceed to carry out the transmission.
All of these modules must prade some mechanism forvioking the Zrecv module on
the remote system once the data/ commandegpdes arxied.

These modules are perhaps thedst ‘layer” of theZ architecture, since unkkthe
others, thg haveto concern themseds with details of the communications link, such as
file size limitations.In most cases, thémit modules merely woke cmmands which
are proided as part of a link’goerational subsystenif the RJE medium is used, inter
mediary non-UNIX system "hops" may ka o be made.

Z

ZxXmit0
command
Zaer Zdemon
Z Z
spool spool
Zdemon Zrecy+qer
local remote
data
network = network
. transfer .
service service

Figurel: Z Architecture
So thatZ can maintain user id’ a&ross systems, w&ral modules must possess
superuser (unlimited ife access) pvileges. Whilepassve interception is potentially
dangerous, as it pvaesinformation, we were rather more concerned with \aEtnter
lopers; those who intend toodify data and/or commands.

1.3. Security Problems

In 1983, we became concerned about the securify afid immediately recognized\se
eral potential vulnerabilitiesThese stemmed from\s#al architectural features, as can
be gleaned fromidure 1. The fact that the system presesvuser identity is the major
reason for a security thredtirst, the ability to gecute commands remotely means that a
breakin on one system can baemded to othersSecond, the complete interconneityi
provided by Z meant that a breakin on one system could xieneled to all of the
machines. lfaZ paclet could be modiéd enroute to its destination, then the user id or
ary message contents could be set to interestahgeg. Thusthe points of vulnerability

[8] were those which had the potential for message alteration.

First, the spool had to beft secure, or otherwisies with arbitrary contents could
be written. Second, the local netwk services had to besgt secure.This was more of a
problem than it appeared; these systems often spooled jobs inteandliheir access-
control stratgies were not easy to chang®o verify the claims we made about the lack

of security inherent in the system, we obtained root permissions from an ordinary
account. Thisvas done through altering alé spooled by the RJE mechanisihe fle

resided in the WIX spool for about 0.5 second, andsxenciphered with a simple madif
cation of a Caesar scheménfortunately the softvare presemd user wnership of the
spooled ile, so that a user could modify thef Thiswas necessary due to the design of

the RJE softare. Breakinghe cipher vas trvial, and by repeatedly sending messages
and polling, aife was captured, modéd, and transmitted to its (unsuspecting!) destina-
tion. Simply protecting this spool directory and modifying the RJE saféwas insuf-

ficient; the RJE jobs were spooled on the mainframe as well, where we could not guaran-
tee security

2. A Server-based solution

After studying the problem, we came to some conclusions:

1. Whileadministratve mntrol was not completely ours (asa/the case with interme-
diate mainframe systems) the systeas\at risk.

2. We were fr less interested in protectingaagst trafic analysis than in protecting
against modifcation.

3. Sendingenciphered messagesasvundesirable for geral reasons, including (1)
recovery from errors, (2) use of intermediate nodes needing source and destination
data, and (3) system status reporting.

4. In addition, requirements were that the user iatfcould not change, e.g., by
requesting a passsd.

After examining the literature on data security [5, 2] we decided that the right approach
was 0 use a cryptographichedksumin order to detect data moiation. Thechecksum

is computed by encrypting the data and then computing a checksum from the encrypted
text. Thus,the messages could be sent in cledrteith a checksum prepended to the
header Modifications could be detected, and maaf messages discardedhe
improved eror-detection vas a byproductSince changes to either the header (uids) or
the message (binaries for system programs) were dangerous, the engtehpdcto be
involved in the checksumThe initial implementation used a 32-bit checksum.

A variety of encipherment schemes wexarmined, and »xperimental implementa-
tions were done tovaluate the performance of the schemgsen after implementation
in assembly language, a cryptosystem usingelaprimes consumed unacceptable
amounts of CPU time,ven for very short strings.DES [4, 5] wvas &amined, ot once
again the throughput of the implementatioasninsuficient. Whileit is clear that DES is
intended to be implemented in haahe, the chips\ailable at the time werexpensve
and slov. In addition, we had three architectures to contend with, ardek changes
would have keen necessaryWe ed up the Nix library implementation of DES by a
factor of 3 using hand-optimized code and small assembly-language rouReesnt
research [1] indicates that speedups up tctof of 20 or more can be accomplished by
applying some mathematical sophistication in the sowmplementationOur speedup
reduced the CPU time required for encrypting a ongaoge fle from about 2340

seconds on an T&T 3B20S™ (the 3B20S is roughly comparable to a DEGXV"
11/780) to about 830 secondsxecution of a simple command which counts the charac-
ters in a ile requires about 5 seconds of CPU time, so the caititib of file reading
code is lav. Considerable computationas necessary to ceat byte-orientedifes to
bitstreams of one bit per charactdyse of techniques such as cipbdsck chaining
would slav an implementation den further

Bishops factor of 20 speedup should reduce this time to about 120 seconds of CPU
time. UnfortunatelyZ was dten used for transfer oflés which were up to a rgebyte
in size, and response times (comprised of CPU times and delays caused by scheduling,
processor sharing, and 1/0) measured in minutes were unacceptéblmally decided
that a moditcation of the Wix crypt command wuld be the best solutiorEven though
crypt has recently been sha to be insecure, the rotor ciphers, once set upwallo
extremely rapid encipherment to aklace. Whileour work preceded Reeds andeii-
beger’s [7], we seem to ha anticipated some of the elements of their approach;are v
ied the rotorshifting steps in a passnd- dependent &y in order to frustrate analysis of
blocks of tet for which one of the rotors remaingédd.

