
Active BridgingD. Scott Alexander, Marianne Shaw, Scott M. Nettles and Jonathan M. Smith�CIS Department, University of Pennsylvaniafsalex,marianne,nettles,jmsg@dsl.cis.upenn.edu
AbstractActive networks accelerate network evolution by permittingthe network infrastructure to be programmable, on a per-user, per-packet, or other basis. This programmability mustbe balanced against the safety and security needs inherentin shared resources.This paper describes the design, implementation, andperformance of a new type of network element, an ActiveBridge. The active bridge can be reprogrammed \on they", with loadable modules called switchlets. To demon-strate the use of the active property, we incrementally ex-tend what is initially a programmable bu�ered repeater withswitchlets into a self-learning bridge, and then a bridge sup-porting spanning tree algorithms. To demonstrate the agilitythat active networking gives, we show how it is possible toupgrade a network from an \old" protocol to a \new" pro-tocol on-the-y. Moreover, we are able to take advantage ofinformation unavailable to the implementors of either pro-tocol to validate the new protocol and fall back to the oldprotocol if an error is detected. This shows that the ActiveBridge can protect itself from some algorithmic failures inloadable modules.Our approach to safety and security favors static check-ing and prevention over dynamic checks when possible. Werely on strong type checking in the Caml language for theloadable module infrastructure, and achieve respectable per-formance. The prototype implementation on a Pentium-based HP Netserver LS running Linux with 100 Mbps Eth-ernet LANS achieves ttcp throughput of 16 Mbps betweentwo PCs running Linux, compared with 76 Mbps unbridged.Measured frame rates are in the neighborhood of 1800 framesper second.

�This research was supported by DARPA under Contracts#N66001-96-C-852 and #DABT63-95-C-0073. Additional supportwas provided by the AT&T Foundation, the Hewlett-Packard Cor-poration and the Intel Corporation.

1 Introduction\Active Networks" [TSS+97] are packet-switched networksin which the network infrastructure is programmable and ex-tensible, and where network behavior can be controlled on aper-packet, per-user, or other basis. For example, a packetmight carry executable code[TSS+97] that extends the net-work infrastructure. The goal in developing such networksis to greatly increase the exibility and customizability ofthe network, and to thus accelerate the pace at which net-work software is deployed and evolves. Active Networks pro-vide an infrastructure for implementing earlier approachesto evolving networks such as \Protocol Boosters" [FMS98].SwitchWare [SFG+96] is an experimental active network-ing project with the goal of using active networks to facil-itate rapid network evolution. This e�ort must begin withan architecture for the nodes that comprise the active net-work. To this end, we are building network components(\switches") that can be programmed remotely over the net-work. A key question in this e�ort and indeed generallyin active networks is how to allow the network to be pro-grammed remotely without compromising the safety and se-curity requirements that are crucial to the shared networkinfrastructure. A signi�cant aspect of our approach is theuse of high-level type-safe programming languages as a ba-sis for extensibility. These languages allow some basic andimportant low-level safety guarantees to be made by the pro-gramming language, thus providing a solid basis on whichto build a safe, secure, and extensible software base.In this paper, we present the results of our initial imple-mentation experiment, an active network bridge. The bridgeis programmed in Caml, a statically and strongly typed lan-guage. Caml is also used to extend the basic bridge function-ality. To demonstrate the usefulness of active networks, weshow that we are able to down-load a crucial new algorithminto a running bridge and to dynamically switch the bridgefrom one operating regime to another. Normally, such aconversion would require bringing down the network anddisrupting users. The ability to avoid such disruption rep-resents a signi�cant advantage for active networking. Fur-thermore, the prototype achieves acceptable performance.The next section, Section 2, motivates research into Ac-tive Networks. Section 3 points out the major safety and se-curity risks of a programmable network infrastructure, andintroduces our solution. Section 4 provides background onbridges for Section 5, which describes our Active Bridge,with its incrementally loaded functionality. Section 6 con-tains a performance analysis, Section 7 relates our work tothat of others, and Section 8 summarizes the new results.

IP

WWW

UDP TCP

FTP

ATM
ISDN

FDDI

Ethernet

Overlays

Standard

SubnetsFigure 1: Hourglass model of internetworking.2 Why Active Networks?Network hardware and applications are evolving rapidly.Unfortunately, key parts of the network infrastructure evolvemuch more slowly, often taking more than half a decade tomake their way from presentation at SIGCOMM to deploy-ment by Internet Service Providers. For example, considerthe �ve or more year time-line from RSVP conceptualiza-tion [CSZ92] to deployment [Pap96].The existing network software infrastructure evolvesslowly because of an important and fundamental design goal,the need for interoperability. Interoperability is achieved inthe current Internet by using the hourglass model of net-working shown in Figure 1. Essentially the idea is thata wide variety of high-level services and low-level networktechnologies can be made to interoperate if all of their func-tionality funnels through a common interface, the waist ofthe hourglass. In the Internet, this waist is the IP proto-col, which de�nes a standard packet format, and a virtualsource/destination addressing mechanism that allow a widevariety of systems to interoperate. The success of this ideais clear from its current penetration and acceptance in themarketplace, and its enabling of other schemes such as theworld-wide web.It is the need to standardize on the interoperability layerthat makes network evolution slow. This is because whennew functionality is needed that cannot be added either un-der or on top of the interoperability layer, then the inter-operability layer itself must be changed. The implication isthat some basic changes in the network must be made atthe speed with which standardization proceeds, rather thantracking the much more rapid pace of the basic technology.A good illustration of this is the speed (or lack thereof) ofadding various types of support for QoS to the Internet.Active networks address this problem by making a funda-mental change in the nature of the interoperability layer. Aninteroperability layer is still crucial; without it there wouldbe no common ground upon which to communicate. How-ever in an active network, instead of standardizing on thelow-level packet formats and exchange protocols, the stan-dard is a programmable interface that allows the low leveldetails to be programmed and customized as needed. Aslong as two communicating entities can run compatible codethey can interoperate. This change allows the network toevolve as rapidly as new software can be developed becausenow new protocols can be deployed without any mediationof standards bodies.There are further advantages to active networks. Forexample, diagnostic functions can be inserted \as-needed,"and proprietary protocols can coexist with public standards.

