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Abstract

Active networks accelerate network evolution by permitting
the network infrastructure to be programmable, on a per-
user, per-packet, or other basis. This programmability must
be balanced against the safety and security needs inherent
in shared resources.

This paper describes the design, implementation, and
performance of a new type of network element, an Active
Bridge. The active bridge can be reprogrammed “on the
fly”, with loadable modules called switchlets. To demon-
strate the use of the active property, we incrementally ex-
tend what is initially a programmable buffered repeater with
switchlets into a self-learning bridge, and then a bridge sup-
porting spanning tree algorithms. To demonstrate the agility
that active networking gives, we show how it is possible to
upgrade a network from an “old” protocol to a “new” pro-
tocol on-the-fly. Moreover, we are able to take advantage of
information unavailable to the implementors of either pro-
tocol to validate the new protocol and fall back to the old
protocol if an error is detected. This shows that the Active
Bridge can protect itself from some algorithmic failures in
loadable modules.

Our approach to safety and security favors static check-
ing and prevention over dynamic checks when possible. We
rely on strong type checking in the Caml language for the
loadable module infrastructure, and achieve respectable per-
formance. The prototype implementation on a Pentium-
based HP Netserver LS running Linux with 100 Mbps Eth-
ernet LANS achieves ttcp throughput of 16 Mbps between
two PCs running Linux, compared with 76 Mbps unbridged.
Measured frame rates are in the neighborhood of 1800 frames
per second.

*This research was supported by DARPA under Contracts
#N66001-96-C-852 and #DABT63-95-C-0073. Additional support
was provided by the AT&T Foundation, the Hewlett-Packard Cor-
poration and the Intel Corporation.

1 Introduction

“Active Networks” [TSST97] are packet-switched networks
in which the network infrastructure is programmable and ex-
tensible, and where network behavior can be controlled on a
per-packet, per-user, or other basis. For example, a packet
might carry executable code[TSS+97] that extends the net-
work infrastructure. The goal in developing such networks
is to greatly increase the flexibility and customizability of
the network, and to thus accelerate the pace at which net-
work software is deployed and evolves. Active Networks pro-
vide an infrastructure for implementing earlier approaches
to evolving networks such as “Protocol Boosters” [FMS98].

SwitchWare [SFG96] is an experimental active network-
ing project with the goal of using active networks to facil-
itate rapid network evolution. This effort must begin with
an architecture for the nodes that comprise the active net-
work. To this end, we are building network components
(“switches”) that can be programmed remotely over the net-
work. A key question in this effort and indeed generally
in active networks is how to allow the network to be pro-
grammed remotely without compromising the safety and se-
curity requirements that are crucial to the shared network
infrastructure. A significant aspect of our approach is the
use of high-level type-safe programming languages as a ba-
sis for extensibility. These languages allow some basic and
important low-level safety guarantees to be made by the pro-
gramming language, thus providing a solid basis on which
to build a safe, secure, and extensible software base.

In this paper, we present the results of our initial imple-
mentation experiment, an active network bridge. The bridge
is programmed in Caml, a statically and strongly typed lan-
guage. Caml is also used to extend the basic bridge function-
ality. To demonstrate the usefulness of active networks, we
show that we are able to down-load a crucial new algorithm
into a running bridge and to dynamically switch the bridge
from one operating regime to another. Normally, such a
conversion would require bringing down the network and
disrupting users. The ability to avoid such disruption rep-
resents a significant advantage for active networking. Fur-
thermore, the prototype achieves acceptable performance.

The next section, Section 2, motivates research into Ac-
tive Networks. Section 3 points out the major safety and se-
curity risks of a programmable network infrastructure, and
introduces our solution. Section 4 provides background on
bridges for Section 5, which describes our Active Bridge,
with its incrementally loaded functionality. Section 6 con-
tains a performance analysis, Section 7 relates our work to
that of others, and Section 8 summarizes the new results.
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Figure 1: Hourglass model of internetworking.

2 Why Active Networks?

Network hardware and applications are evolving rapidly.
Unfortunately, key parts of the network infrastructure evolve
much more slowly, often taking more than half a decade to
make their way from presentation at SIGCOMM to deploy-
ment by Internet Service Providers. For example, consider
the five or more year time-line from RSVP conceptualiza-
tion [CSZ92] to deployment [Pap96].

The existing network software infrastructure evolves
slowly because of an important and fundamental design goal,
the need for interoperability. Interoperability is achieved in
the current Internet by using the hourglass model of net-
working shown in Figure 1. Essentially the idea is that
a wide variety of high-level services and low-level network
technologies can be made to interoperate if all of their func-
tionality funnels through a common interface, the waist of
the hourglass. In the Internet, this waist is the IP proto-
col, which defines a standard packet format, and a virtual
source/destination addressing mechanism that allow a wide
variety of systems to interoperate. The success of this idea
is clear from its current penetration and acceptance in the
marketplace, and its enabling of other schemes such as the
world-wide web.

It is the need to standardize on the interoperability layer
that makes network evolution slow. This is because when
new functionality is needed that cannot be added either un-
der or on top of the interoperability layer, then the inter-
operability layer itself must be changed. The implication is
that some basic changes in the network must be made at
the speed with which standardization proceeds, rather than
tracking the much more rapid pace of the basic technology.
A good illustration of this is the speed (or lack thereof) of
adding various types of support for QoS to the Internet.

