
- 1 -
Paper published in the April 1998 issue of IEEE JSAC

Protocol Boosters

D. C. Feldmeier, A. J. McAuley, J. M. Smith

D. S. Bakin, W. S. Marcus, T. M. Raleigh

dcf@music.com, mcauley@bellcore.com, jms@cis.upenn.edu

dbakin@bellcore.com, wsm@bellcore.com, tom@bellcore.com

Bellcore and University of Pennsylvania*

Abstract

This paper describes a new methodology for protocol design, using incremental
construction of the protocol from elements called “protocol boosters” on an as-needed
basis. Protocol boosters allow: (1) dynamic protocol customization to heterogeneous
environments, and (2) rapid protocol evolution.

Unlike alternative adaptation approaches, such as link layer, conversion, and
termination protocols, protocol boosters are both robust (end-to-end protocol messages
are not modified) and maximize efficiency (does not replicate the functionality of the
end-to-end protocol). We give examples of error and congestion control boosters and
give initial results from booster implementations.

1 Introduction and Problem Statement

At the heart of the success and power of the worldwide IP Internet are the general purpose

protocols in the TCP/IP protocol suite. Although these protocols, such as TCP and IP, provide the

flexible framework for building diverse applications, two limitations can be seen precisely

because of their success and generality:

• They evolve slower than the changes in networking technology and application requirements.

• They trade some loss in efficiency for their ability to handle increased heterogeneity.

1•1 Slow Evolution of Protocols

Network technology and applications are changing rapidly, and existing protocols may not

operate well in new circumstances. For example, the fast growth of the Internet has raised the

potential problem of address exhaustion in IP version 4, leading to the creation of IP version 6.

Also, with the rise of real-time and multicast applications (using UDP) and the rise of applications

that frequently open and close TCP connections (notably HTTP [13]), new congestion control

mechanisms may be needed to maintain network efficiency and reliability.

* This work was supported by the Defense Advanced Research Projects Agency under contract
#DABT63-95-C-0073. Additional Support at the University of Pennsylvania was provided by the
AT&T Foundation, the Hewlett-Packard Corporation and the Intel Corporation.

- 2 -
Paper published in the April 1998 issue of IEEE JSAC

Although the rate of change of technology and applications is increasing, the rate of change of

the key Internet protocol standards has slowed. IP version 6, for example, took many years to

standardize and still is not widely adopted. Paradoxically, it is the success of the protocol that

leads to this problem. The rate of change becomes political (defined by standards bodies) rather

than technological. The problem is not with the specific protocol or specific standardization

method; but with the need to have many people (sometimes with competing agendas) agree on

the standard. Forming a consensus within large groups is a slow process, and is likely to remain

slow; therefore, protocol standards will continue to evolve at a slow pace.

1•2 Inefficiency of General Purpose Protocols

General purpose protocols are designed to operate in heterogeneous network environments by

minimizing the services required from lower layers. Minimizing lower layer service requirement

allows robust operation over the widest variety of network infrastructures, but prevents the

protocol from taking full advantage of lower layer services.

Figure 1 shows an abstract example of the efficiency-generality trade-off: with IP Internet

protocols being general purpose but inefficient and parallel processing protocols being efficient

but requiring low error rate, low delay networks. Ideally, a protocol would adapt to provide the

best possible performance given the path of the data. For instance, when on a LAN, the protocol

would adjust itself to give performance similar to that of a specialized LAN protocol.

1•3 Summary

As the political pace at which standards evolve is unlikely to increase and the heterogeneity of

the network is likely to remain high, we need a new means of creating efficient protocols that can:

• Evolve rapidly.

• Dynamically change behavior and functionality based on the visible network heterogeneity

and application requirements, rather than the total network and application heterogeneity.

E
ffi

ci
en

cy

Parallel Processor

IP Internet

Heterogeneity

Optimal Protocol (for a given

<Network, Application> pair)

Figure 1 Trade-off between efficiency and heterogeneity

- 3 -
Paper published in the April 1998 issue of IEEE JSAC

Section 2 describes a new design methodology for protocols called protocol boosters, and

Section 3 explains how protocol boosters allow faster protocol evolution and optimization of the

protocol to the environment. Section 4 compares protocol boosters with other protocol

architectural alternatives. Section 5 provides some initial implementation and experiment results.