3 The Challenge of Active NetworksMaking the network itself programmable o�ers great powerand exibility, but it also creates signi�cant new safety andsecurity risks. The challenge is this: How can we providethis exibility while preserving enough security for the net-work to be used by all? A further question is whether theneeded safety and security can be achieved with acceptableperformance?SwitchWare is exploring this challenge by focusing onthe design and implementation of programmable networkelements. With this approach, network elements that werepreviously \store and forward" become \store, compute, andforward" elements. Programming can be accomplished out-of-band, through an administrative interface, or in-band,through packets that are \capsules," as proposed by Wether-all et al. [TSS+97]. Each packet can contain both dataand code that operates on the data. We call such pack-ets \switchlets". This model allows advanced applicationssuch as DNS proxies, self-directed multicast, etc. to be pro-grammed by users or network implementors remotely.Switchlets must provide for safe and secure extensibil-ity. Extensibility is intimately connected to the program-ming language that is used for the extensions. Thus, itseems natural to explore programming language-centric ap-proaches to providing the basis of secure extensions, and weare doing so. Modern programming languages such as Java,Modula-3, and ML provide signi�cant advantages in safetyand hence security. These advantages derive from the useof strong typing, supplemented by automatic storage man-agement (garbage collection), and array bounds checking.We discuss why strong typing provides safety advantages insome detail in Section 5.1.2.Because ML [MTH90] is strongly typed, is well stud-ied by programming language semanticists, and because wehave some considerable local ML expertise, we have chosento use Caml [Ler95], an ML dialect, for our work. Caml alsohas two additional advantages for our work: byte codes anddynamic linking. The byte code format provided by Camlprovides us with a machine independent format that is com-pact for transmitting switchlets over the network. Dynamiclinking provides the ability to add these switchlets to anexecuting program. Several recent networking e�orts havealso used dialects of ML. For example, Biagioni [Bia94] de-scribes a TCP implementation based on Standard ML ofNew Jersey [AM87] and van Renesse [vR96] discusses a net-work stack implementation also based on Caml.4 Network BridgesNetwork designers must trade o� complexities of address-ing and routing. Bridges1 are data link layer network el-ements that interconnect LANs to make extended LANs(ELANs) [Per92]. Bridging is a less exible interconnec-tion solution than IP internetwork routing, but it o�erscost/performance advantages in many settings and is widelyused.When bridges interconnect broadcast LANs such as Eth-ernet, they must provide the illusion that the ELAN is abroadcast network. For LANs L1 and L2, a \dumb" bridgewould broadcast all frames seen on L1 to L2 and vice-versa.A self-learning bridge [HKS84] optimizes this behavior bytracking packet source addresses; if the destination of aframe lies on L1 then frames destined for that host need1Throughout this paper, all bridges are transparent bridges, whichare invisible to hosts, unlike the less common source routing bridges.

not be forwarded to other LANs L2...Lk connected to thebridge.An important limitation of bridges is that since they can-not modify the packet (and therefore cannot use mechanismslike a time to live �eld), it is possible that they will directpackets in a loop, causing the packet to fail to make progressand wasting network resources. Worse yet, since a bridgethat receives one packet may generate several packets, aloop can cause unbounded growth in the number of packetson the network leading to network collapse.There are a variety of approaches to guaranteeing loopfree bridging. A very simple technique is to physically con-struct the network so that loops cannot form and perhaps toprovide detection to indicate when a loop has been created.The solution adopted by the bridge industry is essentiallythis one, but at the logical rather than physical level. Theidea is simply to constrain the bridges so that they neverforward packets in a loop. This is done by imposing a span-ning tree on the graph representing links between bridges.A spanning tree has only one path between any two nodes,and thus as long as a bridge only forwards packets over portsthat are part of a spanning tree, no loops are possible. Portsthat are not in the tree do not have packets forwarded onthem.Bridges have two phases of operation, a con�gurationphase in which a distributed algorithm is run to establishthe spanning tree, and an operational phase in which thebridges actively forward packets. For the �rst several sec-onds that the bridge is running, it is in the con�gurationphase. During this time, the local portion of the spanningtree is calculated and the bridge starts to learn the locationof hosts by inspecting the source addresses of the packetsthat are received. During the forwarding phase, the bridgebegins to forward packets using the learned locations whenapplicable and only if that path is part of the spanning tree.The learning and spanning tree algorithms continue to run,in case new hosts or bridges are added to the network.5 The Active BridgeBecause they are simple, but not trivial network elements,we have chosen to implement a bridge for our initial ac-tive network experiment. In particular, ignoring whateveradministrative features are added by the manufacturer, abridge has a simple security model: it forwards frames.Enhancements such as self-learning do not fundamentallychange this basic function, and typically the queue servicediscipline for input and output frame queues is FIFO. Sincebridge functionality is simple it is easily tested, and thissimplicity is an asset during data analysis. Moreover, theease of dividing a bridge into the three component functionspreviously discussed [Per92] make it ideal for a layered ar-chitecture such as our implementation.5.1 The Switchlet LoaderA central aspect of an active network is the ability to load ex-ecutable code into the network elements. Thus, it is no sur-prise that a basic component of our system is our switchletloader, which allows the user to load in new switchlets andto execute them. Another important aspect of the loader isthat it establishes the environment in which switchlets ex-ecute. Controlling the execution environment allows us toexclude operations like opening disk �les that are unneces-sary for a switchlet and which may pose security risks.