Active networks address this problem by making a funda-
mental change in the nature of the interoperability layer. An
interoperability layer is still crucial; without it there would
be no common ground upon which to communicate. How-
ever in an active network, instead of standardizing on the
low-level packet formats and exchange protocols, the stan-
dard is a programmable interface that allows the low level
details to be programmed and customized as needed. As
long as two communicating entities can run compatible code
they can interoperate. This change allows the network to
evolve as rapidly as new software can be developed because
now new protocols can be deployed without any mediation
of standards bodies.

There are further advantages to active networks. For
example, diagnostic functions can be inserted “as-needed,”
and proprietary protocols can coexist with public standards.

3 The Challenge of Active Networks

Making the network itself programmable offers great power
and flexibility, but it also creates significant new safety and
security risks. The challenge is this: How can we provide
this flexibility while preserving enough security for the net-
work to be used by all? A further question is whether the
needed safety and security can be achieved with acceptable
performance?

SwitchWare is exploring this challenge by focusing on
the design and implementation of programmable network
elements. With this approach, network elements that were
previously “store and forward” become “store, compute, and
forward” elements. Programming can be accomplished out-
of-band, through an administrative interface, or in-band,
through packets that are “capsules,” as proposed by Wether-
all et al. [TSST97]. Each packet can contain both data
and code that operates on the data. We call such pack-
ets “switchlets”. This model allows advanced applications
such as DNS proxies, self-directed multicast, etc. to be pro-
grammed by users or network implementors remotely.

Switchlets must provide for safe and secure extensibil-
ity. Extensibility is intimately connected to the program-
ming language that is used for the extensions. Thus, it
seems natural to explore programming language-centric ap-
proaches to providing the basis of secure extensions, and we
are doing so. Modern programming languages such as Java,
Modula-3, and ML provide significant advantages in safety
and hence security. These advantages derive from the use
of strong typing, supplemented by automatic storage man-
agement (garbage collection), and array bounds checking.
We discuss why strong typing provides safety advantages in
some detail in Section 5.1.2.

Because ML [MTH90] is strongly typed, is well stud-
ied by programming language semanticists, and because we
have some considerable local ML expertise, we have chosen
to use Caml [Ler95], an ML dialect, for our work. Caml also
has two additional advantages for our work: byte codes and
dynamic linking. The byte code format provided by Caml
provides us with a machine independent format that is com-
pact for transmitting switchlets over the network. Dynamic
linking provides the ability to add these switchlets to an
executing program. Several recent networking efforts have
also used dialects of ML. For example, Biagioni [Bia94] de-
scribes a TCP implementation based on Standard ML of
New Jersey [AM87] and van Renesse [vR96] discusses a net-
work stack implementation also based on Caml.

4 Network Bridges

Network designers must trade off complexities of address-
ing and routing. Bridges' are data link layer network el-
ements that interconnect LANs to make extended LANs
(ELANS) [Per92]. Bridging is a less flexible interconnec-
tion solution than IP internetwork routing, but it offers
cost/performance advantages in many settings and is widely
used.

When bridges interconnect broadcast LANs such as Eth-
ernet, they must provide the illusion that the ELAN is a
broadcast network. For LANs L; and Ly, a “dumb” bridge
would broadcast all frames seen on L; to Ls and vice-versa.
A self-learning bridge [HKS84] optimizes this behavior by
tracking packet source addresses; if the destination of a
frame lies on L; then frames destined for that host need

1Throughout this paper, all bridges are transparent bridges, which
are invisible to hosts, unlike the less common source routing bridges.



not be forwarded to other LANs L»...L; connected to the
bridge.

An important limitation of bridges is that since they can-
not modify the packet (and therefore cannot use mechanisms
like a time to live field), it is possible that they will direct
packets in a loop, causing the packet to fail to make progress
and wasting network resources. Worse yet, since a bridge
that receives one packet may generate several packets, a
loop can cause unbounded growth in the number of packets
on the network leading to network collapse.

There are a variety of approaches to guaranteeing loop
free bridging. A very simple technique is to physically con-
struct the network so that loops cannot form and perhaps to
provide detection to indicate when a loop has been created.
The solution adopted by the bridge industry is essentially
this one, but at the logical rather than physical level. The
idea is simply to constrain the bridges so that they never
forward packets in a loop. This is done by imposing a span-
ning tree on the graph representing links between bridges.
A spanning tree has only one path between any two nodes,
and thus as long as a bridge only forwards packets over ports
that are part of a spanning tree, no loops are possible. Ports
that are not in the tree do not have packets forwarded on
them.

Bridges have two phases of operation, a configuration
phase in which a distributed algorithm is run to establish
the spanning tree, and an operational phase in which the
bridges actively forward packets. For the first several sec-
onds that the bridge is running, it is in the configuration
phase. During this time, the local portion of the spanning
tree is calculated and the bridge starts to learn the location
of hosts by inspecting the source addresses of the packets
that are received. During the forwarding phase, the bridge
begins to forward packets using the learned locations when
applicable and only if that path is part of the spanning tree.
The learning and spanning tree algorithms continue to run,
in case new hosts or bridges are added to the network.