2 Protocol Boosters

This section defines protocol boosters and shows how a protocol, combined with a set of

protocol boosters, forms a family of protocols. We also describe examples of protocol boosters.

2•1 What is a Protocol Booster?

A protocol booster is a software or hardware module that transparently improves protocol

performance. The booster can reside anywhere in the network or end systems, and may operate

independently (one-element booster), or in cooperation with other protocol boosters (multi-

element booster). Protocol boosters provide an architectural alternative to existing protocol

adaptation techniques, such as protocol conversion and protocol termination.

A protocol booster is a supporting agent that by itself is not a protocol. It may add, delete or

delay protocol messages, but never originates, terminates, or converts that protocol. A multi-

element protocol booster may define new protocol messages to exchange among themselves, but

these protocols are originated and terminated by protocol booster elements and are not visible or

meaningful external to the booster. Figure 2 shows the information flow in a two-element booster.

A protocol booster is transparent to the protocol being boosted. Thus, the elimination of a

protocol booster will not prevent end-to-end communication, as would, for example, the removal

of one end of a conversion (e.g., TCP/IP header compression unit [10]) or termination protocol. A

simple analogy may help explain the boosting and transparent behavior. If a protocol is analogous

to an automobile tire, then a protocol booster is analogous to snow chains. A car with regular tires

can add snow chains on snowy roads, just as a protocol designed for a wireline network may use

boosters for transmission across a wireless network. The snow chains and protocol boosters are

supporting agents since a car cannot drive on snow chains alone, just as communication is not

possible with protocol boosters alone. Also, the snow chains and boosters are transparent, since

the car tires are not modified by the addition of snow chains, just as the protocol is not terminated

or converted by a protocol booster.

Protocol messages

 Booster messages

Host X Booster A Booster B Host Y

Figure 2 Two-element booster

- 4 -
Paper published in the April 1998 issue of IEEE JSAC

2•2 Protocol Family

Multiple protocol boosters can operate simultaneously on the same protocol. Although a

booster itself is not a protocol, a protocol and a booster combine to form a new protocol. The new

protocol consists of the messages of the original protocol combined with any messages exchanged

among multi-element booster elements. We can implement a second booster for the new protocol

by concatenating or nesting it within the booster elements of the first booster. Booster

concatenation or nesting can continue to an arbitrary depth.

With a set of boosters, it is natural to talk about the protocol family generated by the boosters.

The family always has a “base protocol” that is operated upon by all the booster elements.

Additional protocol family members are generated by adding booster elements. Thus, protocol

boosters can be the modular building blocks for a family of related protocols, each suited to a

specific environment. Ideally, we design a protocol family from scratch, starting with the

minimum protocol and adding booster layers as options. Protocol boosters are, however, just as

useful when applied to existing protocols.

2•3 One-Element Protocol Booster Examples

This section gives examples of one-element boosters. As there is only one booster (Figure 2

without the booster B), there are no new protocol messages defined.

2•3•1 One-Element Error Detection Booster for UDP

UDP has an optional 16 bit checksum field in the header. If it contains the value zero, it means

the checksum was not computed by the source. Computing this checksum may be wasteful on a

reliable LAN; however, if errors are possible, the checksum greatly improves data integrity. A

transmitter sending data does not compute a checksum for either local or remote destinations. For

reliable local communication this saves the checksum computation (at the source and

destination). For wide-area communication, the single-element error detection booster computes

the checksum and put it into the UDP header. The booster could be located either in the source

host (below the level of UDP) or in a gateway machine.

2•3•2 One-Element ACK Compression Booster for TCP

On a system with asymmetric channel speeds, such as broadcast satellite, the forward (data)

channel may be considerably faster than the return (ACK) channel. On such a system, many TCP

ACKs may build up in a queue, increasing round trip time and thus reducing the transmission

rate for a given TCP window size. The nature of TCP’s cumulative ACKs means that any ACK

acknowledges at least as many bytes of data as any earlier ACK. Consequently, if several ACKs

are in a queue, it is necessary to keep only the ACK that has arrived most recently. A simple ACK

compression booster could assure that only a single ACK exists in the queue for each TCP

connection. (A more sophisticated ACK compression booster allows some duplicate ACKs to

pass, allowing the TCP transmitter to get a better picture of network congestion.) The booster

increases the protocol performance because it reduces the ACK latency, and allows faster

transmission for a given window size.