To produce the restricted environment we use a feature ofCaml called module thinning [Rou96]. In Caml, groups of re-lated functions, along with their supporting data structuresand types, can be aggregated into a module. Each mod-ule has a signature that describes which values, types, andfunctions are known to external functions. We have thinnedthe signature of the modules to be accessed by switchlets toexclude those functions that might allow security violations.This leaves the switchlet with no way of naming the excludedfunction and thus, no way of accessing it. We discuss thispoint in detail in the next section.Caml supports this process by including signatures in thebyte code that is used to transmit switchlets. When Camlcompiles a set of sources into byte codes, it includes an MD5digest of the interfaces required by this module as well asthe MD5 digest of the interface exported by this module.If the byte codes are unaltered module thinning works asdescribed. For simplicity, in our current experiment, wehave not addressed the authentication issues, but these arean important avenue for further work.5.1.1 Module IsolationA key transition made by our security model is from us-ing address spaces to name spaces as the basis of security.Aspects of such a model have been examined in the con-text of the Nemesys operating system for multimedia appli-cations [LMB+96], and in some sense by capability-basedsystems.If switchlets were written in a weakly typed language likeC, a switchlet would be able to access any part of its addressspace. Unchecked this ability would allow a switchlet to callany function in the address space, or worse to over-writethe code or data of another switchlet. Enforcing securityin a shared address space would be impossible. Tradition-ally, if multiple programs written in weakly typed languagesare to share resources, security mechanisms such as sepa-rate address spaces are used to ensure that a program canonly a�ect its own physical memory. Page protections en-sure that a program only directly reads, writes, or executesunshared resources. When sharing is needed, it is mediatedby the operating system, and when di�erent processes needto execute, they require a context switch. These mecha-nisms operate while the program is executing and thus havea runtime cost.Our prototype presumes a single-language environmentand uses strong typing to guarantee that only certain op-erations are allowed. Furthermore, by using static typing,which enforces type safety during compilation and linking,we are able to substitute compile-time and link-time costsfor runtime costs. For example, functions are immutableobjects, so there is no operator that allows one to change afunction. (One could change a function reference to refer toanother function, but there is no way to modify the functionitself.) Further, there is no equivalent of a C cast operator2,so there is no way to \trick" Caml into thinking a functionis an object that can be changed. Thus, there is no need forpage protection since Caml provides equivalent protectionon an object by object basis at compile and link times whenit ensures that the types are all correct.For type safety to be fully enforced statically, it is alsonecessary for the system to use automatic dynamic stor-age allocation (garbage collection) and to check that array2There are transformation operators for making some safe, well un-derstood transformations. For example, there is a function to trans-form an integer to a oating point number.

val pub_hash:(string, (int -> int)) Safestd.Hashtbl.tval pub_func: unit -> unitFigure 2: example.mliopen Safestdlet pub_hash = Hashtbl.create 15let priv_func x = x - 7let some_func x = (priv_func x) + 5let pub_func () =Hashtbl.add pub_hash "func" some_funcFigure 3: example.mlbounds are not overrun. Both of these features improve thesafety and thus security of the system in general. For exam-ple, many common Unix security holes are created becauseC does not check array bounds. This allows a malicious pro-grammer to overwrite the stack and upon returning from acall to execute arbitrary code. Similar tricks can be played ifthe programmer is allowed to free memory that is in use byother parts of the program. Using garbage collection (GC)avoids these problems, since only the system frees storage.The lack of a cast operator or an address operator alsomakes it impossible to refer to any object without either itsname or a string of legal pointer references from a knownobject. Name-space based security rests on this feature.Figure 2 (the module interface) and Figure 3 (the moduleitself) contain some contrived code to illustrate this point.If another module wishes to reference objects from the mod-ule example, initially, it can only refer to those objects inits interface (signature). Attempts to access other objectsresult in compile time errors. If the other module were com-piled against a signature built by an attacker that includedsome private objects, a link time error would result becausethe signatures would not match.The values accessible from the interface are the func-tion example.pub func and the hash table called example.pub hash; they can be referred to directly by name. Initially,example.pub hash is empty and does not lead to any func-tions. When example.pub func is evaluated, then the func-tion example.some func becomes accessible because thereis a reference path to it through pub hash, and evaluat-ing Hashtbl.find example.pub hash "func" would returnexample.some func.5.1.2 Switchlet Linking ModelFor the bridge, we used the rather simple linking model of-fered by Caml. A Dynlink module is provided that sup-ports dynamically linking byte codes containing a moduleinto a running program. To use these facilities, one must�rst call Dynlink.init which creates an empty name spaceinto which modules can be loaded. Next, to create an ini-tial environment, one calls Dynlink.add available unitswhich enters the names from speci�ed modules that werelinked into the loader when it was built into the name space.For the loader, the modules speci�ed in this way providefunctions ranging from integer addition to some network-ing functions. (See the next section for more details.) Fi-nally, by calling Dynlink.load, one can load byte-codes and

add them to the name space. There is no function to allowpreviously linked functions (whether linked dynamically orstatically) to access the newly loaded functions, so the bytecodes usually contain some top-level forms that call a reg-istration function, that changes a data structure visible topreviously linked functions.For the prototype bridge, a single name space is su�-cient, and it ensures that many types of accidental refer-ences do not occur. However, it does not protect againstmalicious references. When we start to build devices thatwe intend to be used by multiple users, we will need a way ofmanaging multiple namespaces that incorporates a varietyof security issues. Providing such facilities is another areafor research that is important for active networks.5.2 The Switchlet Loading ProcessWhen the loader �rst starts, it is limited to those capabilitiesrequired to continue the loading process or which must bestaticly linked for security reasons. By dynamically loadingeverything else, we can retain the maximum exibility. Inparticular, the initial loader can only load switchlets fromdisk.To overcome this limitation, we load a network loader. Itconsists of four layers. The lowest layer captures those Eth-ernet layer frames destined for an Ethernet card installedon this machines. It then demultiplexes these frames basedon the Ethernet protocol identi�er. The next layer imple-ments a minimal IP [Pos81] su�cient for our purposes. (Itdoes not, for example, implement fragmentation.) The IPprotocol identi�er �eld is used to demultiplex these packetsto other switchlets. The next layer implements a minimalUDP [Pos80] in a similar fashion. Finally, the highest layerin this stack implements a TFTP [Sol92] server. This serveronly services write requests in binary format. Any such �leis taken to be a Caml byte code �le and, upon successful re-ceipt, an attempt is made to dynamically load and evaluatethe �le.This approach does not describe how we build a networkcapable of loading all of the switches. There must be amechanism by which a host can load a protocol into a switchto which it does not have a direct connection. For our bridge,we can easily build up an infrastructure in steps by sendingthe bridge switchlet to all adjacent switches and then waitingfor these switches to start bridging. At the diameter of theextended LAN grows by one at each subsequent step, we canload those switches whose shortest path is one link greaterthan was possible in the previous step.If one desires a more concurrent protocol installation,there are several possible choices best chosen based on theprotocol and local knowledge. For example, if the switchesare currently not forwarding any tra�c for lack of any pro-tocol to do so, using a ood algorithm to send the protocolswitchlet to all the switches in the network might work well.If there are forwarding protocols on the network, it may bepossible to leverage o� of these to route our switchlets tothe desired locations.5.2.1 The Interface Provided to SwitchletsCurrently, the loader provides an initial set of eight mod-ules. These modules de�ne the basic environment in whicha switchlet will execute. We expect this set to continue toevolve as we gain more experience programming switchlets.The most basic of the modules provided is Safestd. Thisis a slightly modi�ed version of the Safestd module from the

