
Operating System Support for Protocol BoostersA. Mallet, J. D. Chung and J. M. Smith1fale,jdchung,jmsg@cis.upenn.eduDistributed Systems LaboratoryUniversity of Pennsylvania, Philadelphia, PA 19104-6389Abstract\Protocol Boosters" are modules inserted into protocol graphs. They allow the protocol'sbehavior to adapt to its environment. Boosters can mask undesirable properties of links or subnetsin an internetwork. The method permits use of proprietary protocols and supports end-to-endoptimizations.We have implemented Protocol Boosters support in the FreeBSD version of UNIX for Intelarchitecture machines. Our prototype embeds boosters in the 4.4 BSD-Lite Internet Protocol (IP)stack. We have measured the performance of two prototype boosters: an encryption booster (forpassage across insecure subnets) and a compression booster (for passage across bandwidth-impairedsubnets).Our measurement data suggests that OS support for this method can be constructed with lowperformance overhead; execution of the protocol elements dominates any overhead introduced byour implementation. We discuss some lessons learned from the implementation.1 IntroductionNetwork protocols are designed to meet applicationrequirements for data communications, including se-curity, reliability and performance. The dominantdesign and implementation process for protocols hasbeen to �rst enumerate the requirements for the pro-tocol, and then design a protocol that provides thenecessary features end-to-end[16]. The protocol isthen optimized by identifying common cases and im-plementing fast paths for these cases; TCP/IP is anexample[4]. The resulting protocol is robust end-to-end and typically provides good performance. Ex-tremely poor performance can result when the as-sumptions permitting fast path execution are notmet.1.1 Protocol BoostersProtocol graphs[11] are a means of representing theinteractions between protocol elements which carryout functions required by the protocol, e.g., round-trip time estimation. An approach initially suggestedby Feldmeier, et al.[8], is the design of \ProtocolBoosters." Protocol Boosters are protocol elements1This research was supported by the Defense AdvancedProjects Research Agency under Contract #DABT63-95-C-0073. Additional support was provided by the Hewlett-Packard and Intel Corporations.

intended to be transparently inserted into and deletedfrom protocol graphs on an as-needed basis.A policy associated with the booster is used to se-lectively invoke the protocol functions. For example,a forward error correction code might be used over awireless data link to bring its error behavior into anacceptable operating range, without using the FECend-to-end [13]. The error performance of the subnetis thus \boosted" to an acceptable level to improveend-to-end performance. Figure 1 shows a boosterused in a network, in this case boosting a subnet be-tween an end-host and a router.
 Boosted Link or Subnet

 Host A Host B

Router R

Application

Booster DeBooster

Application

Figure 1: Boosting a link or subnetBoosters can be dynamically added and deleted asadditional network functionality is needed. A policyfor this decision is needed in addition to the speci�cbooster mechanism for adding functionality. Sinceboosters vary widely in their functions, it is impossi-1

ble to have a completely general policy; policies mustbe associated with their boosters.These policies can be quite subtle, and may includede�nition of \meta"-policies. For example, considertwo boosters, one that compresses data, and a sec-ond that encrypts it. If compression is performed�rst, the later encipherment of data might in fact beslightly strengthened. However, if encryption is per-formed �rst, the compression is unlikely to be e�ec-tive. A policy module can be devised which properlystructures the interaction of these two boosters, forexample by indicating that the boosters are not com-mutative.1.2 Packet Modi�cationA transparent booster does not modify the packet itboosts. For example, a Forward Error Correction(FEC) booster may send FEC packets in addition tothe data packets it encodes. Non-transparent boost-ers, on the other hand, modify data packets. Forexample, a compression booster for use on a wirelesslink might compress data packets.Transparency has architectural implications; non-transparent boosters are partitioned; the senderboosts the packet, and a \debooster" at the receiverdeboosts and recovers the original packet. This is thesituation shown in Figure 1.1.3 Implementing BoostersImplementation of boosters requires dynamic inser-tion of protocol elements into a protocol graph. Inpractice, protocol graphs are implemented as ex-ecutable modules that cooperate via messages orshared state. Booster support requires inserting andremoving the booster's function from the executionpath followed for a group of packets handled by theprotocol. A simpli�ed illustration of one style ofbooster is shown in Figure 2.While future operating systems[1, 7] may ease user-level implementation of protocols with good supportfor e�cient user/kernel boundary crossing and struc-tured user control of devices[6], today's operating sys-tems are ill-suited for such implementation. Access tosystem resources needed for high performance, suchas address maps and �ne-grained scheduling, leadsto protocols embedded in operating systems. Thecanonical example is the IP protocol stack embed-ded in BSD UNIX. Implementing protocol boosters