- 5 -
Paper published in the April 1998 issue of IEEE JSAC

2•3•3 One-Element Congestion Control Booster for TCP

Congestion control reduces buffer overflow loss by reducing transmission rate at the source

when the network is congested. A TCP transmitter deduces information about network

congestion by examining acknowledgments (ACKs) sent by the TCP receiver. If the transmitter

sees several ACKs with the same sequence number, then it assumes that network congestion

caused a loss of data messages. If congestion is noted in a subnet, then a congestion control

booster could artificially produce duplicate ACKs. The TCP receiver would think that data

messages have been lost because of congestion and would reduce its window size; thus, reducing

the amount of data it injects into the network.

2•3•4 One-Element ARQ Booster for TCP

TCP uses ARQ to retransmit data unacknowledged by the receiver when a packet loss is

suspected, such as after a retransmission time-out expires. If we assume the network of Figure 2

(except that booster B does not exist), then an ARQ booster for TCP will: a) cache packets from

Host Y, b) if it sees a duplicate acknowledgment arrive from Host X and it has the next packet in

the cache, then it deletes the acknowledgment and retransmits the next packet (because packet

must have been lost between the booster and Host X), and c) delete packets retransmitted from

Host Y that have been acknowledged by Host X. The ARQ booster improves performance by

shortening the retransmission path. A typical application would be if Host X were on a wireless

network and the booster was on the interface between the wireless and wireline networks. This

ARQ booster is a simplification of the Snoop protocol developed at Berkeley [4].

2•4 Two-Element Protocol Booster Examples

Two-element boosters appear similar to independent link protocols. However, some of the

examples contained in this section show that protocol boosters can be more efficient than

equivalent link protocols. A more general discussion of the advantages of protocol boosters as

compared with link protocols is contained in Section 4.1.

2•4•1 A Forward Erasure Correction Booster for IP or TCP

For many real-time and multicast applications, Forward Error Correction coding is desirable

[12]. The two-element FZC booster uses a packet Forward Error Correction code and erasure

decoding [2]. The FZC booster at the transmitter side of the network adds parity packets. The FZC

Booster at the receiver side removes the parity packets and regenerates missing data packets. The

FZC booster can be applied between any two points in a network (including the end systems). If

applied to IP, then a sequence number booster adds sequence number information to the data

packets before the first FZC booster. If applied to TCP (or any protocol with sequence number

information), then the FZC booster can be more efficient because a) it does not need to add

sequence numbers and b) it could add new parity information on TCP retransmissions (rather

than repeating the same parities). At the receiver side the FZC booster could combine information

from multiple TCP retransmissions for FZC decoding.

- 6 -
Paper published in the April 1998 issue of IEEE JSAC

2•4•2 Two-Element Jitter Control Booster for IP

For real-time communication, we may be interested in bounding the amount of jitter that

occurs in the network. A jitter control booster can be used to reduce jitter at the expense of

increased latency. At the first booster element, time-stamps are generated for each data message

that passes. These time-stamps are transmitted to the second booster element, which delays

messages and attempts to reproduce the inter-message interval that was measured by the first

booster element.

2•4•3 Two Element Selective ARQ Booster for IP or TCP

For links with significant error rate using a selective ARQ protocol (with selective

acknowledgment and selective retransmission) can significantly improve efficiency compared to

using TCP’s ARQ (with cumulative acknowledgment and possibly go-back-N retransmission).

The two-element ARQ booster uses a selective ARQ booster to supplement TCP by: a) caching

packets in the upstream booster, b) sending negative acknowledgments when gaps are detected

in the downstream booster, c) selectively retransmitting the packets requested in the negative

acknowledgments (if they are in the cache).