type packet = { len : int;addr : Safeunix.sockaddr;pkt : string }type iporttype oportexception Already_boundexception No_interface(* Input ports *)val pkts_waiting_p_in: iport -> boolval bind_in: string -> iportval bind_addr: string -> iportval get_next_pkt_in: iport -> packetval unbind_in: iport -> unitval unbind_addr: iport -> unitval get_iport: unit -> iport(* Output ports *)val bind_out: string -> oportval send_pkt_out:oport -> string -> int -> int ->Safeunix.sockaddr -> intval unbind_out: oport -> unitval get_oport: unit -> oportval ready_to_send_p_out: oport -> bool(* Generic functions *)val iport_to_oport: iport -> oport(* Debugging aids *)val debug_iport_to_string: iport -> stringval debug_oport_to_string: oport -> stringval debug_demux_num_devs: unit -> intFigure 4: unixnet.mliMMM browser [Rou96]. It provides a set of standard Camlfunctions ranging from integer operations to an implementa-tion of hash tables. As the name implies, it has been thinnedto only allow \safe" operations. Similarly, Safeunix is a veryheavily thinned version of the Unix module from Caml. Ourversion of Safeunix provides access to some time relatedfunctions and to some types that are needed for networking.Since we provide no functions for generating output as partof Safeunix, we provide a module called Log that allows log-ging messages to be generated. It also allows us to changethe method of logging, to a terminal, to disk, or not at all.We also provide a set of thread related modules. Theseare built on top of the basic Caml threads package thatworks entirely in user mode. Thus, no speedup occurs dueto our multiprocessor. We hope to be able to take advantageof the POSIX threads in the near future. The threads mod-ules are Safethread, Condition, and Mutex. Safethread isonly very lightly modi�ed from Thread; because there are noways to create an object of type Thread.t except by call-ing Thread.create, we can even leave Thread.kill in themodule.So far, we have had to create two new modules to providesupport. The �rst of these, Func, contains glue routines toallow the loaded functions to properly register themselves.The register routine simply takes a string as a key and afunction and enters them into a hash table. There is also afunction that allows one to evaluate one of these functions.

Finally, we provided a module to allow access to the net-work. Unixnet provides a set of functions that allow accessto the network interfaces on the machine as shown in Fig-ure 4. Our model separates those functions used for inputfrom those from output. In each case, a function is providedto connect to a given port, to connect to the next availableport, to disconnect from a port, to check the status of theport, and to send or receive a packet on the port. Becausewe are building a bridge, whenever an input port is bound,it is put into promiscuous mode. Currently, we use a simplemodel in which the �rst switchlet to bind to a given port suc-ceeds and all others fail. We plan to explore the appropriateway to arbitrate between conicting claims as we continueour work.5.3 The Bridge SwitchletsThe three switchlets that make up the bridge are built ontop of the interfaces just described. They are loaded in turnto build up the fully functional bridge.The �rst, lowest level switchlet implements a minimal\dumb" bridge. It has three parts. Part one is a functionthat reads an input packet from a queue and sends it outthrough a given network interface. Part two is a functionthat takes an input packet and queues it to all network in-terfaces except for the one on which it was received. Partthree is a function that reads packets from a network in-terface and demultiplexes them to the functions from parttwo.This switchlet is actually performing the function of abu�ered repeater. It cannot tolerate a network topologywith any loops and will not support a network with ag-gregate tra�c higher than the tra�c limit for its slowestsegment.The second switchlet adds learning to the bridge. Thisswitchlet replaces the switching function from the dumbbridge with one that learns the locations of the hosts on thenetwork. For each packet received, the triple (source ad-dress, current time, input port) is placed into a hash tablekeyed by the source address, replacing any previous entry3.Next, the hash table is searched for the destination addressof the packet. If a match is found and is current, the packetis sent out on the port indicated unless that was the porton which the packet was received. If no match is found, thisbridge has not yet learned the destination address and thepacket is sent out on all ports except the one on which itarrived.The third and �nal switchlet implements the spanningtree functionality. This switchlet adds a function that regis-ters with the demultiplexer requesting packets addressed tothe All Bridges multicast address. All other packets continueto be sent to the learning function from the second switchlet.Based on the 802.1D protocol [IEE93], this function takespart in the calculation of the spanning tree for the network.Then it uses access points in the previous switchlets to sup-press the tra�c from certain input and output ports. Withthis switchlet, we have a fully functional bridge.5.4 Automatic Protocol TransitionSo far, we have demonstrated that active networks allow oneto modularly build up a network element and to extend it3Actually, if the source address is a multicast or broadcast ad-dress, this step is bypassed. Similarly, if the destination address isa broadcast or multicast address, the packet is sent out on all portsexcept the one on which it arrived.