in this environment allows us to evaluate the tech-nique's applicability today in a realistic setting.Our overall goal is to show that Protocol Boostersare a good idea. As a �rst step, we must show thatthe idea can be realized with acceptable performance.To do this, we implemented several example Proto-col Boosters embedded in a BSD TCP/IP implemen-tation, and measured the costs and overheads. Weused the FreeBSD implementation of UNIX, operat-ing on Intel Pentium processors interconnected by 10Mbps Ethernet cards. The availability of freely dis-tributable UNIX sources such as FreeBSD and Linuxhas made such machines extremely attractive as OSdevelopment platforms, and allows free distributionof systems such as the one we have implemented. Itis our hope that other boosters and improved OS sup-port will result as others absorb and react to our im-plementations.The remainder of this paper is organized as follows.Section 2 motivates particular design choices reectedin the implementation. Section 3 discusses several ex-ample Protocol Boosters. Section 4 discusses aspectsof the implementation in FreeBSD. Section 5 presentsperformance data and some inferences we can drawfrom it. Section 6 discusses related work, and Sec-tion 7 concludes the paper with a discussion of lessonslearned, new directions and a pointer to the sourcefor our implementation.
Booster

(a) Unmodified

Protocol

Layer n

Layer n+1

Protocol

Protocol

Layer n

Layer n+1

Protocol

Booster Stub

Booster Stub

 Stack

(b) Booster-capable

 Stack

(c) Boosted

Protocol

Layer n

Layer n+1

Protocol

Booster Stub

Booster Stub

 StackFigure 2: Insertion of Protocol Boosters in a LayeredProtocol2 Implementation choices andstrategyAs Figure 2 shows, due to its generality and sim-plicity, the booster abstraction can be used in many2

protocol architectures. There is a wide range of im-plementation alternatives.2.1 Kernel vs. User levelThe initial design choice was whether to run boostersinside the kernel protection domain, or to operate inuser-space. Each choice has major consequences forrequired operating system support.Running boosters as kernel modules can increaseperformance, because of context-switching and otheroverheads, as well as availability of control and in-formation about arriving packets. As many boosterscommit layer violations, such information can be veryimportant. Unfortunately, boosters as kernel mod-ules are di�cult to debug. Boosters running in userspace are much easier to debug, as well as easier toadapt to other operating systems.Since one role of boosters is as performance-enhancers interoperating with existing network pro-tocols, we implemented prototype support for boost-ers as kernel modules. This decision should be re-examined as technology advances.2.2 Platform choiceWe added support to FreeBSD, a free Unix clone forthe Intel x86 processor architecture. There were tworeasons: (1) no cost for a free BSD Unix inspired OSand its source code, and (2) excellent documentation;[18] has an excellent treatment of the BSD networkingcode. The placement of this implementation in theIP stack is shown in Figure 3.In our prototype we simpli�ed the policy decisionfor boosting: all packets destined to (or sourced from)a speci�c IP address are boosted or de-boosted as nec-essary. This choice allowed us to investigate the OSperformance independent of policy research and de-velopment. This is accomplished by a demultiplexingalgorithm, as illustrated in Figure 3, which examinesthe IP address and based on a table lookup, either in-vokes an appropriate booster or reinserts the packetin the normal execution path. Insertion or deletionof booster functionality is thus controlled by choiceof IP address.2.3 Protocol Layer and implicationsA completely general environment for protocol boost-ers would allow placement at any protocol layer. Thekey lessons about feasibility and performance of OS