2•5 Booster Policy

Booster policy says when, and how much of, a booster’s function is invoked. For example, a

FZC booster might be used over a wireless data link to bring its error behavior into an

application’s particular acceptable operating range. The policy function takes the form of a control

algorithm that determines the amount of overcode necessary given the observed state of the

wireless network.

 Boosters can be added and deleted dynamically as additional network functionality is needed.

A policy for this decision is needed in addition to the specific booster mechanism for adding

functionality. Since boosters vary widely in their functions, it is impossible to have a completely

general policy; policies must be associated with specific booster functionality. Policies may be

based on a wide variety of factors, such as observed network behavior, packet source and

destination, or time of day.

Booster policies are needed to dictate the ordering of some boosters. A policy module can be

devised that structures the interaction of boosters, for example by indicating that two boosters are

not commutative. Consider two boosters, an FZC booster and the ACK compression booster. If

FZC is applied first, then the number of redundant packets is based on the number of ACK

packets sent by the receiver. However, if the ACK compression booster is applied first, then the

number of redundant packets is based on the compressed number of ACK packets. Thus fewer

ACK packets are transmitted if FZC is applied second.

3 Protocol Boosters as a Solution to Current Networking Problems

In this section, we discuss how protocol boosters overcome the slow evolution and reduced

efficiency of standard general purpose protocols.

- 7 -
Paper published in the April 1998 issue of IEEE JSAC

3•1 Fast Evolution of Protocol Boosters

With no need for standardization, we can design and implement protocol boosters with

minimal resources. Also, because boosters are transparent, we can replace boosters as often as

desired without the knowledge of those using them. Thus, a simple, quick booster

implementation can be installed quickly. As experience is gained, improved boosters can be

created and installed. Because of the fast feedback that can be obtained on booster behavior and

performance, boosters can evolve extremely quickly. Also, many different boosters can evolve

independently in parallel. All of this is because the transparent nature of boosters eliminates the

need for standardization.

Protocol boosters are a free-market approach to protocol and network design. Booster designs

compete economically in the marketplace, rather than politically in a standards committee. In

economics, it is generally believed that companies that compete economically in a free-market

system are more efficient than those companies that operate by government fiat. Companies that

are successful in the market efficiently produce goods and services desired by consumers.

Similarly, the free-market competition among boosters assures that efficient and effective boosters

will proliferate and that poor booster designs will become obsolete. Standardization of protocols

is expensive because of the need to attend standards meetings, and only established companies

can afford to be involved in standards. Boosters need not be standardized, and they can be quickly

designed and built by a small number of people at low cost.

Protocols that require standardization are subject to what economists call “network

externality”. Network externality is the concept that the value of something depends on the

number of people who already use it. Examples of network externality can be seen in VCRs (Video

Cassette Recorders) and computer operating systems. VHS tapes are the most available because

most people have VHS VCRs. Once one specific example of something that fills a niche becomes

dominant, it is difficult to displace it even with a technically superior product. Standardized

protocols are subject to network externality. We use TCP/IP because we want to communicate

with other people, and most of them use TCP/IP. Network externality dampens competition,

because even if a better protocol is designed, it is unlikely to displace existing protocols. Boosters

are immune from the feedback caused by network externality because they are transparent and

need not be standardized. Consequently, existing boosters can and will be displaced easily and

quickly by boosters with better performance.

Another advantage of boosters is that their design and use can be proprietary. With

standardized protocols, proprietary market advantage is not possible because you can only

communicate with those systems that are running the standardized protocol. Boosters are

transparent, and thus, there is no need to disclose the internal design of a booster to those using

the booster. The ability to gain proprietary advantage using booster means that there is increased

market incentive to invest in new booster designs. Care must be taken, however, that the

proliferation of protocol boosters does not result in poor performance because of unexpected

interactions among proprietary boosters. To reduce this lack of interoperability, successful

- 8 -
Paper published in the April 1998 issue of IEEE JSAC

proprietary booster protocols could eventually become standardized, at which time the developer

gives up proprietary claims in return for the wider market for standardized solutions