remotely, enhancing its functionality. This is an importantstep towards our goal of improving network extensibility, butit does not illustrate how active networks allow us to replacebasic functionality. To demonstrate this facility, we built afacility that allows our bridge to transition between di�erent,incompatible protocols in a coordinated, automatic mannerwith automatic fall back if the new protocol should fail.An important di�culty encountered in managing a net-work is making changes to the infrastructure. Generally,this requires bringing down the node to be upgraded. If thechange is incompatible, the problem becomes much worse.In the case that none of the nodes is capable of acting as agateway between the two versions of the protocol, the net-work must either be partitioned into a portion supportingthe old protocol and another supporting the new protocolor the entire network must be brought down, upgraded, andreturned to service as a unit. Generally, neither of thesechoices is very acceptable to the users of the network. More-over, if it turns out that the new protocol does not work forsome reason, the same process must be used in reverse toback out the changes.In this experiment, we show how an active bridge canperform such a transition in an automated, coordinated fash-ion. The network partition still occurs, but at the pace theinfrastructure sends and processes packets rather than at thepace of the network administrators can move from machineto machine. Thus, the transition can be expected to taketime similar to what would occur if there were a power fail-ure at each of the bridges. Moreover, active monitoring canoccur while the network is stabilizing, detecting any failuresin the new implementation and transitioning the infrastruc-ture to a stable state such as the previous protocol.In order to have a pair of protocols to transition between,we modi�ed the spanning tree switchlet to send DEC span-ning tree packets to the DEC management multicast ad-dress instead of 802.1D packets to the All Bridges multicastaddress4. This DEC-like protocol was used as the old pro-tocol. The 802.1D protocol was used as the new protocol.We also wrote a control switchlet that was capable ofcontrolling the transition between the two protocols. Thisis the component which capitalizes on the ability to activelyload switchlets by using locally available information. (Ifone were to deploy a facility like this generally, we wouldexpect that the old and new protocols would be written bya single programmer and distributed and that the controlswitchlet would either be written or customized by each ofthe local network administrators based on their knowledge oftheir networks.) In order to load the control switchlet, boththe 802.1D switchlet and the DEC switchlet must already beloaded. It checks that the DEC switchlet is operating andthat the 802.1D switchlet is not. It then arranges to receiveany packets addressed to the All Bridges multicast address.When an 802.1D packet arrives, the control switchlet as-sumes that the network is transitioning to the new protocol.It halts the DEC protocol and starts the 802.1D protocol.It also arranges to let the 802.1D protocol listen to the AllBridges address and it starts to listen to the DEC address.Any DEC protocol packets received during an initial tran-sition period are suppressed. The 802.1D switchlet sendsout con�guration packets on all of its ports thus causingany bridge that is on a connected network and that has nottransitioned to do so.4To completely implement the DEC protocol would require chang-ing some timings and states as well. We did not do this. We sim-ply required an incompatible packet format so that we could make atransition.

action DEC IEEE controlrunningload IEEE running loadedload/start running loaded runningcontrolrecv IEEE suspended loaded suspend DEC;packet capture DECstateloaded running start IEEE30 seconds loaded running/ suppress DECforwarding packets60 seconds loaded running perform testsper networkadminpass tests loaded running fallback if DECpacket arrivesfail tests running loaded stop IEEE;or fallback start DEC;terminateTable 1: Automatic Protocol TransitionThe control switchlet next moves into its monitoringphase. For this particular transition, the critical change isthe protocol for computing the spanning tree. Based on lo-cal knowledge, we have determined that the portion of thespanning tree computed at each node should be identicalfor the old and the new protocols. As such, the controlswitchlet monitors the information about the spanning treeaccumulated at the current node. This is compared with in-formation captured from the DEC algorithm at the time ofits termination. (If the changes were such that the informa-tion to be checked were not available at the node, it could behand calculated for the expected case.) If the spanning treedoes not converge to the expected values within a predeter-mined time, the control switchlet will determine that theremust be a bug in the new protocol implementation. Simi-larly, the old host location table could be compared with thenew host location tables if the network administrators werenot planning to move any hardware during the transition pe-riod. If a failure is detected, the functions implementing thenew protocol are stopped and the old protocol is restarted.The control switchlet again changes so that it receives newprotocol packets (which it suppresses) and allows the oldprotocol to process its own packets. As a �nal measure toallow fall back to occur gracefully, if the control switchlet�nds any old protocol packets after the initial transition pe-riod, it falls back to the old protocol assuming that a failurehas occurred elsewhere in the network. Once this fallbackhas occurred, the network is considered \stable" and no fur-ther transition will occur without human intervention.6 Implementation DetailsThe active node functions are carried out by programs ex-ecuting in the Caml bytecode interpreter. The interpreteropens Ethernet sockets (a special type allowed by Linux), tocreate paths from an input device to the Caml interpreter,and from the Caml interpreter to a corresponding outputdevice.

Linux

Proc A
Linux

Proc BCAML Proc

loaded
modules

Linux
KernelInput

Device
Output

Device

LAN

#1 LAN

#2

Frame FrameFigure 5: Path for a packet in a SwitchWare activenodeThe path for an Ethernet frame can be decomposed as sevensteps, as shown in Figure 5.1. Frame arrives on Ethernet adapter2. Ethernet Interrupt Service Routine (ISR) woken; itcollects a frame into a bu�er chain of Linux networkbu�ers3. Linux wakes the bridge thread and delivers the framethrough recvfrom()4. The Caml program operates on the frame5. The Caml program emits the packet to Linux networkbu�ers via sendto()6. Linux queues the frame to the Ethernet driver7. The Ethernet driver emits the frame to the destinationLANAs currently implemented, the packets are all Ethernetframes. The CRC is returned on a read, but cannot bespeci�ed on a write. (This is one of our 802.1D incompati-bilities.) The packets are represented as a record containingthe length of the packet, a Unix sockaddr in a Caml form,and a string with the data. The user must unmarshall thedata from the string. In the future, we plan to look at therelative advantages of providing unmarshalling functions in-stead.7 Performance, Scalability and FlexibilityWe study performance under three types of measures.First are the traditional performance measures such asthroughput, latency and packets per second. Latency ina bridge is additional delay incurred by passage throughthe logic and bu�ering of the bridge compared to an un-bridged system. Bridge throughput will be a�ected by bothper-packet costs and the per-byte costs [CJRS89], or what

NIC

NIC

NIC

NIC

100BaseT

100BaseT

100BaseT

100BaseT

128 MB ECC

P1 P2 P4P3

L2 L2 L2 L2

Figure 6: Active bridge machine architecturePasquale [KP93] has called data-touching costs and non-data-touching costs. Bridge throughput will vary acrosspacket size mixes, for example, very small packets will incuralmost all of their overhead as non-data-touching costs.Second are performance measures speci�c to the type ofnetworking device under study, for example scalability inthe number of ports handled is an important measure of aswitching architecture. For a bridge, the capacity to supportmany LANs and their associated endpoints can be stated asan aggregate throughput, a number of line cards, etc; theimportant point is to get a sense of where adding anotherbridge makes more sense than attempting to augment anexisting bridge with additional busy hosts, or LAN-attachedline cards.Finally, peculiar to \on-the-y" programmable networkinfrastructures is the rate at which changes in the infrastruc-ture can be made and become e�ective. This is a limitingfactor for the function-agility of the new network infrastruc-ture.7.1 Experimental SetupThe hardware platform for the active bridge is a Hewlett-Packard Netserver 5/166 LS4 Model 1, a 4 processor shared-memory multiprocessor. The processors are 166 Mhz IntelPentiums and each processor has a �rst level cache that is8KB of data and 4KB of instruction, write through and a1 MB second level cache. The machine has 128MB ECCmemory, 2 PCI slots, 4 EISA slots, 2 PCI/EISA slots, 2Fast/Wide SCSI-2 controllers, and 1024K video memory/SVGA controller. Multiple 100 Mbps Ethernet adapters areused as bridge port controllers. The con�guration is shownin Figure 6.The software architecture is shown in Figure 5. TheLinux is Red Hat version 4.0 with a version 2.0.23 kernel.The active bridge implementation has been operatingsuccessfully in our laboratory (replacing a DEC LANbridge)for over 3 months. For performance measurements, we re-moved it from the laboratory network and interconnectedtwo 100 Mb/s LANs as shown in Figure 7.The hosts were Intel Pentiums running with a version2.0.28 Linux kernel. To obtain baseline performance mea-sures, we duplicated latency and throughput measurementson the \best case" con�guration of two hosts interconnectedby a single LAN, as shown in Figure 8.