5 The Active Bridge

Because they are simple, but not trivial network elements,
we have chosen to implement a bridge for our initial ac-
tive network experiment. In particular, ignoring whatever
administrative features are added by the manufacturer, a
bridge has a simple security model: it forwards frames.
Enhancements such as self-learning do not fundamentally
change this basic function, and typically the queue service
discipline for input and output frame queues is FIFO. Since
bridge functionality is simple it is easily tested, and this
simplicity is an asset during data analysis. Moreover, the
ease of dividing a bridge into the three component functions
previously discussed [Per92] make it ideal for a layered ar-
chitecture such as our implementation.

5.1 The Switchlet Loader

A central aspect of an active network is the ability to load ex-
ecutable code into the network elements. Thus, it is no sur-
prise that a basic component of our system is our switchlet
loader, which allows the user to load in new switchlets and
to execute them. Another important aspect of the loader is
that it establishes the environment in which switchlets ex-
ecute. Controlling the execution environment allows us to
exclude operations like opening disk files that are unneces-
sary for a switchlet and which may pose security risks.

To produce the restricted environment we use a feature of
Caml called module thinning [Rou96]. In Caml, groups of re-
lated functions, along with their supporting data structures
and types, can be aggregated into a module. Each mod-
ule has a signature that describes which values, types, and
functions are known to external functions. We have thinned
the signature of the modules to be accessed by switchlets to
exclude those functions that might allow security violations.
This leaves the switchlet with no way of naming the excluded
function and thus, no way of accessing it. We discuss this
point in detail in the next section.

Caml supports this process by including signatures in the
byte code that is used to transmit switchlets. When Caml
compiles a set of sources into byte codes, it includes an MD5
digest of the interfaces required by this module as well as
the MD5 digest of the interface exported by this module.
If the byte codes are unaltered module thinning works as
described. For simplicity, in our current experiment, we
have not addressed the authentication issues, but these are
an important avenue for further work.

5.1.1 Module Isolation

A key transition made by our security model is from us-
ing address spaces to name spaces as the basis of security.
Aspects of such a model have been examined in the con-
text of the Nemesys operating system for multimedia appli-
cations [LMB'196], and in some sense by capability-based
systems.

If switchlets were written in a weakly typed language like
C, a switchlet would be able to access any part of its address
space. Unchecked this ability would allow a switchlet to call
any function in the address space, or worse to over-write
the code or data of another switchlet. Enforcing security
in a shared address space would be impossible. Tradition-
ally, if multiple programs written in weakly typed languages
are to share resources, security mechanisms such as sepa-
rate address spaces are used to ensure that a program can
only affect its own physical memory. Page protections en-
sure that a program only directly reads, writes, or executes
unshared resources. When sharing is needed, it is mediated
by the operating system, and when different processes need
to execute, they require a context switch. These mecha-
nisms operate while the program is executing and thus have
a runtime cost.

Our prototype presumes a single-language environment
and uses strong typing to guarantee that only certain op-
erations are allowed. Furthermore, by using static typing,
which enforces type safety during compilation and linking,
we are able to substitute compile-time and link-time costs
for runtime costs. For example, functions are immutable
objects, so there is no operator that allows one to change a
function. (One could change a function reference to refer to
another function, but there is no way to modify the function
itself.) Further, there is no equivalent of a C cast operator?,
so there is no way to “trick” Caml into thinking a function
is an object that can be changed. Thus, there is no need for
page protection since Caml provides equivalent protection
on an object by object basis at compile and link times when
it ensures that the types are all correct.

For type safety to be fully enforced statically, it is also
necessary for the system to use automatic dynamic stor-
age allocation (garbage collection) and to check that array

2There are transformation operators for making some safe, well un-
derstood transformations. For example, there is a function to trans-
form an integer to a floating point number.



val pub_hash:
(string, (int -> int)) Safestd.Hashtbl.t
val pub_func: unit -> unit

Figure 2: example.mli

open Safestd

let pub_hash = Hashtbl.create 15
let priv_func x = x - 7

let some_func x = (priv_func x) + 5
let pub_func ()
Hashtbl.add pub_hash "func" some_func

Figure 3: example.ml

bounds are not overrun. Both of these features improve the
safety and thus security of the system in general. For exam-
ple, many common Unix security holes are created because
C does not check array bounds. This allows a malicious pro-
grammer to overwrite the stack and upon returning from a
call to execute arbitrary code. Similar tricks can be played if
the programmer is allowed to free memory that is in use by
other parts of the program. Using garbage collection (GC)
avoids these problems, since only the system frees storage.

The lack of a cast operator or an address operator also
makes it impossible to refer to any object without either its
name or a string of legal pointer references from a known
object. Name-space based security rests on this feature.

Figure 2 (the module interface) and Figure 3 (the module
itself) contain some contrived code to illustrate this point.
If another module wishes to reference objects from the mod-
ule example, initially, it can only refer to those objects in
its interface (signature). Attempts to access other objects
result in compile time errors. If the other module were com-
piled against a signature built by an attacker that included
some private objects, a link time error would result because
the signatures would not match.

The values accessible from the interface are the func-
tion example.pub_func and the hash table called example.
pub_hash; they can be referred to directly by name. Initially,
example.pub_hash is empty and does not lead to any func-
tions. When example.pub_func is evaluated, then the func-
tion example.some_func becomes accessible because there
is a reference path to it through pub_hash, and evaluat-
ing Hashtbl.find example.pub_hash "func" would return
example.some_func.