IP

PB

Mux

Booster 2

Booster 1Userlevel

TCP

IP

LinklevelFigure 3: Embedding and selecting boosters in theFreeBSD IP stacksupport can be learned with a prototype operatingat a single layer. The choice of this protocol layerhas important implications for software engineering,limitations of the prototype, and performance mea-surement. We used the IP layer.The major software engineering issue other thankernel- vs. user-space placement is interacting withthe existing layers. We defer discussion of SoftwareEngineering until Section 4.3, after the implementa-tion details are discussed.Several limitations were introduced by using theIP layer. These were related to packet fragmenta-tion and reassembly and multipath routing, and area direct consequence of operating at the IP layer.Packet fragmentation and reassembly is performedby IP at hosts to avoid the performance cost of re-peatedly carrying it out as packets traverse an in-ternetwork. A Maximum Transfer Unit (MTU) isdetermined for an IP route, which has the propertythat it requires minimal fragmentation and reassem-bly. Where a link has a smaller Maximum TransferUnit (MTU) than the packet size, the packet is frag-mented into pieces of MTU size or smaller. The de-booster receives the original boosted packet as two(or more) packet fragments. This presents a problemwhere the booster functionality requires the entireoriginal packet. Since this requirement is booster-dependent, our prototype OS implementation by sup-plies the MTU of the outgoing interface to the boosterso it can act appropriately.Multipath routing occurs since Internet packets arenot guaranteed to be delivered, take a particularroute, or arrive in-order. TCP addresses the �rstand third problems as an IP overlay. This IP be-3

havior can present a problem for boosters, especiallynon-transparent boosters where appropriate deboost-ers or state necessary to deboost the boosted packetare not present. It also complicates inserting anddeleting boosters at necessary locations in an IP in-ternetwork. While routes rarely change, as shown byCla�y[3] in her studies of Internet tra�c, such routingdynamics can be addressed by future protocol boost-ers.The ability to measure performance in a convinc-ing and reproducible manner was our highest priority.Since application performance is an excellent mea-sure of end-to-end performance, measurement of de-lay and throughput was performed with widely-usedtools which measure these parameters using IP pro-tocols and sockets. Thus, we had to implement at theIP layer or below to use these tools. The results suf-fer in reproducibility if we use subnet speci�c boost-ers; the �rst subnet-independent layer is the IP layer.This argued strongly for an IP-layer implementation;we discuss the speci�cs of performance measurementin Section 5.3 Prototype BoostersWe have implemented two example boosters: an en-cryption booster (for passage across insecure sub-nets) and a compression booster (for passage acrossbandwidth-limited subnets). Both boosters have atrivial policy mechanism in which a booster is in-serted or removed from the protocol graph by explicituser requests.3.1 Lempel-Ziv Compression BoosterLempel-Ziv is a commonly used compression algo-rithm which �nds duplicate strings and replaces therepeating occurrences with a pointer back to the orig-inal instance[19]. In the case of limited bandwidthnetworks, a compression booster might increase end-to-end performance, reducing required throughput,at the cost of increased CPU activity. Compressionof various packet components has proven successfulfor low-bandwidth networks[12].Placing compression at the network level enablesall network services to bene�t from compression with-out any added user-level complexity. Sophisticatedpolicy mechanisms can be put in place with the com-pression booster to detect the proper conditions forinsertion into and removal from the protocol graph.

For instance, a typical problem in congestion de-tection and avoidance is propagating the network in-formation across a WAN. However, a sophisticatedpolicy/compression module could address congestionsomewhat di�erently and immediately compress net-work streams based solely on information gatheredlocally, such as packet loss information used by TCPin making ow control decisions.3.2 Lucifer, an Encryption BoosterLucifer is an encryption algorithm developed by IBMin 1971; it was a precursor to the now heavily usedDES (Data Encryption Standard) algorithm[21]. Inthe case of sensitive data traveling over an insecuresubnet, an encryption booster can transparently in-crease the security of the network services provided.As with many software-based encryption tech-niques, the performance of the encryption booster asshown in Section 5 is poor due to its CPU-intensivenature. Naturally, encrypting the data with specialpurpose hardware would improve performance signif-icantly, and this could easily be done with a boosterwhich detects and uses such hardware.The performance of software-based encryptionhighlights an important point. For sensitive datatraveling between secure clouds, it may be less expen-sive to encrypt the data only over the insecure hopthereby reducing CPU cost on the endpoints. For ex-ample, the boosted link in Figure 1 might be insecure,and the policy module could detect this by destina-tion IP address or other means. Moreover, with theuse of special purpose hardware, one could multiplexthe hardware across many possible endpoints.The Lucifer booster is based on widely-availablecode written by one of us and published inSchneier[17]. Converting this Lucifer code from a userprogram to a network protocol booster required lessthan a hour.4 Implementation in FreeBSDThe majority of OS support as well as the boostermodules are loadable kernel modules. The remainingOS support is modi�cations to the kernel networkingcode. The modules are loaded with an ioctl() systemcall. Our modi�ed kernel can dynamically load andunload support for protocol boosters.4

