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y Programmable Hardware for NetworksIlija Hadzic and Jonathan M. SmithDistributed Systems Laboratory, University of Pennsylvania�ihadzic@ee.upenn.edu, jms@cis.upenn.eduAbstractOngoing research in adaptive protocols and active net-works has presumed that 
exibility is o�ered exclusivelythrough software systems, and the performance implica-tions have generated considerable skepticism. The Pro-grammable Protocol Processing Pipeline (P4) exploitsthe dynamic recon�gurability of RAM based Field Pro-grammable Gate Arrays (FPGAs) to provide both hard-ware performance and dynamic functionality to networkcomponents.We use forward error correction (FEC) as an exampleof a protocol processing function. Our measurementsshow that the P4 is able to process the data stream atOC-3 (155 Mbps) link rate, and consequently improveTCP performance in noisy environments.1 IntroductionA desire for 
exible network infrastructures has stim-ulated research into adaptive protocols and active net-works. This research[14] has presumed that 
exibilityis o�ered exclusively through software systems, and theperformance implications have generated considerableskepticism. In particular, a number of researchers[9]have proposed that programmability be restricted to thecontrol plane, as they believe that high data through-put cannot be achieved concurrently with dynamicallyinterposed functions.However, 
exibility is not exclusive to software sys-tems: new programmable logic devices can be repro-grammed rapidly enough so that network componentscan operate at hardware speeds while providing dy-namic functionality. The growth in size and speedof state of the art programmable logic devices hasstimulated new �elds of research, e.g., recon�gurablecomputing[15].We are exploring the application of dynamically re-con�gurable hardware to adaptive protocols and active�This research was supported DARPA under Contracts#NCR95-20963 and #DABT63-95-C-0073. Additional supportwas provided by the AT&T Foundation, the Hewlett-Packard Cor-poration, the Intel Corporation and the Altera University GrantsProgram. This paper has been submitted to IEEE GLOBECOM98 for review.

networks. To explore the design space where high speedrequirements make software implementation a bottle-neck, we have constructed an FPGA-based architecturecalled the Programmable Protocol Processing Pipeline(P4)[7]. We thus achieve functional acceleration withspecial purpose hardware while maintaining a software-like 
exibility of the system.We focus on the example of TCP/IP performance ina noisy environment. We protect against noise-inducederrors with the FEC, and demonstrate the convolu-tional encoder and Viterbi decoder operating at OC-3 (155Mbps) data rates on the P4. The next sectionbrie
y describes the P4 architecture.2 P4 Architecture
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Figure 1: P4 ArchitectureThe architecture of the P4 is shown in Figure 1. Itcomposes a set of RAM based FPGA devices (AlteraFLEX8000[1]) in a pipeline, with a switching array se-lecting which devices are engaged in processing a datastream. FPGA devices allow implementing protocolprocessing algorithms in hardware, while providing dy-namic functionality through the run time recon�gura-tion.Processing elements in the P4 are organized into a1



pipeline of programmable logic devices interconnectedby the switching array. Each device has a FIFO bu�erassociated with it. A processing element reads the datafrom its FIFO bu�er, performs its processing, and writesinto the FIFO bu�er associated with the next device inthe chain. Connection to the next device is achieved viathe switching array. The switching array can dynami-cally include or exclude processing elements, or reorderthem on an as-needed basis.When needed, a protocol processing function (in theform of an FPGA con�guration) is added by down-loading a free device, and inserting this device into thepipeline chain. Unnecessary functions are switched outof the processing chain and the device becomes free.Altera's Flex 8000 devices require about 100ms to bereloaded, but can be switched in and out of the datapath within a microsecond. The gate arrays can thusbe viewed as a cache for selected protocol processingfunctions.The P4 prototype uses ATM cells as a convenientunit of processing. While the architecture is not ATM-speci�c, use of ATM allows interoperation with existingsystems and validation of performance in 100+ Mbpsoperating regimes.3 FEC BoosterThe P4 prototype has been constructed as part of theProtocol Boosters project[6], which takes the approachof dynamically adding and deleting protocol functions.The P4 illuminates a design subspace where high speedrequirements force the implementation of certain func-tions in hardware.We have chosen an FEC as an example protocol pro-cessing function which might operate on an as-neededbasis for greater e�ciency. A convolutional encoder andViterbi decoder were implemented to allow experimen-tal evaluation. Our goal was not to construct a highlyoptimized code for a given link, but rather to explore thefeasibility of performing a complex protocol processingfunction using the limited set of resources o�ered by theP4. Thus, the FEC was optimized for implementationon the P4 and operation at the P4's OC-3 data rate.3.1 ImplementationBits of each data octet are grouped in four chunks oftwo bits and encoded independently using four parallel,rate 1/2, constraint length 3, convolutional encoders.Each encoder accepts two bits from the current octetand produces four output bits. Four parallel encodersthus produce two octets of data which are clocked out at19.44 MHz, resulting in the output bit rate of 155Mb/s.On the decoder side, four parallel decoders operateindependently on the groups of two bits producing one