Host #1

Linux on

 P166

Host #2

Linux on

 P166

Active

Bridge
100Mb/s 100Mb/s

LAN #1 LAN #2Figure 7: Bridging Setup7.2 LatencyWe measured latency with the ping facility for generatingICMP ECHOs, using various packet sizes to generate frameson the LANs. Results are given in Figure 9. With additionalinstrumentation, we were able to determine that the Camlcode execution adds 0.34ms per frame. We suspect that theadditional per frame latency of the bridge is due to Linuxand the need to transfer the frame into user space.7.3 ThroughputThroughput for various packet sizes was measured with re-peated ttcp trials. The baseline performance, measured onthe bridgeless network, was 76 Mb/s. With an 8 KB IPpacket size (resulting in multiple back-to-back LAN frames),the active bridge achieves a throughput of 16 Mb/s. Theperformance in frames/second was calculated for the sameframe sizes shown and ranged from about 360 frames persecond for small frames (ca. 50 bytes) to 1790 frames persecond for 1024 byte frames.Additional instrumentation showed a cost per framewithin Caml of 0.47ms on average during a ttcp trial. Thistranslates to a limiting rate of 2100 frames per second orabout 32 Mb/s before accounting for operating system andtransmission overheads. We have not yet had an opportu-nity to isolate the source of the Caml overheads. Three pos-sibilities seem likely. First, some of the cost is certainly dueto the cost of the bridge functionality, which is not reectedin our very simple C-based repeater. Second, our currentCaml system uses a bytecode interpreter, which is certainlylikely to have a severe performance penalty compared to na-tive code. Caml does have a native code compiler, althoughsome work will be needed to adapt it so that it can dealwith dynamically loaded switchlets. The �nal possibilityis that we are seeing interference from the garbage collec-tor. The Caml collector is based on the concurrent collectordescribed in [DL93], but the released implementation doesnot use multiple threads to run the collector. If measure-ments show that the collector is the bottle neck, then this isa likely source of improvement. Other concurrent collectortechnologies are available as well, many based on Baker'salgorithm [Bak78], and others on techniques that are espe-cially well suited for ML [NO93, ON94].We also built a very simple bu�ered repeater in C totry to determine the smallest overheads that a user mode
Host #1

Linux on

 P166

Host #2

Linux on

 P166

100Mb/s

LANFigure 8: Baseline Setup

0.0

1.0

2.0

3.0

4.0

5.0

32 512 1024 2048 4096

la
te

nc
y

(m
s)

packet size (bytes)

Active bridge
C Buffered Repeater

direct connection

Figure 9: Ping Latenciesprogram could expect to see. This program simply openstwo Ethernet devices in promiscuous mode and, for eachpacket received on one of the interfaces, writes the packeton the other. This gives some idea of the costs caused bybringing the data through the Linux kernel into user space.We intend to examine an approach like that used by the U-Net project [vEBBV95] in the future. They allow protecteduser mode access to network devices which has reduced theboundary crossing costs.7.4 ScalabilityUsing a general-purpose multiprocessor as a switch is an es-tablished technique for experimental packet-switching net-works [EBE+86, KEM+78]. The major performance limita-tions associated with such a platform are bus and memorybandwidth limitations inherent in an architecture not spe-cialized for scaling or aggregation. As discussed by Edmond,et al., once the hardware architecture is set, the major per-formance limitations come from the software architecture.For our system, the major limit is the concurrency we canaccess in our implementation. First, while it would be ad-vantageous to have threads support for our Caml system totake advantage of the multiprocessor, this is not yet opera-tional. Second, since Caml is a garbage-collected language,there are occasional pauses which force the system to se-rialize the threads. This is another place where the GCtechniques mentioned above may well become important.

0

10

20

30

40

50

60

70

80

325121024 2048 4096 8192

th
ro

ug
hp

ut
 (

M
bp

s)

packet size (bytes)

direct connection
C buffered repeater

Active bridge

Figure 10: ttcp Throughput

7.5 AgilityThe function-agility of a system is the latency for a func-tional transformation. In the context of active bridging, wecan measure this as the time needed to load a module, andthe time needed for it to take action. For the spanning treealternatives we developed, a good measure of the agility isthe ability of the active portion of the system (the loadedCaml code) to switch spanning tree protocols.We performed a �nal test using a ring shaped network.The HP Netserver acted as an end-node to take measure-ments. It was con�gured with two Ethernet cards, eth0and eth1. Attached between these cards were three of the166Mhz Pentiums each with two Ethernet cards. Thesethree machines were each running the bridge software withthe control switchlet to allow automatic switch-over.A test program running on the HP sent out an 802.1Dspanning tree packet on eth0 and then waits to see one oneth1. (This indicates that each of the bridges in the path be-tween eth0 and eth1 have switched to the \new" algorithm.)The program then starts two threads one of which sends outa prebuilt ICMP ECHO on eth0, then delays for 1 second,and repeats. The other thread reads packets on eth1 untilit sees one of these pings. gettimeofday() is called beforesending the IEEE frame after receiving the IEEE frame, andafter both threads have died.For a set of trials, the average start to IEEE time mea-sured was 0.056 seconds, and the average start to receivedping time was 30.1 seconds. Thus, the active bridge's recon-�guration was much faster (<0.1 second) than timeouts (ac-counting for the additional 30 seconds) built into the bridgeprotocols to ensure that temporary loops do not occur.8 Related WorkWetherall and Tennenhouse [WT96] have constructed anActive Network node architecture that uses a TCL inter-preter operating on the Linux operating system. The AC-TIVE IP option is used to ag IP packets containing cap-sules, which are packets and data passed to the TCL inter-preter. The scheme has been applied to some IP tasks, suchas implementing traceroute with capsules. This work hasbeen very focused on a proof-of-concept for an active node,and demonstrating viability of the idea. Our research isconcentrated on the design and construction of the program-ming environment for a robust extensible node, and wouldbe as useful for capsule support as it is for adding bridgefunctionality. Other work at MIT [WEK96] has demon-strated methods for loading network modules (Application-Speci�c Safe Handlers, or ASHs) into O.S. kernels. Like ourwork, ASHs rely on pre-module loading static analyses; webelieve that the Caml approach o�ers a better long-termopportunity for formal veri�cation.Zegura, et al. [BCZ96] have designed a similar IP-basedsystem, which demultiplexes an arriving packet with the op-tion ag, IPOPT AP, to a pre-loaded function under SunOS.This approach has two aws from our perspective. First, itappears inexible with respect to applications loading newfunctions on-the-y. Second, to address this exibility lim-itation with modi�cations to SunOS, there will be securityrisks unless languages and tools are used to validate loadedmodules, as in our approach.Liquid Software [HMPP96] extends the capabilities ofthe Java language bytecodes as mobile code fragments. Ma-jor foci are technologies for fast compilation of mobile code(to ensure high packet processing rates) and runtime sup-