4.1 Initial BSD network stackWhen a datagram arrives at the hardware interface,the hardware puts the datagram into the IP inputqueue and schedules a software interrupt to executethe IP input routine[18]. This routine processes eachdatagram on its input queue and returns when theentire queue has been processed. During processing,the IP input routine veri�es the IP header checksum,processes IP options and forwards the datagram ifnecessary. If the datagram has reached its �nal des-tination, it is passed to the appropriate higher-levelprotocol.On output[18], higher-level protocols like TCP andUDP �ll in as much of the datagram as they can, e.g.,the TCP header, and then pass the datagram to theIP output queue. This �lls in the remaining �eldsin the IP header, like the checksum, determines theoutgoing interface to pass the datagram to, fragmentsthe datagram if necessary and then calls the interfaceoutput function.4.2 Protocol Booster support in thenetwork stackThe basic architecture of our implementation in theIP stack is illustrated in Figure 3. The following sub-sections explain how it is done.4.2.1 Identifying boosted packetsIn the IP header, the type-of-service is �eld is notused. We used this �eld to store the booster id ofboosted packets. If boosters need headers or trail-ers added to packets, they must allocate space andperform the appropriate checksumming themselves.4.2.2 InputWhen a packet arrives at an interface, it is passed tothe IP input routine (ipintr()) by the hardware. Ifthe packet is destined for another host, it is passedon to ip forward(), which forwards packets appro-priately. If the current machine is the �nal desti-nation, the packet is passed to the protocol boosterinput routine. At this point, the packet consists ofthe IP and TCP headers as well as whatever data isin it. The protocol booster (PB) input routine deter-mines whether the packet is boosted or not; if it isnot, it returns at once. Else, it passes the packet tothe appropriate debooster routine, which attempts todeboost the packet and return the deboosted packet

to ipintr() to �nish processing the packet. Figure3 illustrates much of this behavior.4.2.3 OutputA packet can arrive at the IP output routineip output() in two states : boosted or unboosted.If it is boosted, then the packet is destined for an-other host, and has been passed to ip output() byip forward(). If it is not boosted, then it may ei-ther be coming from the local host, or it may havealso come from ip forward().All outgoing packets are passed to the PB outputroutine. This routine determines whether to boost,deboost or simply forward the packet before send-ing it out. The packet(s) are then passed back toip output() which processes and fragments them asappropriate before sending them to the hardware in-terface.4.2.4 Booster interface to OSThe interface with the kernel is simple. It can beviewed as consisting of basically two functions - oneto boost and the other to deboost. Minimal examplesof such functions are given in Figures 4 and 5.The booster registers these functions by insertingfunction pointers to them into a lookup-table. Thistable is then used to demultiplex incoming and outgo-ing packets. The function called on output of a packet(i.e., the boosting function) is passed 4 parameters -a pointer to the original mbuf chain containing thepacket, a pointer to the contiguous memory blockinto which the packet has been spilled, a pointer tomemory that has been allocated to it (the booster)and the MTU of the interface on which the packet isbeing sent. The deboosting function, usually calledwhen a packet is received, is passed the same param-eters except for the MTU size.Since boosters can generate new packets as well asmodifying the old ones, they are required to �ll in adata structure that indicates the packet(s) generated.This data structure consists of a linked list of pointersto the start of packets and the length of these pack-ets. We process this linked list to extract the packetsand repackage them into mbufs which can then beprocessed by the rest of the networking code.4.2.5 Protocol LayerWhile our implementation supports boosters at theIP layer, it would be easy to add booster support that5