bit of original data stream. Figure 2 illustrates thisprocedure. Input data is clocked in at 19.44MHz, sothe input bit rate is 155Mb/s. Due to the complexityof the Viterbi decoder, each decoder had to be locatedon a separate processing element. The �rst processingelement (Decoder 1 in Figure 2) takes two bits of theencoded octet and produces one output bit. The othersix bits are passed to the next processing element un-modi�ed. So the output octet of the �rst processing el-ement consists of six original encoded bits, one decodedbit and one unused bit. At the output of the fourthdecoder each octet contains four decoded bits and fourunused bits. Finally, two such octets are combined toreconstruct the original data.
0

7

D
ecoder 1

D
ecoder 4

D
ecoder 3

D
ecoder 2

R

Two encoded
octets accepted

Encoded bits Unused bits Decoded bits

Eight bits decoded
scattered in two octets

Decoded bits combined
in signle octet

octet
Reconstructed

Figure 2: Decoding process on P43.2 RobustnessAn important issue in protocol design is robustness. Al-though it protects user data from bit errors, convolu-tional encoding may increase the risk of other impair-ments such as cell losses and cell misinsertions if nocountermeasures are applied. In general, the output ofthe Viterbi decoder depends on the history of its inputs.If a cell is lost, missing data may cause unpredictablebehavior, and the error can propagate far into the fu-ture. To improve robustness in such cases, the encoderresets its state every 24 bytes (half the ATM cell) andthe decoder resets its state after every cell.The encoder generates two cells for each input cell.Both cells have the same value for the user indicationbit in the ATM header. If the encoded cell within theAAL-5 protocol data unit (PDU) is lost, there will bea mismatch in the user indication bit at the end of theAAL-5 PDU. Prior to decoding, data are passed throughthe front end processing unit which checks for matchinguser indication bits. Only pairs of cells that match arepassed for further decoding. If a mismatch is found, an2



all-zero cell with the appropriate user indication bit willbe inserted as shown in Figure 3. This will, of course,result in a series of bit errors after decoding, but willprevent any error propagation that might otherwise re-sult. Only the AAL-5 PDU whose cell has been lost willbe a�ected. It can be easily veri�ed that the front endprocessing unit will also successfully isolate bad AAL-5 PDUs in the case of cell misinsertion, thus avoidingerror propagation.
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Figure 3: Protection from error propagation due to cellloss4 ApplicationAn important motivation for the Protocol Boosters con-cept is the problem encountered when protocols opti-mized for certain conditions operate outside those con-ditions; they perform extremely poorly. Flexible adap-tive protocols and active networks cope with this prob-lem by dynamically adapting the protocol stack to oneappropriate for the current conditions in the network.Wireless ATM[11] is an example where the protocolrequires modi�cation, as the original assumptions forATM link reliability are no longer met. In an e�ort toimprove the link quality, modi�cations of the link layerthat incorporate strong FEC in combination with ARQhave been suggested[4, 10, 3, 16]. It is, of course, un-likely that an optimal error control scheme meeting theneeds of all applications under all possible conditionsexists. In [12] the author of the NEC Wireless ATMprototype[5] has pointed out that each service type willrequire an appropriate error control scheme, implyingthat the error control is not a static mechanism. [10]considered protecting only the header of the ATM cell toprevent extensive cell losses and misroutings, and leav-ing the protection of the payload to the higher layersdepending on the desired quality of service.

In addition to the di�erent error control schemesneeded for di�erent service types, the bit error rate ona wireless link is changing over time.For adaptive protocols, FEC can be viewed as thefunctional element of the protocol stack which can beadded, removed or changed on an as needed basis.With the spectrum of FEC implementations of varyingstrengths and complexities available, dynamic protocolcan select the implementation that best �ts the currentconditions and QoS requirements. In the enhanced net-work infrastructure provided by the P4, di�erent FECimplementations are available as FPGA con�gurations.When an appropriate coding scheme is selected, pro-cessing elements in the P4 are con�gured and the resultis P4 operating as specialized hardware in the network.If the FEC algorithm must be replaced, the processingelement is recon�gured and new specialized hardware isactivated, reusing the same physical device.5 ExperimentsOur experimental work evaluates the e�ect on linkthroughput of the FEC implemented on the P4. With atunable bit error rate induced on the link, we measuredthe TCP throughput seen by the application with andwithout the FEC booster described in Section 3.5.1 Test SetupThe experimental setup is shown in Figure 4.
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Figure 4: Experimental setup used in testing the FECboosterThe host is an Intel Pentium PC running Linux ker-nel, release 2.0.29, with the \ATM on Linux"[2] patchand a Fore Systems PCA200E ATM adaptor. Through-put testing is done with ttcp. For convenience, we usedsingle test machine with source and sink running as two3