5.1.2 Switchlet Linking Model

For the bridge, we used the rather simple linking model of-
fered by Caml. A Dynlink module is provided that sup-
ports dynamically linking byte codes containing a module
into a running program. To use these facilities, one must
first call Dynlink.init which creates an empty name space
into which modules can be loaded. Next, to create an ini-
tial environment, one calls Dynlink.add_available_units
which enters the names from specified modules that were
linked into the loader when it was built into the name space.
For the loader, the modules specified in this way provide
functions ranging from integer addition to some network-
ing functions. (See the next section for more details.) Fi-
nally, by calling Dynlink.load, one can load byte-codes and

add them to the name space. There is no function to allow
previously linked functions (whether linked dynamically or
statically) to access the newly loaded functions, so the byte
codes usually contain some top-level forms that call a reg-
istration function, that changes a data structure visible to
previously linked functions.

For the prototype bridge, a single name space is suffi-
cient, and it ensures that many types of accidental refer-
ences do not occur. However, it does not protect against
malicious references. When we start to build devices that
we intend to be used by multiple users, we will need a way of
managing multiple namespaces that incorporates a variety
of security issues. Providing such facilities is another area
for research that is important for active networks.

5.2 The Switchlet Loading Process

When the loader first starts, it is limited to those capabilities
required to continue the loading process or which must be
staticly linked for security reasons. By dynamically loading
everything else, we can retain the maximum flexibility. In
particular, the initial loader can only load switchlets from
disk.

To overcome this limitation, we load a network loader. It
consists of four layers. The lowest layer captures those Eth-
ernet layer frames destined for an Ethernet card installed
on this machines. It then demultiplexes these frames based
on the Ethernet protocol identifier. The next layer imple-
ments a minimal IP [Pos81] sufficient for our purposes. (It
does not, for example, implement fragmentation.) The IP
protocol identifier field is used to demultiplex these packets
to other switchlets. The next layer implements a minimal
UDP [Pos80] in a similar fashion. Finally, the highest layer
in this stack implements a TFTP [Sol92] server. This server
only services write requests in binary format. Any such file
is taken to be a Caml byte code file and, upon successful re-
ceipt, an attempt is made to dynamically load and evaluate
the file.

This approach does not describe how we build a network
capable of loading all of the switches. There must be a
mechanism by which a host can load a protocol into a switch
to which it does not have a direct connection. For our bridge,
we can easily build up an infrastructure in steps by sending
the bridge switchlet to all adjacent switches and then waiting
for these switches to start bridging. At the diameter of the
extended LAN grows by one at each subsequent step, we can
load those switches whose shortest path is one link greater
than was possible in the previous step.

If one desires a more concurrent protocol installation,
there are several possible choices best chosen based on the
protocol and local knowledge. For example, if the switches
are currently not forwarding any traffic for lack of any pro-
tocol to do so, using a flood algorithm to send the protocol
switchlet to all the switches in the network might work well.
If there are forwarding protocols on the network, it may be
possible to leverage off of these to route our switchlets to
the desired locations.

5.2.1 The Interface Provided to Switchlets

Currently, the loader provides an initial set of eight mod-
ules. These modules define the basic environment in which
a switchlet will execute. We expect this set to continue to
evolve as we gain more experience programming switchlets.

The most basic of the modules provided is Safestd. This
is a slightly modified version of the Safestd module from the



type packet = { len : int;
addr : Safeunix.sockaddr;
pkt : string }

type iport

type oport

exception Already_bound
exception No_interface

(* Input ports *)

val pkts_waiting_p_in: iport -> bool
val bind_in: string -> iport

val bind_addr: string -> iport

val get_next_pkt_in: iport -> packet
val unbind_in: iport -> unit

val unbind_addr: iport -> unit

val get_iport: unit -> iport

(* Output ports *)
val bind_out: string -> oport
val send_pkt_out:
oport -> string -> int -> int ->
Safeunix.sockaddr -> int
val unbind_out: oport -> unit
val get_oport: unit -> oport
val ready_to_send_p_out: oport -> bool

(* Generic functions x)
val iport_to_oport: iport -> oport

(* Debugging aids *)

val debug_iport_to_string: iport -> string
val debug_oport_to_string: oport -> string
val debug_demux_num_devs: unit -> int

Figure 4: unixnet.mli

MMM browser [Rou96]. It provides a set of standard Caml
functions ranging from integer operations to an implementa-
tion of hash tables. As the name implies, it has been thinned
to only allow “safe” operations. Similarly, Safeunix is a very
heavily thinned version of the Unix module from Caml. Our
version of Safeunix provides access to some time related
functions and to some types that are needed for networking.
Since we provide no functions for generating output as part
of Safeunix, we provide a module called Log that allows log-
ging messages to be generated. It also allows us to change
the method of logging, to a terminal, to disk, or not at all.

We also provide a set of thread related modules. These
are built on top of the basic Caml threads package that
works entirely in user mode. Thus, no speedup occurs due
to our multiprocessor. We hope to be able to take advantage
of the POSIX threads in the near future. The threads mod-
ules are Safethread, Condition, and Mutex. Safethread is
only very lightly modified from Thread; because there are no
ways to create an object of type Thread.t except by call-
ing Thread.create, we can even leave Thread.kill in the
module.