int null_boost(struct mbuf *m0,char *pcPacketBuffer,char *pcPlayground,int iMtuOut){ register struct ip *ip = (struct ip *) pcPacketBuffer;ip->ip_tos = ip->ip_p;ip->ip_p = IPPROTO_PBOOSTERS + PB_BID_NULL;SegmentInfo_pSegmentInfo = (SegmentInfo *) pcPlayground;SegmentInfo_pSegmentInfo->pcPacketStart = pcPacketBuffer;SegmentInfo_pSegmentInfo->iPacketLength = m0->m_pkthdr.len;SegmentInfo_pSegmentInfo->pNextSegment = NULL;return (0);} Figure 4: Example Null Booster for FreeBSDint null_deboost(struct mbuf *m0,char *pcPacketBuffer,char *pcPlayground){ register struct ip *ip = (struct ip *) pcPacketBuffer;ip->ip_p = ip->ip_tos;SegmentInfo_pSegmentInfo = (SegmentInfo *) pcPlayground;SegmentInfo_pSegmentInfo->pcPacketStart = pcPacketBuffer;SegmentInfo_pSegmentInfo->iPacketLength = m0->m_pkthdr.len;SegmentInfo_pSegmentInfo->pNextSegment = NULL;return(0);} Figure 5: Example DeBooster for FreeBSDworks at the TCP or UDP levels (above IP in thestack), or one at the Ethernet level, which is belowIP in the stack.4.3 Software Engineering Challenges4.3.1 Interacting with MbufsFreeBSD's network information and datagrams arestored and processed in mbufs (memory bu�ers).Mbufs have a maximum size and are chained into
a linked list containing a datagram if the datagram'slength exceeds the size of a single mbuf.We began by passing the packets to the boosters asthe mbufs in which they were encapsulated. However,the mbuf structure proved awkward to manipulate,particularly for boosters that operate on contiguouspieces of data, e.g., the compression booster.We allocate a 32KB memory bu�er in which wegather packets as they arrive. A booster is passeda pointer to this contiguous region of memory. Weallocate an additional 32K chunk of memory used by6

the boosters in their processing.While slightly constrained, implementing each ofour sample boosters became very simple. The cur-rent FreeBSD kernel network data structures restrictschemes like protocol boosters, Application-speci�cSafe Handlers[7] and SPIN[1] modules. To exploitideas from these new systems, the FreeBSD kernelmust be made more \extension-friendly".4.3.2 Kernel-awareness and user-level callsImplementation issues which are of minor conse-quence in user space can have devastating side-e�ectsif errors are introduced in the kernel protection do-main. Our sample boosters (compression and en-cryption) were all essentially constructed by simplytaking the skeleton algorithm of existing applications(Lempel-Ziv, Lucifer, etc.) at the user-level and turn-ing it into the main routine for the booster modules.The implementations made calls to user-level li-braries, or to system calls. Since these are not avail-able in the kernel, we had to implement any requiredfunctions. Memory allocation was particularly ob-scure, so our implementation provides each boosterwith a pointer to 32K of allocated memory which thebooster is expected to manage.Authors of boosters in our prototype must be'kernel-aware'. However, it is undesirable for theauthors of boosters to completely master FreeBSDinternals. More complex boosters will require morepowerful and extensive services. A clearly-de�ned,powerful interface to the kernel should be imple-mented to provide the most important facilities avail-able to user-level applications; this would greatly ac-celerate importing existing code into a kernel-residentbooster framework.5 Performance EvaluationThe goal of our performance evaluation experimentswas to measure the overhead introduced by our im-plementation as well as the costs of executing the ex-ample boosters. Our experimental setup consisted oftwo 133 MHz Intel Pentium processors equipped with32MB of EDO RAM with support for burst reads, a256KB pipeline write back cache, and 3COM 3c509ISA Ethernet cards operating at 10 Mbps.We recorded the roundtrip times of ICMP ECHO(ping) packets of varying sizes between the two hosts,with a number of di�erent boosters installed. This

provided an understanding of the delay overhead im-posed by boosters, and allowed us to quantify per-byte and per-packet overheads.We analyzed the throughput of the resulting net-work stacks using the netperf tool[10]. We have ex-perimented with both ttcp and netperf, and havedrawn two conclusions from these experiments. First,netperf results are reproducible; ttcpmeasurementsexhibit signi�cant variation in reported throughput{ up to 20% in some cases. Second, netperf resultscorrespond very closely with maximum ttcp reportedthroughputs. What this suggests is that netperf bet-ter controls the variables under study, while reducingnoise from other factors.5.1 Delay measurementsFigure 6 shows the variation in ping round-trip timeswith packet sizes ranging from 60 to 1400 bytes anddi�erent boosters.Figure 6 shows that there is virtually no di�er-ence in delay between a kernel with booster supportenabled and an unmodi�ed FreeBSD kernel. Theoverhead added by a \null" booster ('spilling' thepacket and reassembling it into mbufs) is incurred byall boosters. This overhead is very small, between0.1 and 0.2 ms, and remains constant with increas-ing packet size, implying that the cost is per-packet,rather than per-byte.The Lempel-Ziv booster is much more expensivethan the null booster for small packet sizes, butthe cost decreases with increasing packet size. Weattribute this to increasing compressibility with in-crease in packet size, so that the increase in pro-cessing time is o�set by the decrease in the timeneeded to transmit the data. The Dumb-Lempel-Ziv booster, which compresses the data but sends theoriginal packet rather than the compressed one, be-haves as expected - round-trip ping times increaselinearly with time, reecting the processing overheadinvolved in compressing the packet. It might seemodd that the Dumb-Lempel-Ziv booster ever out-performs the Lempel-Ziv booster. The Lempel-Zivbooster compresses the packet at the source, trans-mits the compressed packet and decompresses it atits destination, while the Dumb-Lempel-Ziv boosterperforms the compression computation at the sourcebut sends the uncompressed packet, bypassing de-compression at the destination. Therefore the Dumb-Lempel-Ziv booster starts to outperform the Lempel-Ziv booster when the additional time required to de-7

