
P4: A Platform for FPGA Implementation ofProtocol BoostersIlija Had�zi�c and Jonathan M. Smithihadzic@ee.upenn.edu, jms@cis.upenn.eduDistributed Systems Laboratory, University of Pennsylvania?Abstract. Protocol Boosters are functional elements, inserted and deletedfrom network protocol stacks on an as-needed basis. The Protocol Boosterdesign methodology attempts to improve end-to-end networking perfor-mance by adapting protocols to network dynamics.We describe a new dynamically recon�gurable FPGA based architec-ture, called the Programmable Protocol Processing Pipeline (P4), whichprovides a platform for highly-
exible hardware implementations of Pro-tocol Boosters. The prototype P4 is designed to interface to an OC3(155 Mb/s) ATM link and perform selected boosting functions at thisline rate.The FPGA devices process the data stream as a pipeline of processing el-ements. Processing elements are downloaded and activated dynamically,based on policies used by the controller to choose con�gurations. Asmodules become unnecessary they are removed from the pipeline chain.1 IntroductionNetwork protocols are designed to meet application requirements for data com-munications, including security, reliability and performance. The dominant de-sign and implementation process for protocols begins by enumerating the require-ments for the protocol, and then designing a protocol that provides the necessaryfeatures end-to-end[SRC81]. Optimization consists of identifying common casesand implementing fast paths for these cases; TCP/IP is a case study[CJRS89].The resulting protocol is robust end-to-end and typically provides good perfor-mance. However, extremely poor performance can result when the assumptionspermitting fast path execution are not met.1.1 Protocol Boosters\Protocol Boosters"[FMS96] are protocol elements intended to be transparentlyinserted into and deleted from protocol stacks on an as-needed basis, e.g., inresponse to unanticipated or changing network characteristics.? This research was supported by DARPA under Contracts #NCR95-20963 and#DABT63-95-C-0073, the AT&T Foundation, the Hewlett-Packard Corporation, theIntel Corporation and the Altera University Grants Program.

A policy associated with the booster is used to selectively insert, delete andinvoke the protocol functions. For example, a Forward Error Correction code(FEC) might be used over a wireless data link to bring its error behavior intoan acceptable operating range, without using the FEC end-to-end [McA95]. Theerror performance of the subnet is thus \boosted" to an acceptable level toimprove end-to-end performance. Figure 1 shows a booster used in a network,in this case boosting a subnet between an end-host and a router.
Application

Booster

DeBooster

Application

Host A Host B

Router

Fig. 1. Boosting a link or subnetA transparent booster does not modify the packet it boosts. For example, anFEC booster may send FEC packets in addition to the data packets it encodes.Non-transparent boosters, on the other hand, modify data packets. For example,a compression booster might be used to reduce the bandwidth requirements.The recent discussion of boosters in Feldmeier, et al.[FMS96] restricts boost-ing to transparent boosters to cope with dynamic routing. Non transparentboosters generally need a static route (e.g., an ATM VC) for successful im-plementation. Our platform is capable of implementing either type of booster.1.2 Previous WorkThe Protocol Booster idea has been investigated in a software implementa-tion [MCS97], where a FreeBSD TCP/IP protocol stack was boosted with var-ious functions. The major �nding was that the operating system overhead tosupport boosters was minimal; the major cost of boosting was the processingcost of the boosting algorithm(s) applied to the data stream. This suggestedthat any boosting scheme requiring high performance would need a way to �rstprovide the
exibility required by design methodology, and second, provide this
exibility with high processing performance.Field-programmable gate array (FPGA) devices o�er the degrees of
exibilityand performance required for protocol boosting. Our FPGA-based architecture,the Programmable Protocol Processing Pipeline (P4) provides a new platformfor Protocol Boosters hardware implementation.The P4 operates on streams of Asynchronous Transfer Mode (ATM) cells,and serves as a generic platform for running Protocol Boosters over the ATM