So far, we have had to create two new modules to provide
support. The first of these, Func, contains glue routines to
allow the loaded functions to properly register themselves.
The register routine simply takes a string as a key and a
function and enters them into a hash table. There is also a
function that allows one to evaluate one of these functions.

Finally, we provided a module to allow access to the net-
work. Unixnet provides a set of functions that allow access
to the network interfaces on the machine as shown in Fig-
ure 4. Our model separates those functions used for input
from those from output. In each case, a function is provided
to connect to a given port, to connect to the next available
port, to disconnect from a port, to check the status of the
port, and to send or receive a packet on the port. Because
we are building a bridge, whenever an input port is bound,
it is put into promiscuous mode. Currently, we use a simple
model in which the first switchlet to bind to a given port suc-
ceeds and all others fail. We plan to explore the appropriate
way to arbitrate between conflicting claims as we continue
our work.

5.3 The Bridge Switchlets

The three switchlets that make up the bridge are built on
top of the interfaces just described. They are loaded in turn
to build up the fully functional bridge.

The first, lowest level switchlet implements a minimal
“dumb” bridge. It has three parts. Part one is a function
that reads an input packet from a queue and sends it out
through a given network interface. Part two is a function
that takes an input packet and queues it to all network in-
terfaces except for the one on which it was received. Part
three is a function that reads packets from a network in-
terface and demultiplexes them to the functions from part
two.

This switchlet is actually performing the function of a
buffered repeater. It cannot tolerate a network topology
with any loops and will not support a network with ag-
gregate traffic higher than the traffic limit for its slowest
segment.

The second switchlet adds learning to the bridge. This
switchlet replaces the switching function from the dumb
bridge with one that learns the locations of the hosts on the
network. For each packet received, the triple (source ad-
dress, current time, input port) is placed into a hash table
keyed by the source address, replacing any previous entry®.
Next, the hash table is searched for the destination address
of the packet. If a match is found and is current, the packet
is sent out on the port indicated unless that was the port
on which the packet was received. If no match is found, this
bridge has not yet learned the destination address and the
packet is sent out on all ports except the one on which it
arrived.

The third and final switchlet implements the spanning
tree functionality. This switchlet adds a function that regis-
ters with the demultiplexer requesting packets addressed to
the All Bridges multicast address. All other packets continue
to be sent to the learning function from the second switchlet.
Based on the 802.1D protocol [IEE93], this function takes
part in the calculation of the spanning tree for the network.
Then it uses access points in the previous switchlets to sup-
press the traffic from certain input and output ports. With
this switchlet, we have a fully functional bridge.

5.4 Automatic Protocol Transition

So far, we have demonstrated that active networks allow one
to modularly build up a network element and to extend it

3 Actually, if the source address is a multicast or broadcast ad-
dress, this step is bypassed. Similarly, if the destination address is
a broadcast or multicast address, the packet is sent out on all ports
except the one on which it arrived.



remotely, enhancing its functionality. This is an important
step towards our goal of improving network extensibility, but
it does not illustrate how active networks allow us to replace
basic functionality. To demonstrate this facility, we built a
facility that allows our bridge to transition between different,
incompatible protocols in a coordinated, automatic manner
with automatic fall back if the new protocol should fail.

An important difficulty encountered in managing a net-
work is making changes to the infrastructure. Generally,
this requires bringing down the node to be upgraded. If the
change is incompatible, the problem becomes much worse.
In the case that none of the nodes is capable of acting as a
gateway between the two versions of the protocol, the net-
work must either be partitioned into a portion supporting
the old protocol and another supporting the new protocol
or the entire network must be brought down, upgraded, and
returned to service as a unit. Generally, neither of these
choices is very acceptable to the users of the network. More-
over, if it turns out that the new protocol does not work for
some reason, the same process must be used in reverse to
back out the changes.

In this experiment, we show how an active bridge can
perform such a transition in an automated, coordinated fash-
ion. The network partition still occurs, but at the pace the
infrastructure sends and processes packets rather than at the
pace of the network administrators can move from machine
to machine. Thus, the transition can be expected to take
time similar to what would occur if there were a power fail-
ure at each of the bridges. Moreover, active monitoring can
occur while the network is stabilizing, detecting any failures
in the new implementation and transitioning the infrastruc-
ture to a stable state such as the previous protocol.

In order to have a pair of protocols to transition between,
we modified the spanning tree switchlet to send DEC span-
ning tree packets to the DEC management multicast ad-
dress instead of 802.1D packets to the All Bridges multicast
address?. This DEC-like protocol was used as the old pro-
tocol. The 802.1D protocol was used as the new protocol.

We also wrote a control switchlet that was capable of
controlling the transition between the two protocols. This
is the component which capitalizes on the ability to actively
load switchlets by using locally available information. (If
one were to deploy a facility like this generally, we would
expect that the old and new protocols would be written by
a single programmer and distributed and that the control
switchlet would either be written or customized by each of
the local network administrators based on their knowledge of
their networks.) In order to load the control switchlet, both
the 802.1D switchlet and the DEC switchlet must already be
loaded. It checks that the DEC switchlet is operating and
that the 802.1D switchlet is not. It then arranges to receive
any packets addressed to the All Bridges multicast address.
When an 802.1D packet arrives, the control switchlet as-
sumes that the network is transitioning to the new protocol.
It halts the DEC protocol and starts the 802.1D protocol.
It also arranges to let the 802.1D protocol listen to the All
Bridges address and it starts to listen to the DEC address.
Any DEC protocol packets received during an initial tran-
sition period are suppressed. The 802.1D switchlet sends
out configuration packets on all of its ports thus causing
any bridge that is on a connected network and that has not
transitioned to do so.