02
46
810

0 200 400 600 800 1000 1200 1400
Latency (ms)

Packet size (bytes)

No booster support 3

3 3 3 3 3 3 3 3 3 3 3
Booster support, no booster installed +

+ + + + + + + + + + +
Null booster 2

2 2 2 2 2 2 2 2 2 2 2
Lempel-Ziv booster �

� � � � � � � � � � �Dumb-Lempel-Ziv booster 4
4 4 4 4 4 4 4 4 4 4 4Crypto booster ?
?

Figure 6: Ping round-trip timescompress the packet exceeds the time gained by trans-mitting a compressed packet. With increasing packetsize and compression gain, this discrepancy lessensuntil Lempel-Ziv starts to outperform Dumb-Lempel-Ziv.The roundtrip times of the Encryption booster arevery large even for small packet sizes; only the timefor the smallest packet is shown in Figure 6 (it is inthe upper left corner of the plot). The other timesare correspondingly ridiculous.5.2 Throughput measurementsNetperf uses a client-server model to measure thethroughput, with one machine acting as the server tothe others client. We measured bulk data transfersusing TCP and BSD sockets.The experiments used the test setup described atthe beginning of this section, the modi�ed kernel, andno other machines on the Ethernet link. The experi-ments were repeated until a 99% con�dence intervalin the results was reached, using an option providedby netperf. The command line used was:netperf -F design.txt -H logos -I 99,5-i 10,2 -l 60

Table 1 shows the results of our tests. The �rstcolumn in the table shows the code path being exe-cuted, the second column shows the throughputs ob-tained by netperf, and the third shows the percent-age change in throughput relative to a kernel with nobooster support installed, which is given as the �rstrow of the table.The additional processing overhead incurred by ourFreeBSD support for protocol boosters has a negligi-ble impact on throughput; with no booster installed,throughput stays the same (7.21MBit/sec). Forthe null booster, with the associated packet spillingand resegmentation costs, throughput decreases by0.01%, from 7.21MBit/sec to 7.15MBit/sec.The measurements also indicates the e�ect onthroughput when boosters which perform signi�cantprocessing are employed. The Lempel-Ziv boosterperforms Lempel-Ziv compression, as described inSection 3, and then sends the compressed packet; theDumb-Lempel-Ziv booster also executes the compres-sion code but sends the original packet, thus incurringall of the cost but none of the bene�ts of the Lempel-Ziv booster. This provided us with an upper boundon the cost of the Lempel-Ziv booster. The Cryptobooster encrypts its data stream using the Lucifer[21]algorithm.8

Stack con�guration Throughput Percent(MBit/s) ChangeNo support installed 7.21 0.00%Support installed, no booster 7.22 0.00%Null booster 7.15 -0.01%Lempel-Ziv booster 9.42 30.65%Dumb-Lempel-Ziv booster 5.22 -27.60%Crypto booster 0.34 -95.28%Table 1: Netperf statisticsThe Lempel-Ziv booster improves performance byup to 30%, approaching the maximum link-levelbandwidth when compressible data (such as text �les)is being sent. The throughput obtained with theDumb-Lempel-Ziv booster provides an estimate ofthe worst-case behavior, decreasing throughput byup to 28%. This is encouraging, implying as it doesthat even a relatively unsophisticated implementa-tion of the proposed technique for protocol enhance-ment produces signi�cant performance gains in somefairly common cases.The Crypto booster, on the other hand, decreasesthroughput to 5% of its normal value. Since the costsincurred by the OS support are negligible, this de-crease in throughput comes from computations forencrypting and decrypting the data stream. Clearly,ine�cient or computationally expensive boosters maycause dramatic reductions in throughput.5.3 Installation costsBoosters are intended to be added and deleted dy-namically to react to network dynamics. In our pro-totype, this is done from the user level. Insertingthe module for booster support into the running ker-nel takes an average of 30ms (29000 �s). Adding anactual booster takes an average of 20ms (19000 �s).Both of these are times spent executing in the kernelon account of a user-level ioctl() request, and excludeconcurrency-control costs.Where a booster's functionality is dynamically in-serted and deleted under control of a kernel-residentpolicy module, the operations can be considerablyfaster. The simple kernel data structure operationsconsist of three pointer updates. These can be accom-plished while a single processor-priority based lock isheld. The cost of lock acquisition and release is lessthan 100 instructions.