Since we were caimced that encryption technologyowld improve, we wanted to
add the encipherment to the system in suchag that nes solutions, e.g., DES chips,
could be incorporated easily
2.1. Encryption Server

The change in the architecture is illustratedgarie 2.

Z

ZxXmit0
command
cksum
sener
Z Z
spool spool
local remote
data
network = network
. transfer .
service service

Figure2: Z Architecture with checksum sawv

The serer was passed alédname agument using a secure FIFO queuée flename

was for the packt whichZ had just g@thered. Insertiom the queue by a proces®ke

the serer, which enciphered thelé, computed the checksum, and passed back the result
to the calling processThe passwrds were pesystem, stored in a secuike fwhich the
sener checlkd frequently for modi€ation. Thepassverds were encrypted using DES
[6], and sered as seeds to the rotor generation for the Enigma-clériee file hadnt
changed, the encryptionas cached, for performance reasolt's dear that a public-éy
system wuld hare been more déctive for this task, bt the &ailable systems performed

too poorly

The idea of the seev architecture as to emulate the semantics of a remote proce-
dure call. In this way, the serer process could be transparently replaced by another
sener process with the same functionality which used harewncryption or other tricks
to get better response times.

2.2. Problems

The basic design of the serwvas well thought out, and in another systemsrenment,
may still be the right @y to go, because the ashtages in terms of sofare engineering
are manifold, e.g. modularitinformation-hiding, et ceteraJnfortunately encryption is
a CPU-intensve ativity; hence, the NIX system scheduler assigns the serprocess

lower and lever priority as time goes on, and it becomeswsid with respect to
response timelmproved scheduling technology could remedy this problemt, ib was
neither &ailable nor administrately desirable, rcept for our applicatios’use.

Since the proces<] waiting for a reply (the checksum) cannot assume that the
sener is up, it can time out on the write to the seBs/request queue, using théarm()
facility. While it can retryif the serer is suficiently slav the request may not be ser
viced ‘in time”. If this occurs, the paekizing softvare will assume seev failure and
therefore &il to pacletize the requestOn the other hand, if timeouts are natifitated,
the softvare may appear to be sowlthat users willihd alternate means of data trans-
port. For lage iles and a bsy serer, the response times were measured in minutes.

In addition, the seer proved to be an administratve rightmare: it vas hard to
understand without a great deal &pertise in encipherment, systems programming, and
network software; it created‘mysterious’ files when it vasnt keeping up with the
request queueing rate; and idsvdependent on the sanity ofesal files. Consequently
a re-design vas done which presesdt most of the posite features of the seev design,
while improving response time and reducing administeadf ort.

3. Re-design, no server

The major goal of the redesigrfat was (initially) to increase the reliability of the serv
process, and hence reduce the adminiggadfort. After a painstaking analysis of the
alternatves, it was decided that the servmodule should be rew&d and the encryption
services be praded by in-line code rather than interprocess communicat@hile on
the one hand, thaubden of performing a DES encryption on the cleanpassword could
not be shared between users of aesgtire folloving were true:

A small data transfer euld not be penalized in real-time response for Yahg a
large data transfer in the request que(ighe lage transfer wuld cause anx¢éernal
sener to accumulate a lgg amount of CPU time, thus penalizing it in the schedul-
ing discipline.)

* The DES encryption is not necessapyovided that ap cleartext passwrd is
encrypted before being put into a securkd f

* Per system passwds were eliminated, as this ped to be o little use in practice.
One passward is used for all systems onZanetwork; eliminating a system ould
then require changing the passd on all machinesxeept the one to be cutfof

* While re-engineered to be nadt, the interprocess communicatioasxcomplg, and
slow in response time. Putting the code in-line permitteceraé optimizations,
which led to signitant performance impvements, adctor of 3 to 5.