4To completely implement the DEC protocol would require chang-
ing some timings and states as well. We did not do this. We sim-
ply required an incompatible packet format so that we could make a
transition.

[ action | DEC | IEEE | control
running
load TEEE | running loaded
load/start | running loaded running
control
recv IEEE | suspended | loaded suspend DEC;
packet capture DEC
state
loaded running start IEEE
30 seconds | loaded running/ suppress DEC
forwarding | packets
60 seconds | loaded running perform tests
per network
admin
pass tests | loaded running fallback if DEC
packet arrives
fail tests running loaded stop IEEE;
or fallback start DEC;
terminate

Table 1: Automatic Protocol Transition

The control switchlet next moves into its monitoring
phase. For this particular transition, the critical change is
the protocol for computing the spanning tree. Based on lo-
cal knowledge, we have determined that the portion of the
spanning tree computed at each node should be identical
for the old and the new protocols. As such, the control
switchlet monitors the information about the spanning tree
accumulated at the current node. This is compared with in-
formation captured from the DEC algorithm at the time of
its termination. (If the changes were such that the informa-
tion to be checked were not available at the node, it could be
hand calculated for the expected case.) If the spanning tree
does not converge to the expected values within a predeter-
mined time, the control switchlet will determine that there
must be a bug in the new protocol implementation. Simi-
larly, the old host location table could be compared with the
new host location tables if the network administrators were
not planning to move any hardware during the transition pe-
riod. If a failure is detected, the functions implementing the
new protocol are stopped and the old protocol is restarted.
The control switchlet again changes so that it receives new
protocol packets (which it suppresses) and allows the old
protocol to process its own packets. As a final measure to
allow fall back to occur gracefully, if the control switchlet
finds any old protocol packets after the initial transition pe-
riod, it falls back to the old protocol assuming that a failure
has occurred elsewhere in the network. Once this fallback
has occurred, the network is considered “stable” and no fur-
ther transition will occur without human intervention.

6 Implementation Details

The active node functions are carried out by programs ex-
ecuting in the Caml bytecode interpreter. The interpreter
opens Ethernet sockets (a special type allowed by Linux), to
create paths from an input device to the Caml interpreter,
and from the Caml interpreter to a corresponding output
device.
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The path for an Ethernet frame can be decomposed as seven
steps, as shown in Figure 5.

1. Frame arrives on Ethernet adapter

2. Ethernet Interrupt Service Routine (ISR) woken; it
collects a frame into a buffer chain of Linux network
buffers

3. Linux wakes the bridge thread and delivers the frame
through recvfrom()

4. The Caml program operates on the frame

5. The Caml program emits the packet to Linux network
buffers via sendto ()

6. Linux queues the frame to the Ethernet driver

7. The Ethernet driver emits the frame to the destination
LAN

As currently implemented, the packets are all Ethernet
frames. The CRC is returned on a read, but cannot be
specified on a write. (This is one of our 802.1D incompati-
bilities.) The packets are represented as a record containing
the length of the packet, a Unix sockaddr in a Caml form,
and a string with the data. The user must unmarshall the
data from the string. In the future, we plan to look at the
relative advantages of providing unmarshalling functions in-
stead.

7 Performance, Scalability and Flexibility

We study performance under three types of measures.
First are the traditional performance measures such as
throughput, latency and packets per second. Latency in
a bridge is additional delay incurred by passage through
the logic and buffering of the bridge compared to an un-
bridged system. Bridge throughput will be affected by both
per-packet costs and the per-byte costs [CJRS89], or what

100BaseT  [NIC NIC| 100BaseT

128MB ECC

100BaseT  [NIC NIC| 100BaseT

Figure 6: Active bridge machine architecture

Pasquale [KP93] has called data-touching costs and non-
data-touching costs. Bridge throughput will vary across
packet size mixes, for example, very small packets will incur
almost all of their overhead as non-data-touching costs.

Second are performance measures specific to the type of
networking device under study, for example scalability in
the number of ports handled is an important measure of a
switching architecture. For a bridge, the capacity to support
many LANs and their associated endpoints can be stated as
an aggregate throughput, a number of line cards, etc; the
important point is to get a sense of where adding another
bridge makes more sense than attempting to augment an
existing bridge with additional busy hosts, or LAN-attached
line cards.

Finally, peculiar to “on-the-fly” programmable network
infrastructures is the rate at which changes in the infrastruc-
ture can be made and become effective. This is a limiting
factor for the function-agility of the new network infrastruc-
ture.

7.1 Experimental Setup

The hardware platform for the active bridge is a Hewlett-
Packard Netserver 5/166 LS4 Model 1, a 4 processor shared-
memory multiprocessor. The processors are 166 Mhz Intel
Pentiums and each processor has a first level cache that is
8KB of data and 4KB of instruction, write through and a
1 MB second level cache. The machine has 128MB ECC
memory, 2 PCI slots, 4 EISA slots, 2 PCI/EISA slots, 2
Fast/Wide SCSI-2 controllers, and 1024K video memory/
SVGA controller. Multiple 100 Mbps Ethernet adapters are
used as bridge port controllers. The configuration is shown
in Figure 6.