3•2 Efficiency of Protocol Boosters in Heterogeneous Networks

It is difficult to maintain efficient protocol operation over a wide range of network

environments. Thus, as shown in Figure 1, protocols generally exchange efficiency for

heterogeneity. Protocol efficiency often can be increased by reducing the heterogeneity in a

networking environment. Boosters can be used to increase protocol efficiency without reducing

heterogeneity because boosters are a means of hiding the heterogeneity of the networking

environment. Instead of optimizing the performance of a protocol over a wide range of network

environments, a protocol can be optimized for the network environment between the end host

and a booster or between boosters. For example, a protocol designed to operate over local area

networks (LANs) can have high performance compared with a more general protocol because

LANs present a narrower range of operating conditions than a general internet environment.

Protocol boosters allow the use of the simplest protocol of a protocol family for a given application

and the network over which the data is carried. Because boosters can be added or removed easily,

it is simple to remove unneeded functionality. For example, if network congestion is not an issue

on a local network, the booster that adds congestion control can be disabled to reduce

unnecessary delay. Thus, boosters allow dynamic customization of a protocol to a heterogeneous

environment. It is not necessary to make pessimistic worst-case assumptions about network

conditions and application requirements, as is necessary for general purpose protocols.

The network environment seen on an end-to-end communication path depends on the route

taken by the data through the communication network. When boosters are placed in the network,

boosters are knowledgeable about the network environment in which they operate. Network

boosters also operate only on data that passes through them, so data is only processed at the level

necessary for communication locally. Any non-local communication is automatically enhanced by

boosters. Thus, boosters provide the highest possible performance given the route of the data.

Boosters can improve the performance of protocols that have a “fast-path” [5] implementation

that optimizes performance when things are going well (e.g., packets arrive uncorrupted and in

the same order they were sent). For example, when a booster improves the performance seen

across a noisy wireless links, TCP can operate mostly using the fast-path; without the booster, fast-

path use would be rare.

4 Comparison of Boosters with Other Approaches

Protocol boosters provide faster evolution and increased efficiency compared to the use of

standard general purpose end-to-end protocols. This section compares protocol boosters with

other protocol architecture alternatives, noting that only boosters take advantage of higher layer

information (unlike link layer adaptation), while not altering the message syntax (protocol

conversion) or semantics (protocol termination).

- 9 -
Paper published in the April 1998 issue of IEEE JSAC

4•1 Link Layer Adaptation

Link layer protocols sometimes perform higher layer functions, such as error control on noisy

links and encryption on insecure links. As with booster protocols, link protocols can be finely

tuned to the link’s characteristics. The main distinction is that link protocols are independent of

high layer protocols. This independence (layering) has advantages and disadvantages.

Layering isolates a protocol from changes in other layers. In contrast, when a base protocol

changes, the protocol booster may need to change. Also, if a base protocol is encrypted, then the

protocol booster must use another base protocol (e.g., with IPSEC encryption, the FZC booster

must go from booster TCP to boosting IP). Although modularity is an often stated benefit of

layering, a universal framing structure [7] can maintain modularity without layering †.

Violating artificial layer boundaries allows higher performance. Implementations using

“Integrated Layer Processing” [6], for example, avoid unnecessary copying. Violating layering

also avoids other duplicated functionality. For example, if the transport layer protocol provides

error control (e.g., TCP), then link error control may do unnecessary retransmissions (and if the

transport layer does not provide error control (e.g., UDP), then end-to-end robustness is lost [14]).

Violating layering allows more selectivity. If applications with divergent needs pass over the

same link, as they frequently do, then it is unlikely that a single link layer protocol can provide

the most efficient service. When data is sent over a noisy link, for example, some data streams,

such as those carrying audio, may desire low delay, even if some errors occur. Other data streams

may desire a low residual error rate, even at the expense of increased delay. No single link layer

protocol can satisfy both needs. In contrast, a protocol booster could ignore all UDP connections

or boost only specific applications (as determined by TCP/UDP port numbers). Moreover, the

booster could be migrated into the end system where it more under the control of the application.