6 Relation to other workThe University of Arizona's x-Kernel[11] work pro-vides support for composing protocols from simplerelements. Protocol boosters are examples of such el-ements, but they are inserted \on-the-y". More re-cent work on the Scout[14] project seeks to use com-piler technology to optimize protocol stacks by re-ducing them to minimal sets of functions. This opti-mization approach is static, where a general protocolarchitecture is pared away by optimization technol-ogy to achieve a high-performance protocol. Protocolboosting, in contrast, is additive and dynamic; pro-tocol boosters are added when necessary.Dynamic modi�cation of protocols is not a newidea; for example the notion of building a FILOqueue (stack) of reentrant modules is embedded inthe UNIX System V STREAMS implementationspatterned on Ritchie's Streams[15]. Unfortunately,Streams are restrictive with respect to ow con-trol (they resemble a string of co-routines), mod-ule scheduling, and intermodule messaging. Boostershave a smaller set of such restrictions, in fact theyare in practice almost unrestricted. This means thatthe range of protocol architectures which can be im-plemented is enhanced; for example there are pro-tocol features (e.g., multiplexers) which are di�cultto implement with the implicit ow control of theSTREAMS message-passing discipline, and easy toimplement with boosters.For example, composition properties are essen-tial for the many-to-one, one-to-many, and many-to-many forms of multiplexing in communications sys-tems. The \waits-for" dependencies used to sched-ule coroutines would force multiplexers (and demulti-plexers) to be single-threaded and data-driven, ratherthan clock or priority driven.Protocol boosters have a strong intellectual rela-tion to the application-speci�c services approach sug-9

gested by the University of Washington's SPIN[1]project for building an extensible microkernel. A dif-ferent tack is followed by MIT's Exokernel[7]; theExokernel concentrates on allowing applications tospecify almost all elements of their OS substrate,without focusing speci�cally on network protocols.Application-speci�c Safe Handlers (ASHs) are mostsimilar to protocol boosters. A major di�erence isthe focus on protocols in our work; it lets us takeadvantage of considerable structure inherent in pro-tocols. OS support for protocol boosters occupies amiddle ground of generality between STREAMS andan extensible OS.7 Suggestions for further workand ConclusionsSophisticated policy modules are clearly essential formany classes of dynamic behavior. Our prototypeimplementation requires users to explicitly ask forboosters to be inserted and deleted. Automatinginsertion and deletion of boosters under control ofa policy module (e.g., a \compressibility detector")is underway. David Feldmeier[9] has observed thatmonitoring congestion on a WAN to determine whencompression should be applied has desirable proper-ties; compression is then used only when the WANis congested, and compression reduces throughput, acorrect response to WAN congestion.Our implementation provides access to packets atthe IP layer. This was based on our requirementsfor reproducible measurements, as discussed in Sec-tion 2.3. On input, for example, we pass the packet tothe booster module after error-checking has been per-formed; some applications may wish to pass the data-gram to the booster module before error-checking.More general protocol graph support in theFreeBSD would allow adding booster modules at anylevel in the protocol hierarchy as well as at arbitrarypoints in the processing of the datagram. This wouldo�er �ner-grained control of boosting. For example,one could implement TCP Vegas [2] using protocolboosters if we inserted booster modules at the TCPlayer. A desirable implementation target is x-Kernel-like protocol graph facility, with access to FreeBSDresources, and with smart policy modules.To achieve that target, further OS support forboosters should include library routines accessible tobooster modules, similar to libraries available at theuser-level. This would would insulate programmers