separate processes. Since we were interested in testingthe impact of the P4 on TCP throughput and not theimpact of the workstation, this setup can deliver usefulresults.Cells transmitted by the workstation are encoded us-ing the �rst P4 in the test setup. At the output of the�rst P4, the utilized bandwidth is twice the bandwidthgenerated by the workstation due to the additional cells.To prevent bu�er over
ows in the operating P4, the de-vice driver in the workstation must be rate controlled.Our rate limiting mechanism forces an idle period be-tween the transmission of two consecutive packets sothat the encoder in P4 has an opportunity to insert allgenerated packets. There are tradeo�s among the bu�ersize on the P4, the maximum segment size for IP run-ning over the link, and the length of the enforced idleperiod.Encoded cells are passed through a noisy link, emu-lated by inserting bit errors with the Network Impair-ment Emulator[13]. We vary the bit error rate and mea-sure the TCP throughput seen by the receiving processon the workstation with and without the FEC boosterin place.The second P4 board decodes the cells and correctsany correctable bit errors. Decoded data are passedthrough the Cell Protocol Processor[8] which acts asthe passive monitoring device. We use the Cell ProtocolProcessor to monitor the link tra�c and the error rateafter decoding.5.2 ResultsWe ran the ttcp throughput tests for four cases: (1)without P4 boards in the data path; (2) with P4 boardsdoing no processing; (3) with P4 boards doing no pro-cessing, rate control on; and (4) with P4 boards con�g-ured as FEC encoder and decoder.We varied the bit error rate (BER) from 10�12 to10�4 with an exponentially distributed time betweentwo consecutive bit errors (i.e., a Poisson error distri-bution). Results from the �rst case provide a baselinemeasurement. In the second case we tested if inactiveP4 hardware had any impact on the results. The �rsttwo cases exhibit almost identical results: an enormousdropo� in TCP/IP performance (the throughput is on alogarithmic scale in Figure 5). This is due to TCP/IP'sstrategy in the face of packet loss, which is to assumethat the loss was a result of congestion rather thannoise. The result is that the TCP/IP congestion win-dow is rapidly reduced to the point where the protocolbecomes \stop-and-wait", with the consequences shownin Figure 5. The third case shows the e�ect of rate con-trol, namely that the throughput starts o� considerablylower (a factor of 4 less) but drops o� as rapidly as the�rst two cases in the face of error. The reason this test

was performed was to separate the costs of rate controlfrom the costs associated with the FEC processing.In the last experiment, we measured TCP throughputwith the FEC in place, and rate controlled, as before.As expected for the low BER region, the FEC boosterdoes additional processing and uses extra bandwidth forthe redundancy, beyond the cost of rate control, takingits throughput to about 8 Mbps. In the high BER re-gion, the TCP protocol stack bene�ts from FEC in re-ducing the number of retransmissions and keeping thevalue of TCP window size larger. Without FEC, TCPcompletely stalls at BER below 10�4, while it is stillable to operate with FEC in place.Figure 5 shows the logarithmic plot of the mean valueof measured throughput as a function of BER and Table1 shows 90% con�dence intervals for measured through-put. Log plots are used since BERs of interest coversmany orders of magnitude. The upper solid line presentsthe throughput without the P4 in the datapath; thedashed line following it is the throughput with an idleP4. The overhead introduced by the P4 hardware isnegligible. The lower solid line shows the TCP through-put with rate control and an inactive P4. Finally, thedashed & dotted line shows the measured throughputwith P4 running the FEC booster. For BERs greaterthan 10�6, TCP gains from FEC. Given our earlier ex-planation of TCP's response to packet loss, it shouldbe clear that the FEC, in reducing the impact of noise,reduces the probability of the incorrect assumption ofcongestion. Thus, the performance is improved.
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Figure 5: Mean value of measured throughputThe graph in Figure 5 illustrates an opportunity foran adaptive protocol. In particular, the intersectingcurves at a BER of ca. 10�7, suggest that FEC beemployed only when the BER exceeds 10�7. Thus, a4