4•2 Protocol Conversion

Protocol conversion [8] converts from one protocol to another, while maintaining the semantics

of the original protocol. Van Jacobson’s TCP header compression, for example, converts TPC/IP

headers into a compressed syntax. The compression increases the throughput of TCP over slow

network links by taking advantage of the fact that many fields in the TCP/IP headers rarely

change. The main distinction between conversion protocols and booster protocols is that

conversion changes the syntax of the base protocol.

A disadvantage of protocol conversion is that it requires processing to change message syntax.

While a protocol booster simply can observe most messages from the base protocol, the protocol

converter must modify every message that arrives. Another disadvantage of protocol conversion

is that it not robust to failures. While protocol boosters and link protocols offer soft degradation,

protocol conversion and protocol termination offer hard degradation.

† Chunks [7] separates protocol syntax and semantics so that no violation of modularity is required for
proper booster operation.

- 10 -
Paper published in the April 1998 issue of IEEE JSAC

4•3 Protocol Termination

Protocol termination uses different protocols at different points along the path from the

transmitter to the receiver, with no single end-to-end protocol. Just as with protocol boosters,

protocol termination allows choice of protocol appropriate to the network environments along the

communication path and avoids duplication in functionality. For example, a TCP connection from

a fixed host could be terminated at the border of a wireless network, and a more efficient error

control protocol could send the packets over the wireless network [3] [1].

A drawback of protocol termination is that it loses desirable end-to-end properties. For

example, if TCP is terminated in the network, then receiving a TCP acknowledgment does not

mean that information has arrived at the destination. Another drawback of protocol termination

is that it provides additional points of failure. Failure of a network termination point causes all

messages to be unintelligible (hard degradation), even if alternative routes are available. If a

booster fails, communication is still possible using the base protocol as long as another

communication route is available. Performance degrades, but protocol operation continues (soft

degradation). Soft degradation is helpful in hostile environments in which failures are expected,

such as battlefield situations.

4•4 Special Purpose End-to-End Protocols

Instead of using a standard general purpose end-to-end protocol, applications can use

protocols adapted to their needs and the network being used. Several different adaptation

techniques have been discussed in the literature.

Applications may implement the majority of protocol functions, including acknowledgment,

retransmission, and forward error correction, as required. To increase reuse and avoid application

programmers needing to become protocol experts, work has been done to aid in composing

protocols from basic functions, for example Arizona’s x-Kernel [9]. Protocol boosters also can be

used for protocol adaptation in the endpoints; however, the flexibility of allowing the

functionality anywhere in the network has a number of advantages.

Although it is usually preferred to do protocol processing in the endpoints [14] sometimes it

can be more efficient to do the equivalent processing in the network. For example, video

compression may be better done in the network. Usually, the local network is sufficiently fast to

handle uncompressed video. Video compression is required for wide area networks with lower

bandwidths. Rather than provide a hardware accelerator for each workstation that requires video

compression, we can use a single video compression booster at the edge of the local area network,

where the need for compression is delineated.

Putting boosters in the network allows greater and more up-to-date knowledge of network

behavior and state. Somehow the end point adaptor must map destination address to route to

network characteristics along a route. In some cases, the mapping is quite simple. For example, if

the source and destination share the same network address, then they are on the same network,

and presumably, the characteristics of the local network are known. In general, however, building

- 11 -
Paper published in the April 1998 issue of IEEE JSAC

and maintaining such a database is hard. Moreover, with the expected increase in mobile clients

and Network Address Translators the task will become harder.

An incorrectly designed booster could disrupt end-to-end robustness properties. For example,

it may systematically discard protocol messages in such a way as to deadlock the protocol.

However, it is possible to design boosters to prevent this problem. A simple method is to have the

booster monitor protocol progress. If progress is not satisfactory, then the booster can stop or

reinitialize its state. Performance degrades, but protocol operation continues.

There are some situations where placing functionality in the network is not desirable or

possible. If an IP packet is encrypted, for example, then a network TCP booster is impossible.

Mobility and multi-path routing also may make boosters less effective, because messages may not

always pass through the same pairs of boosters. Some boosters, such as an FZC booster, will work

well in this environment, because the boosters do not share any state. For booster with state, such

as the ARQ booster, there would be performance degradation.