The software architecture is shown in Figure 5. The
Linux is Red Hat version 4.0 with a version 2.0.23 kernel.

The active bridge implementation has been operating
successfully in our laboratory (replacing a DEC LANbridge)
for over 3 months. For performance measurements, we re-
moved it from the laboratory network and interconnected
two 100 Mb/s LANs as shown in Figure 7.

The hosts were Intel Pentiums running with a version
2.0.28 Linux kernel. To obtain baseline performance mea-
sures, we duplicated latency and throughput measurements
on the “best case” configuration of two hosts interconnected
by a single LAN, as shown in Figure 8.
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7.2 Latency

We measured latency with the ping facility for generating
ICMP ECHOs, using various packet sizes to generate frames
on the LANs. Results are given in Figure 9. With additional
instrumentation, we were able to determine that the Caml
code execution adds 0.34ms per frame. We suspect that the
additional per frame latency of the bridge is due to Linux
and the need to transfer the frame into user space.

7.3 Throughput

Throughput for various packet sizes was measured with re-
peated ttcp trials. The baseline performance, measured on
the bridgeless network, was 76 Mb/s. With an 8 KB IP
packet size (resulting in multiple back-to-back LAN frames),
the active bridge achieves a throughput of 16 Mb/s. The
performance in frames/second was calculated for the same
frame sizes shown and ranged from about 360 frames per
second for small frames (ca. 50 bytes) to 1790 frames per
second for 1024 byte frames.

Additional instrumentation showed a cost per frame
within Caml of 0.47ms on average during a ttcp trial. This
translates to a limiting rate of 2100 frames per second or
about 32 Mb/s before accounting for operating system and
transmission overheads. We have not yet had an opportu-
nity to isolate the source of the Caml overheads. Three pos-
sibilities seem likely. First, some of the cost is certainly due
to the cost of the bridge functionality, which is not reflected
in our very simple C-based repeater. Second, our current
Caml system uses a bytecode interpreter, which is certainly
likely to have a severe performance penalty compared to na-
tive code. Caml does have a native code compiler, although
some work will be needed to adapt it so that it can deal
with dynamically loaded switchlets. The final possibility
is that we are seeing interference from the garbage collec-
tor. The Caml collector is based on the concurrent collector
described in [DL93], but the released implementation does
not use multiple threads to run the collector. If measure-
ments show that the collector is the bottle neck, then this is
a likely source of improvement. Other concurrent collector
technologies are available as well, many based on Baker’s
algorithm [Bak78], and others on techniques that are espe-
cially well suited for ML [NO93, ON94].

We also built a very simple buffered repeater in C to
try to determine the smallest overheads that a user mode
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Figure 9: Ping Latencies

program could expect to see. This program simply opens
two Ethernet devices in promiscuous mode and, for each
packet received on one of the interfaces, writes the packet
on the other. This gives some idea of the costs caused by
bringing the data through the Linux kernel into user space.
We intend to examine an approach like that used by the U-
Net project [VEBBV95] in the future. They allow protected
user mode access to network devices which has reduced the
boundary crossing costs.

7.4 Scalability

Using a general-purpose multiprocessor as a switch is an es-
tablished technique for experimental packet-switching net-
works [EBE*86, KEM*78]. The major performance limita-
tions associated with such a platform are bus and memory
bandwidth limitations inherent in an architecture not spe-
cialized for scaling or aggregation. As discussed by Edmond,
et al., once the hardware architecture is set, the major per-
formance limitations come from the software architecture.
For our system, the major limit is the concurrency we can
access in our implementation. First, while it would be ad-
vantageous to have threads support for our Caml system to
take advantage of the multiprocessor, this is not yet opera-
tional. Second, since Caml is a garbage-collected language,
there are occasional pauses which force the system to se-
rialize the threads. This is another place where the GC
techniques mentioned above may well become important.
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7.5 Agility

The function-agility of a system is the latency for a func-
tional transformation. In the context of active bridging, we
can measure this as the time needed to load a module, and
the time needed for it to take action. For the spanning tree
alternatives we developed, a good measure of the agility is
the ability of the active portion of the system (the loaded
Caml code) to switch spanning tree protocols.

We performed a final test using a ring shaped network.
The HP Netserver acted as an end-node to take measure-
ments. It was configured with two Ethernet cards, ethO
and ethl. Attached between these cards were three of the
166Mhz Pentiums each with two Ethernet cards. These
three machines were each running the bridge software with
the control switchlet to allow automatic switch-over.

A test program running on the HP sent out an 802.1D
spanning tree packet on ethO and then waits to see one on
ethl. (This indicates that each of the bridges in the path be-
tween ethO and ethl have switched to the “new” algorithm.)
The program then starts two threads one of which sends out
a prebuilt ICMP ECHO on ethO, then delays for 1 second,
and repeats. The other thread reads packets on ethl until
it sees one of these pings. gettimeofday() is called before
sending the IEEE frame after receiving the IEEE frame, and
after both threads have died.

For a set of trials, the average start to IEEE time mea-
sured was 0.056 seconds, and the average start to received
ping time was 30.1 seconds. Thus, the active bridge’s recon-
figuration was much faster (<0.1 second) than timeouts (ac-
counting for the additional 30 seconds) built into the bridge
protocols to ensure that temporary loops do not occur.