from many details such as kernel memory allocation,and let them focus on the algorithms used in theboosters themselves. From a software and protocolengineering perspective, it would save e�ort, sincemany boosters have common support needs.7.1 SummaryOur prototype shows that it is possible to dynami-cally insert and delete protocol elements in a conven-tional TCP/IP stack operating under UNIX. Supportfor these \protocol boosters" can be implemented e�-ciently; there is a very small performance cost relativeto the cost of executing the protocol element's func-tions. We analyzed these costs using both networkthroughput and network delay measurements madewith widely-available tools; our source code can beobtained via anonymous FTP2 for those wishing toreplicate our measurements or experiment with newboosters.8 AcknowledgmentsThe Lempel-Ziv booster is based on publicly-available code by Ross Williams[20]. Tony McAuleyand Dave Feldmeier of Bellcore have provided impor-tant ideas and commentary. Comments from ScottNettles greatly improved an earlier draft of this pa-per.References[1] B. Bershad, et al.,, \Extensibility, Safety andPerformance in the SPIN Operating System,"Proc. 15th SOSP, pp. 267{284, December 1995.[2] L. Brakmo and L. Peterson, \TCP Vegas: Endto End Congestion Avoidance on a Global In-ternet," in IEEE Journal on Selected Areas inCommunications, 13(8), Oct. 1995, pp. 1465{1480.[3] K. Cla�y, \Internet Tra�c Characterization,"Ph.D. Thesis, UCSD, 1994.[4] David D. Clark, Van Jacobson, John Romkeyand Howard Salwen, \An Analysis of TCP Pro-cessing Overhead," in IEEE CommunicationsMagazine, 27(6), June 1989, pp. 23{29.2ftp.cis.upenn.edu:~ pub/dsl/boosters.d10

[5] D. Clark & D. Tennenhouse, \ArchitecturalConsiderations For A New Generation Of Pro-tocols," Proceedings of ACM SIGCOMM, pp.200{208, September 1990.[6] P. Druschel, L. L. Peterson and B. S. Davie, \Ex-periences with a High-Speed Network Adaptor:A Software Perspective," pp. 2{13, Proceedings,1994 SIGCOMM Conference, London, UK.[7] D. Engler, et al., \Exokernel: An Operating Sys-tem Architecture for Application-Level ResourceManagement," Proc. 15th SOSP, 1995.[8] D. C. Feldmeier, A. J. Macauley and J. M.Smith, \Protocol Boosters," Technical Report,U. Penn CIS Dept.,1996. See also http://gump.bellcore.com/~dcf/boosters/homepage.html.[9] D. C. Feldmeier, Personal Communication, May7th, 1996.[10] Hewlett-Packard, Information Networks Divi-sion, \Netperf: A Network Performance Bench-mark (Revision 2.0)," Feb. 15, 1995. See alsohttp://onet1.external.hp.com/netperf/NetperfPage.html.[11] N. C. Hutchinson and L. L. Peterson, \The x-Kernel: An architecture for implementing net-work protocols," IEEE Transactions on SoftwareEngineering, 17(1), Jan. 1991, pp. 64{76.[12] V. Jacobson, \Compressing TCP/IP Headers forLow-Speed Serial Links," Internet RFC 1144,February 1990.[13] A. J. McAuley, \Error Control for MessagingApplications in aWireless Environment," INFO-COM 95, Boston, MA, April 2-6, 1995.[14] A. B. Montz, et al., \Scout: A communications-oriented operating system," Technical Report94-20, Dept. CS, University of Arizona, June1994.[15] D.M. Ritchie, \A Stream Input-Output Sys-tem", in AT&T Bell Laboratories TechnicalJournal, October 1984, 63(8) part 2, pp. 1897-1910.

[16] J. H. Saltzer, D. P. Reed, & D. D. Clark, \End-to-end Arguments in System Design," Proceed-ings of the 2'nd IEEE International Conferenceon Distributed Computing Systems, pp. 509{512, April 1981.[17] B. Schneier, \Applied Cryptography: Protocols,Algorithms and Source Code in C," Wiley 1994,pp. 485{491.[18] W. Richard Stevens and Gary R. Wright,\TCP/IP Illustrated, Vol.2 - The Implementa-tion," Addison-Wesley, 1995.[19] J. Ziv and A. Lempel, \A Universal Algorithmfor Sequential Data Compression", IEEE Trans-actions on Information Theory", Vol. 23, No. 3,pp. 337-343.[20] Nico E. de Vries, \Lossless DatacompressionSources Kit," 1996. Email nevries@aip.nl to ob-tain a copy.[21] J. L. Smith, \The Design of Lucifer, A Crypto-graphic Device for Data Communications," IBMResearch Report RC3326, 1971.

11