5 Implementation and Experimentation

We added protocol boosters support to FreeBSD and Linux operating systems for the i386

(Intel) architecture. The main difference between the two is that the Linux version supports

booster insertion/deletion from the run-time environment which allows dynamic loading/

removal of booster modules into network elements. Booster support resides in the IP portion of

the TCP/IP networking stack. Every IP packet processed is examined to detect if it is a member

of a boosted communication channel. If boosting is specified, the packet is handed to the

appropriate booster/debooster. Our implementations currently identify boosted channels by

source and destination IP addresses; however, we can add stronger filtering based on other

information, such as port number.

An FZC booster has been designed and inserted into the FreeBSD infrastructure [2]. For each

boosted channel, the FZC booster caches, then immediately forwards, each data packet it receives:

whether the packet is from an upper layer protocol or the IP Forwarder. The only modification to

each data packet is that the FZC booster overwrites the IP packet’s 16-bit identification field with

a sequence number, allowing the decoder to know the packet’s position information. This does

not change the end-to-end UDP datagrams or TCP segments.

After receiving k packets (k is defined per channel) on a given channel, the cached packets are

zero-padded to the size of the largest packet in the cache. Also each packet’s size and protocol

type are appended to the packet’s tail. The transmitter performs a FZC matrix multiplication over

the payload, padding, and appended tail of the k packets. The h overcode packet payloads

produced by the FZC encoder are then prepended with an IP header and a booster header. This

IP header contains a prototype field identifying it as a protocol booster packet and a sequence

number in the 16-bit identification field. The booster header contains the type of booster (FEC

Booster), the value k, and the sequence number of the first of the k packets. The h packets are then

transmitted toward the same destination as the data packets.

- 12 -
Paper published in the April 1998 issue of IEEE JSAC

The FZC debooster at the receive side caches incoming data packets and immediately forwards

them to either an upper layer protocol or towards their eventual destination. Overcode packets

are also cached, but are not forwarded. Packets are released from the cache when: (1) k data

packets are present, (2) the received data packets plus parity packets equals k, or (3) when the

cache occupancy dictates cache content replacement. Only in situation (2) are the matrix

computations performed to generate the missing data packets.

To assess the effectiveness of this booster arrangement we deployed it in a simulated wireless

environment running UDP. The amount and types of errors on wireless networks depend upon

link conditions and link error control. In general, however, errors are not random but come in a

burst of consecutive bits. Whether the packet errors are also bursty depends on the size of packets

and average burst error lengths. Based on the actual packet loss results obtained in satellite

experiments [11] we constructed two basic packet error models: random and bursty. These error

models were used in a loss module, placed in the IP receive path as depicted below, that can delete

packets based on the chosen error model.

As our application we used the public domain Test TCP program (ttcp), with the UDP option.

We ran ttcp between two machines on a dedicated ethernet. As shown in Figure 3, both ends ran

the FZC booster and the receiver also ran the loss module. The experiments used a packet size of

512 bytes, with 1000 packets per trial, and a block size of 20 packets. As expected, the results [2]

show that with no parity packets the effective packet loss is roughly the same as the loss rate

defined in the loss module, and that increasing redundancy decreases the effective packet loss.

Although burstiness further increases the network packet loss, the FZC booster is still effective. In

fact, larger block sizes make the difference between bursty loss and random loss negligible.

6 Summary

We propose a new method for protocol design based on incremental, dynamic construction of

protocols on an as-needed basis. The elements of these protocols, protocol boosters, can be

composed in a Tinkertoy-like manner, to form a family of protocols. The methodology motivates

optimistic protocol design, where protocols are designed assuming the best case, and add

additional functionality on an as-needed basis. This is in direct contrast with building for the

worst-case and optimizing by finding common fast-paths through the protocol implementation.

Prototypes of the booster design methodology have been implemented [2]. The performance was

sufficiently encouraging that a larger-scale design is being investigated.

ttcp FZC Loss FZC ttcp

Figure 3 Experiment Setup

Transmitter ReceiverEthernet

- 13 -
Paper published in the April 1998 issue of IEEE JSAC

Protocol boosters can be viewed as a step towards the fully programmable infrastructure

proposed by a number of researchers under the rubric of “Active Networks.” [15]. While many of

the problems are the same (e.g., robust end-to-end behavior, security for systems into which

boosters are loaded, etc.), a key advantage of boosters is that they can easily be injected into

today’s systems without a wholesale change in the network infrastructure. In that sense, they

offer an early test of the promise of active networks.