BER without P4 with P4, no FEC no FEC, choking with P4, with FEC0 [45:46; 46:09] [43:80; 43:95] [10:36; 11:50] [6:96; 8:90]10�12 [45:23; 45:85] [43:68; 43:86] [9:43; 10:42] [7:15; 7:98]10�11 [45:11; 45:90] [43:83; 44:06] [9:96; 10:93] [6:57; 8:14]10�10 [45:59; 46:18] [42:59; 44:18] [9:30; 10:16] [7:26; 8:87]10�9 [45:87; 46:55] [41:19; 43:51] [9:98; 11:16] [6:59; 8:24]10�8 [34:50; 40:40] [33:02; 37:94] [8:07; 9:54] [7:82; 9:42]10�7 [6:48; 7:15] [6:72; 9:11] [4:63; 5:43] [6:95; 8:22]10�6 [1:12; 1:19] [1:27; 1:36] [1:21; 1:27] [4:71; 5:44]10�5 [0:15; 0:16] [0:145; 0:155] [0:17; 0:18] [1:43; 1:51]10�4 N=A N=A N=A [0:35; 0:37]Table 1: Con�dence intervals for measured throughputsprotocol booster's policy module would constantly mon-itor the conditions on the link (e.g., using AAL-5 CRCor IP checksums), and switch on the FEC as needed. InFigure 5, the line followed by an ideal adaptive protocolis marked by an \O". In the Protocol Boosters frame-work, the FEC processing is mechanism, under controlof the aforementioned \Policy".6 Generalizing Adaptive FEC inHardwareThe P4 demonstrates near-software 
exibility and per-formance comparable to special purpose hardware. Weused the example of a convolutional code for FEC whichis used as a mechanism for an FEC Booster. Two gen-eralizations can be drawn from this example. First, themechanism is neither limited to a particular coding ratenor a single coding algorithm. Sets of codes appropri-ate for di�erent BERs or burst lengths can be madeavailable, and the best code for current conditions inthe network can be selected by a policy. If conditionschange, the code can be adapted at run time by recon-�guring the P4. Second, the P4 architecture can be usedfor much more than FEC. Any functional element (e.g.,encryption, data compression, tra�c shaping modules,etc.) implementable on P4 can be used as a protocolbooster and added to a protocol stack on an as-neededbasis.7 Next StepsWe are developing a policy module for the FEC boost-ers, and designing the signalling protocol which wouldenable P4 boards distributed over the network to syn-chronize their activities. Our design will have the policymodule as part of the controller which manages the P4board and con�gures its processing elements. For ex-

ample, to insert the FEC booster, the following mecha-nisms are necessary:� determine the type of the code to be used� decide when to activate the booster� signal to the other end to prepare the appropriatedecoder and if necessary to the host (as in the casewhere the host needs to activate the choking mech-anism inside the device driver)� download P4 processing elements on both ends� activate the encoder and signal to the other end toactivate the decoderSelecting the appropriate booster and when to acti-vate it are the two central roles of the policy module. Ina realization, the policy module is a combination of thesoftware running on the controller and the con�guredhardware running on the P4 assigned to monitoring theconditions on the link and collecting the informationnecessary for policy decisions.We intend to design a second generation of the P4.The main limitation of the current version is the lackof bu�ering for local processing. There are also somesmall dependencies on ATM. Local bu�ering is essentialin supporting transparent boosters, which do not mod-ify the original packet. An example of a transparentbooster is an FEC booster that sends the FEC pack-ets in addition to the original packets. The price paidhere is in the memory resources where the FEC packetis stored during its construction. Due to lack of localmemory resources on the P4, implementation of trans-parent boosters is limited. In the second generation ofP4, we are also planning to move processing to a higherlevel of object than the ATM cell, and process datablocks independently of the underlying protocol.5



8 ConclusionOur goal with the Programmable Protocol ProcessingPipeline (P4) architecture was a demonstration thatmodern hardware allowed a novel investigation of thedesign space of programmable network infrastructures.In particular, the P4 demonstrated 
exibility by load-ing an FEC into its pool of FPGAs, and this 
exibil-ity was employed in end-to-end throughput tests usingTCP on an ATM-attached workstation. The TCP re-sults showed that the FPGA-resident code allowed TCPperformance in a BER regime where the protocol waspreviously inoperable.The performance tradeo�s of the system with andwithout the FEC suggest the use of a hybrid strategy,using the FEC as-needed, a scheme to which to P4 iswell-suited. We believe that among the uses for such ascheme are wireless ATM applications.The important result of this demonstration is thatschemes such as Protocol Boosters and Active Network-ing for 
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