port using the Scout operating system as a basis. The inter-action between the Scout system and the Java API shouldprovide some valuable lessons in the nature of a virtual ma-chine that could support Active Nets. The choice of Java isa potential weakness, as a number of serious security prob-lems have been discovered. Unlike ML [MTH90], Java lacksa mathematical de�nition, making formal analysis of pro-grams di�cult.BBN's Smart Packets [PJ96] is focused on the e�cientconstruction of the packet interpreting programming systemfor active networks. Smart Packets, like the capsules pro-posed in the MIT design, contain code in some form. Theinitial e�ort seems targeted at e�cient byte code (e.g., a re-�ned Java or intermediate language) or even machine codein the packet. The intent is to ensure that loadable activetechnologies will be viable on even the highest-performancenetworks.Netscript [Yd96] provides a model for network program-ming, but is less focused on the construction of active net-work nodes than the MIT, Georgia Tech, Arizona and BBNe�orts, and more on de�ning examples of network program-ming.MMM [Rou96] is a browser that uses Caml as its appletlanguage. They also use the strongly typed features of thelanguage for security, but are able to assume a model inwhich all applets cooperate. Further, their applets extend abrowser rather than extending the functionality of a networkswitch. Some of our infrastructure, in particular support formodule thinning is derived from their e�orts.9 ConclusionsWe have made signi�cant progress towards a robust andexible programmable network infrastructure. The activebridge described in this paper is written in a modern pro-gramming language, Caml, with strong static type-checkingand memory safety through garbage collection. Several dif-ferent bridging styles were enabled using loadable modules(\switchlets") that we injected into the active node on they. In the experiments we performed, the bridge was able tosupport about 44% of the throughput seen by a C programthat provided repeater, but not bridge functionality. Themeasured throughput is 16 Mbps, with an intervening oper-ating system and interpreted Caml modules. Optimizationssuch as compiling switchlets into native code for faster oper-ation, shortening the Linux path between interrupt arrivaland switchlet operation, improving GC performance, andincreasing concurrency, all o�er possibilities for improvingthis result.An important result to take away from this paper is theexibility our Active Networking technology provides, evenin the restricted domain of transparent bridging. We startedwith a simple repeater, and extended it with switchlets tobecome self-learning, to run spanning tree protocols, andto adapt the choice of protocols using information encodedin the Ethernet frame. Advanced algorithms for scalingbridged LANs [SC88] using a multiplicity of spanning treesor LAN interworking functions [VP88] could be added asswitchlets to the current system.Next, we plan to see what steps can be taken to minimizeLinux overheads, increase concurrency, and to extend theideas described here to an active router. The active routerhas the advantage, from a switchlet design perspective, thatit need not be transparent. This opens up a much largerset of functions that can be used. Among these functions

are various forms of application-speci�ed Quality-of-Service,and since Caml is garbage-collected, we are investigatingCaml run-time issues such as a real-time garbage-collectorfor the router. As an example of a problem facing currentsystems that could be solved with such technology, considerthe problem of a bottleneck link in the Internet, where a pol-icy dictates a 25% link fraction for a particular user. Theuser could load a policy for working within this limit, lead-ing to both better performance for the user and possibly lesse�ort on the part of the policing function. Another prob-lem that could be addressed, in a manner similar to our ac-tive protocol transition, is support for multiple versions andparallel network infrastructures in a single network element.Thus, IPv4, IPSEC, IPv6, and experimental IP modi�ca-tions such as support for mobility could be loaded, con�g-ured for fail-soft operation, and operating concurrently.In summary, network elements should be secure and ro-bust. The active bridge described here performs reasonably,is exible and extensible, and illustrates an attractive pathtowards an active network infrastructure.10 AcknowledgmentsThe original SwitchWare ideas were developed in collabo-ration with Dave Farber, Dave Feldmeier, Carl Gunter andDave Sincoskie. Christian Huitema suggested the applica-tion of user-loadable policy modules for an Internet with abottleneck WAN link. Jonathan Smith would like to thankBellcore and the University of Cambridge Computer Lab-oratory for hosting him while some of this work was done.Scott Alexander would like to thank Bellcore for hosting himwhile some of this work was done.References[AM87] A. W. Appel and D. B. MacQueen. A StandardML Compiler. In Functional Programming Lan-guages and Computer Architecture, pages 301{324. Springer-Verlag, 1987. Volume 274 of Lec-ture Notes in Computer Science.[Bak78] Henry G. Baker. List processing in real-timeon a serial computer. Communications of theACM, 21(4):280{94, 1978.[BCZ96] Samrat Bhattacharjee, Ken Calvert, andEllen W. Zegura. Implementation of an activenetwork architecture. Technical report, Geor-gia Institute of Technology, July 1996. Whitepaper presented at Gigabit Switch TechnologyWorkshop, Washington University.[Bia94] E. Biagioni. A structured TCP in StandardML. Proceedings, 1994 SIGCOMM Conference,pages 36{45, 1994.[CJRS89] D. Clark, V. Jacobson, J. Romkey, and H. Sal-wen. An analysis of tcp processing overhead.IEEE Communications Magazine, 27(6):23{29,June 1989.[CSZ92] D. Clark, Scott Shenker, and L. Zhang. Sup-porting real-time applications in an integratedservice packet network: Architecture and mech-anism. In Proceedings, 1992 SIGCOMM Con-ference, pages 14{26, August 1992.