8 Related Work

Wetherall and Tennenhouse [WT96] have constructed an
Active Network node architecture that uses a TCL inter-
preter operating on the Linux operating system. The AC-
TIVE_IP option is used to flag IP packets containing cap-
sules, which are packets and data passed to the TCL inter-
preter. The scheme has been applied to some IP tasks, such
as implementing traceroute with capsules. This work has
been very focused on a proof-of-concept for an active node,
and demonstrating viability of the idea. Our research is
concentrated on the design and construction of the program-
ming environment for a robust extensible node, and would
be as useful for capsule support as it is for adding bridge
functionality. Other work at MIT [WEK96] has demon-
strated methods for loading network modules (Application-
Specific Safe Handlers, or ASHSs) into O.S. kernels. Like our
work, ASHs rely on pre-module loading static analyses; we
believe that the Caml approach offers a better long-term
opportunity for formal verification.

Zegura, et al. [BCZ96] have designed a similar IP-based
system, which demultiplexes an arriving packet with the op-
tion flag, IPOPT_AP, to a pre-loaded function under SunOS.
This approach has two flaws from our perspective. First, it
appears inflexible with respect to applications loading new
functions on-the-fly. Second, to address this flexibility lim-
itation with modifications to SunOS, there will be security
risks unless languages and tools are used to validate loaded
modules, as in our approach.

Liquid Software [HMPP96] extends the capabilities of
the Java language bytecodes as mobile code fragments. Ma-
jor foci are technologies for fast compilation of mobile code
(to ensure high packet processing rates) and runtime sup-

port using the Scout operating system as a basis. The inter-
action between the Scout system and the Java API should
provide some valuable lessons in the nature of a virtual ma-
chine that could support Active Nets. The choice of Java is
a potential weakness, as a number of serious security prob-
lems have been discovered. Unlike ML [MTH90], Java lacks
a mathematical definition, making formal analysis of pro-
grams difficult.

BBN'’s Smart Packets [PJ96] is focused on the efficient
construction of the packet interpreting programming system
for active networks. Smart Packets, like the capsules pro-
posed in the MIT design, contain code in some form. The
initial effort seems targeted at efficient byte code (e.g., a re-
fined Java or intermediate language) or even machine code
in the packet. The intent is to ensure that loadable active
technologies will be viable on even the highest-performance
networks.

Netscript [Yd96] provides a model for network program-
ming, but is less focused on the construction of active net-
work nodes than the MIT, Georgia Tech, Arizona and BBN
efforts, and more on defining examples of network program-
ming.
MMM [Rou96] is a browser that uses Caml as its applet
language. They also use the strongly typed features of the
language for security, but are able to assume a model in
which all applets cooperate. Further, their applets extend a
browser rather than extending the functionality of a network
switch. Some of our infrastructure, in particular support for
module thinning is derived from their efforts.

9 Conclusions

We have made significant progress towards a robust and
flexible programmable network infrastructure. The active
bridge described in this paper is written in a modern pro-
gramming language, Caml, with strong static type-checking
and memory safety through garbage collection. Several dif-
ferent bridging styles were enabled using loadable modules
(“switchlets”) that we injected into the active node on the
fly.

In the experiments we performed, the bridge was able to
support about 44% of the throughput seen by a C program
that provided repeater, but not bridge functionality. The
measured throughput is 16 Mbps, with an intervening oper-
ating system and interpreted Caml modules. Optimizations
such as compiling switchlets into native code for faster oper-
ation, shortening the Linux path between interrupt arrival
and switchlet operation, improving GC performance, and
increasing concurrency, all offer possibilities for improving
this result.

An important result to take away from this paper is the
flexibility our Active Networking technology provides, even
in the restricted domain of transparent bridging. We started
with a simple repeater, and extended it with switchlets to
become self-learning, to run spanning tree protocols, and
to adapt the choice of protocols using information encoded
in the Ethernet frame. Advanced algorithms for scaling
bridged LANs [SC88] using a multiplicity of spanning trees
or LAN interworking functions [VP88] could be added as
switchlets to the current system.

Next, we plan to see what steps can be taken to minimize
Linux overheads, increase concurrency, and to extend the
ideas described here to an active router. The active router
has the advantage, from a switchlet design perspective, that
it need not be transparent. This opens up a much larger
set of functions that can be used. Among these functions



are various forms of application-specified Quality-of-Service,
and since Caml is garbage-collected, we are investigating
Caml run-time issues such as a real-time garbage-collector
for the router. As an example of a problem facing current
systems that could be solved with such technology, consider
the problem of a bottleneck link in the Internet, where a pol-
icy dictates a 25% link fraction for a particular user. The
user could load a policy for working within this limit, lead-
ing to both better performance for the user and possibly less
effort on the part of the policing function. Another prob-
lem that could be addressed, in a manner similar to our ac-
tive protocol transition, is support for multiple versions and
parallel network infrastructures in a single network element.
Thus, IPv4, IPSEC, IPv6, and experimental IP modifica-
tions such as support for mobility could be loaded, config-
ured for fail-soft operation, and operating concurrently.

In summary, network elements should be secure and ro-
bust. The active bridge described here performs reasonably,
is flexible and extensible, and illustrates an attractive path
towards an active network infrastructure.
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