The necessary code to perform checksumming and encryptiitg cdritents \as moed
inline. ThePack() andUnPadk() calls were designed so that callersuid be ignorant of
their methodology; this pued to be true in practice, as not one line of the calling mod-
ules had to be re-coded to reflect thetfthat the seer had been eliminatedlhe inter
process communication codasveliminated and theéhe&Sum()call made directly The
encryption algorithm a&s modifed to remwee a eflecting rotor from the encipherment

process, thus remimg a memory access andawaithmetic operations from the process
of encrypting a byte.This was done without reducing the cryptographic strength of the
algorithm, as the reflecting rotor mainly aids decipherm@ime checksumming routine
was dso re-coded for greaterfiedfiengy; the net result as thatZ required about 20 sec-
onds of CPU time to queue a 1gaeyte ile on an A&T 3B-20S. A command line (no
file access) requires a little more than a second of CPU on the same matieraldi-
tional CPU @erhead in each wrocation is therefore directly proportional to the resource
utilization of the request: this seemer.f Unfortunately much Z use is administrate,

and a trdic analysis shwved that the e rage packt size vas about 100K bytes, implying
about 2 seconds of response time penalty for using encrypiienfelt that this vas
acceptable, Uit extensve testing with the user community raisedcal complaints.
Thinking these spurious, we seged the user communjtyand concluded that the
encryption feature, weaked as it &s through:

1. Lackof public key technology

2. Useof a cipher system kmn to be breakable, and
3. Increasinglependence on protecteleg$,

was o longer viable.

4. Conclusions

There were seral beneits which accrued from ouravk. Therewriting of the softvare
resulted in a more roist, readable, and giat system.Various dangling pointer errors
were corrected, andubfer size checks were added; this ssrto remee dher obscure
security problems.The desire for end-to-end encryption, or something close, led to a
complete, and better redesign for the gadieader; it &s re-encoded entirely ins&lL.

This resulted in better portability in a heterogeneous machiieoement. Thecalls to

the encryption routines were commented out of the source code, a total of 4 li@&’s of
no other moditations were necessargeveaal utility programs had either been inappro-
priately placed in the directory hierayclor gave inappropriate heels of privilege to
users. Theswere changed.

Administratve rigor was applied to reduce the security thredtlinerable directo-
ries were chead carefully for permissions; there nav monitored on a rgular basis.
As newver networking technologies are phased in, the old methods, such as RJE, which
used potentially unsafe intermediary nodes, are being phaseG@anaful administration
is used [3] at present to pemt surprises.

Our application points out some of the serious problems with applying crypto-
graphic technology in practiceFirst, while a cryptographic checksum is theviobs
solution, it was clearly an afterthought, and had to be added txiating architecture.
Second, the uses of the system can pugreeperformance constraints on an otherwise
workable systemOur problem vas the relatiely frequent transfer of Ige dataifes, and
the demands of timesharing users for good response tWegied to cure this by weak-
ening the cryptographic checksum schem the results were unacceptable, so security
is maintained primarily by administre#i vigilance.

However, when the netarking technologies such as Ethefffetare broadcast
media, ‘promiscuous-listeners’and more serious)y'modifiers’, start to resudce as an
issue. Thusthe increased computational cost of creating a system with a higher crypto-
graphic ‘work factor’ begns to seem more reasonabléThe economics of
cost/performance might justify special-purpose hardy e.g., for DES encipherment.
The tradedk between security and response-time shouldkamimed carefullyand fre-
qguently

In particular a iseful and producte aea of research euld be one which resulted
in a set of curgs which related cryptographic strength to some useful performance met-
ric. Onesuch metric, alluded to in this pap& the number of arithmetic operations
required per byte of a Ige fle. The analysis represented by the performance eurv
allows a system designer to compare systems and select an appropriate system for the
application. Vithout such analysis, most cryptographioriwis likely to remain of inter
est mainly to mathematicians; practicalnw requires getting the details right.

5. Notes

® UNIX is a Rgiistered Tademark of A&T Bell Laboratories.
3B20 is a trademark of T&.T.

VA X is a tademark of Digital EQuipment Corporation.
HYPERChannel is a trademark of Neik Systems Corporation.
Ethernet is a trademark of Xerox Corporation.

6. References

[1] Matt Bishop, ‘An Application of a &st Data Encryption Standard Implementation,
Computing Systenig3), pp. 221-254 (1988).
[2] D.R.Denning,Cryptagraphy and Data Securippddison-Wesley (1982).

[3] F. T. Grampp and R. H. Morris,UNIX Operating System Security AT&T Bell
Laboratories Bdnical burnal 63(8, Part 2), pp. 1649-1672 (October 1984).

[4] A. G. Konheim,Cryptagraphy: A PrimerWiley-Interscience, N& York (1981).

[5] C. Meyer and S. MatyasCryptography: A N& Dimension in Computer Data Secu-
rity, Wiley-Interscience (1982).

[6] R. Morris and K. Thompson,UNIX Password Security’ Communications of the
ACM 22, pp. 594-597 (Nwember 1979).

[7] J. A. Reeds and.R. Weinbeper, “File Security and the UNIX System Crypt com-
mand, AT&T Bell Labomtories Bdnical burnal 63(8, Fart 2), pp.1673-1684 (Octo-
ber 1984).

[8] D. M. Ritchie, ‘On the Security of UNIX,i n UNIX Programmers Manual, Section
2(1983). A'&T Bell Laboratories