[DL93] Damien Doligez and Xavier Leroy. A concur-rent generational garbage collector for a multi-threaded implementation of ML. In ConferenceRecord of the Twentieth Annual ACM Sympo-sium on Principles of Programming Languages,ACM SIGPLAN Notices, pages 113{123. ACMPress, January 1993.[EBE+86] W. Edmond, S. Blumenthal, A. Echenique,S. Storch, T. Calderwood, and T. Rees. Thebuttery(tm) satellite imp for the widebandpacket satellite network. In Proc. 1986 ACMSIGCOMM Conference, pages 194{203, 1986.[FMS98] D. C. Feldmeier, A. McAuley, and J. M. Smith.Protocol boosters. IEEE JSAC Special Issueon Protocol Architectures for the 21st Century,1998.[HKS84] W. Hawe, A. Kirby, and B. Stewart. Trans-parent interconnection of local area networkswith bridges. Journal of TelecommunicationNetworks, September 1984.[HMPP96] John Hartman, Udi Manber, Larry Peterson,and Todd Proebsting. Liquid software: A newparadigm for networked systems. Technical Re-port TR 96-11, University of Arizona, June1996. http://www.cs.arizona.edu/liquid/.[IEE93] IEEE. Media access control (mac) bridges.Technical Report ISO/IEC 10038, ISO/IEC,1993.[KEM+78] D. Katsuki, E. S. Elsam, W. F. Mann, E. S.Roberts, J. G. Robinson, F. S. Skowronski,and E. W. Wolf. Pluribus: An operationalfault-tolerant multiprocessor. Proceedings of theIEEE, 66(10):1146{1159, October 1978.[KP93] Jonathan Kay and Joseph Pasquale. The im-portance of non-data touching processing over-heads in tcp/ip. In Proceedings ACM SIG-COMM Conference, pages 259{269, September1993.[Ler95] Xavier Leroy. The Caml Special Light System(Release 1.10). INRIA, France, November 1995.[LMB+96] I. M. Leslie, D. McAuley, R. Black, T. Roscoe,P. Barham, D. Evers, R. Fairbairns, and E. Hy-den. The design and implementation of an oper-ating system to support distributed multimediaapplications. IEEE Journal on Selected Areasin Communications, 14(7):1280{1297, Septem-ber 1996.[MTH90] R. Milner, M. Tofte, and R. Harper. The De�-nition of Standard ML. MIT Press, 1990.[NO93] S. M. Nettles and J. W. O'Toole. Real-Time Replication Garbage Collection. In SIG-PLAN Symposium on Programming LanguageDesign and Implementation, pages 217{226.ACM, June 1993.[ON94] J. O'Toole and S. Nettles. Concurrent Replicat-ing Garbage Collection. In ACM Symposiumon LISP and Functional Programming. ACMPress, June 1994.

[Pap96] D. Pappalardo. BBN to test RSVP. NetworkWorld, 13(50):1,14, December 1996.[Per92] Radia Perlman. Interconnections: Bridges andRouters. Addison-Wesley, 1992.[PJ96] C. Partridge and A. Jackson. Smart packets.Technical report, BBN, 1996. http://www.net-tech.bbn.com-/smtpkts/smtpkts-index.html.[Pos80] Jon Postel. User datagram protocol. Technicalreport, University of Southern California, Infor-mation Sciences Institute, Marina del Rey, CA,USA, 1980.[Pos81] Jon Postel. INTERNET protocol. Technical re-port, University of Southern California, Infor-mation Sciences Institute, Marina del Rey, CA,USA, 1981.[Rou96] Fran�cois Rouaix. A web navigator withapplets in Caml. Fifth WWW Confer-ence, May 1996. http://pauillac.inria.fr-/mmm/papers/mmm.ps.gz.[SC88] W. David Sincoskie and Charles J. Cotton. Ex-tended bridge algorithms for large networks.IEEE Network, 2(1):16{24, January 1988.[SFG+96] J. M. Smith, D. J. Farber, C. A. Gunter,S. M Nettles, D. C. Feldmeier, and W. D. Sin-coskie. SwitchWare: Accelerating network evo-lution. Technical Report MS-CIS-96-38, CISDept. University of Pennsylvania, 1996.[Sol92] Karen R. Sollins. The TFTP protocol (revision2). Technical report, MIT, 1992.[TSS+97] D. L. Tennenhouse, J. M. Smith, W. D. Sin-coskie, D. J. Wetherall, and G. J. Minden. Asurvey of active network research. IEEE Com-munications Magazine, pages 80{86, January1997.[vEBBV95] T. von Eicken, A. Basu, V. Buch, and W. Vo-gels. U-net: A user-level network interface forparallel and distributed computing. In Proceed-ings of the 15th SOSP. SIGOPS, 1995.[VP88] G. Varghese and R. Perlman. Transparent in-terconnection of incompatible local area net-works using bridges. In Proceedings, 1988SIGCOMM Conference, pages 381{389, August1988.[vR96] Robbert van Renesse. Masking the overhead ofprotocol layering. In Proceedings, 1996 ACMSIGCOMM Conference, pages 96{104, PaloAlto, CA, 1996. SIGCOMM.[WEK96] D. A. Wallach, D. Engler, and M. F. Kaashoek.Ashs: Application-speci�c handlers for high-performance messaging. In Proc. 1996 ACMSIGCOMM Conference, 1996.[WT96] David J. Wetherall and David L. Tennenhouse.The ACTIVE IP option. In 7th ACM SIGOPSEuropean Workshop,September 1996. http://www.tns.lcs.mit.edu-/publications/sigops96ws.html.

[Yd96] Y. Yemini and S. daSilva. Towards pro-grammable networks. In IFIP/IEEE In-ternational Workshop on Distributed Sys-tems: Operations and Management, Oc-tober 1996. http://www.cs.columbia.edu-/ dasilva/netscript.html.