The protocol booster methodology offers some exciting possibilities for accelerating the

evolution of protocols, for changing the economics of protocol development, and for creating

useful “hybrid” protocols which have “just enough” support for the heterogeneity actually

encountered. We view the use of protocol boosters to build protocols as an optimistic approach to

protocol design. Applications implement application-to-application protocols assuming an ideal

world. Protocol boosters add functions on an as-needed basis to provide this ideal world; when

the world really is ideal (e.g., homogeneous workstations on a LAN) no overhead is incurred.

REFERENCES

[1] T. Alanko, M. Kojo, L. Laamanen, K. Raatikainen, and M. Tienari, “Mobile Computing
Based on GSM: The Mowgli Approach,”IFIP’96: Mobile Communications, Canberra,
Australia, September 1996.

[2] D. Bakin, W. Marcus, A. McAuley, T. Raleigh, “An FEC Booster for UDP Application over
Terrestrial and Satellite Wireless Networks,” International Mobile Satellite Conference
(IMSC 97), Pasadena, CA, June 1997.

[3] A. Bakre and B. Badrinath, “I-TCP: Indirect TCP for Mobile Hosts,” Proceedings IEEE 15’th
Annual Conference of Distributed Computer Systems, Vancover, Canada, May 1995.

[4] H. Balakrishnan, S. Seshan, R. Katz, “Improving Reliable Transport and Handoff
Performance in Cellular Wireless Networks,” ACM Mobile Computing and Networking
Conference (Mobicom ‘95), Berkeley, CA, November 1995.

[5] D. Clark, V, Jacobson, J. Romkey, H. Salwen, “An Analysis of TCP Processing Overhead,”
IEEE Communications Magazine, pp. 23-29, June 1989.

[6] D. Clark and D. Tennenhouse, “Architectural Considerations For A New Generation Of
Protocols,” Proceedings of ACM SIGCOMM, pp. 200-208, September 1990.

[7] D. C. Feldmeier, “A Data Labelling Technique for High-Performance Protocol Processing
and Its Consequences,” Computer Communications Review (SIGCOMM ‘93), Vol. 23, No. 4,
pp. 170-181, October 1993.

[8] P. E. Green, “Computer Network Architectures and Protocols,” Plenum, New York, 1982.

[9] N. C. Hutchinson and L. L. Peterson, “The x-Kernel: An architecture for implementing
network protocols,” IEEE Transactions on Software Engineering, 17(1), pp. 64-76, Jan. 1991.

[10] V. Jacobson, “TCP/IP Compression for Low-Speed Serial Links.” RFC 1144, February 1990.

[11] A. J. McAuley, D. S. Pinck, T. Kanai, M. Kramer, G. Ramirez, H. Tohme, and L. Tong,
“Experimental Results From Internetworking Data Applications Over Various Wireless
Networks Using a Single Flexible Error Control Protocol,” Fifth WINLAB Workshop: Third
Generation Wireless Information Networks, East Brunswick, New Jersey, April 26-27, 1995.

- 14 -
Paper published in the April 1998 issue of IEEE JSAC

[12] A. J. McAuley, “Reliable Broadband Communication Using a Burst Erasure Correcting
Code,” Proceedings of ACM SIGCOMM, pp. 287-306, September 1990.

[13] J. C. Mogul, “The case for Persistent-Connection HTTP,” in Proceedings, 1995 SIGCOMM
Conference, pp. 299-313, 1995.

[14] J. H. Saltzer, D. P. Reed, & D. D. Clark, “End-to-end Arguments in System Design,”
Proceedings of the 2’nd IEEE International Conference on Distributed Computing Systems,
pp. 509-512, April 1981.

[15] J. Smith, et al., “SwitchWare: Accelerating Network Evolution (White Paper),” {http://
www.cis.upenn.edu/~ jms/white-paper.ps}, 1996.