infrastructure. This paper's primary focus is the P4's logical structure, and de-scribes the architectural solutions used in realization of a P4 prototype. Althoughthe P4 is designed to operate in the ATM environment, the concept is applicablein any other protocol.The next section, Sect. 2, presents the architecture of the P4, and brie
ydescribes its operation. Section 3 details the functional modules and their op-eration. Section 4 points out questions associated with the implementation andusage of the P4 architecture and outlines the the longer-term project goals. Sec-tion 5 concludes the paper with a summary of what the architecture proves, andnext steps in our research.2 Basic ArchitectureFigure 2 shows a block diagram for the P4 architecture. The core of the ar-chitecture is a pool of Altera Flex8000 family[Alt96] FPGA devices, acting asprocessing elements (PEs), and a switching array that provides interconnectionsamong processing elements.
IIF

header fields forwarding

B PE

Controller

Control paths

Data paths

Switching Array OIF

B PE

ATM
link

ATM
link

bypass FIFO

Fig. 2. Block diagram of the P4 ArchitecturePEs typically form a pipeline chain via the switching array. Each PE imple-ments one function in the pipeline chain. For example, if the FEC was to beadded into the protocol stack, the available FPGA device would be con�guredto implement the encoder on the transmitter side; on the receiver side, one ofthe PEs would be con�gured as the decoder.Associated with each PE is a FIFO bu�er (B). A PE reads the data from itsFIFO bu�er, performs its processing, and writes into the FIFO bu�er associated

with the next device in the chain. Connection to the next device is achieved viathe switching array.Data from the ATM link are received in parallel (octet by octet), at 19.44MHz,making the board capable of processing the cell stream in real time at 155Mb/s.In our current experimental setup, we use the HP75000 Broadband Test-systemequipped with the Network Impairment Emulation Module[DGH+97]. The P4board connects to the parallel line interface of the HP75000[Hew94]. The sys-tem can generate test tra�c patterns and introduce impairments (cell losses, biterrors etc.) and thus emulate the conditions encountered in real networks.While the current version of the P4 board does not have a Sonet/SDH in-terface, timings of the parallel interface are compatible with the timings of com-mercially available framing devices[Tex95], making future addition of such aSonet/SDH interface straightforward. At this stage, we are primarily interestedin the implementation of the P4 functionality and the role it can play in protocolprocessing.3 Functional Elements3.1 Input Interface (IIF)The input interface (IIF) of Fig.2 provides initial processing of the cells. It isrealized by a speci�cally con�gured FPGA device downloaded on powerup. TheIIF is the �rst device in the chain and it does not have a FIFO bu�er precedingit. It connects to the parallel cell stream which may come either from the testequipment or a Sonet/SDH framing device.The IIF scans the input stream for cells belonging to the processed virtualcircuit and stores them in the FIFO bu�er associated with the �rst PE in thepipeline chain. All other cells are stored in the bypass bu�er together with theheader �elds. Thus the IIF selects the virtual circuit to boost assuming that theVPI/VCI corresponds to a single application (a realistic assumption for an ATMnetwork).Headers of cells on the boosted channel are stripped o� and payload data arestored into the FIFO bu�er. Header information is passed directly to the outputinterface (OIF) via a special data path, bypassing the PEs.There are two reasons for stripping o� the header �elds:1. Having processing elements deal with only the payload reduces their com-plexity, saving space in the FPGA device and enabling us to put more pro-cessing functionality in a PE.2. Some processing algorithms may change the size of the actual data (e.g. datacompression). In such cases it is clearly simpler to remove the header beforethe processing and reconstruct cells at the output.3.2 Output Interface (OIF)The output interface (OIF) of Fig.2 complements the IIF. The device reads fromthe FIFO bu�er associated with it, creating a boosted cell stream. If the bu�er is

empty, the OIF will try to read the cell from the bypass FIFO. If both bu�ers areempty, the OIF will not generate a cell. The IIF and OIF operation is illustratedin Fig.3.
Input cell
stream

FPGA

IIF PE(1)

FIFO

bypass

FIFO

cell stream
Non boosted

(payload only)
Data

OIF OIF

FPGAFIFO

FIFO

bypass

Output cell
stream

cell stream
Non boosted

Data
(boosted)Fig. 3. The IIF/OIF operationThe OIF can be delayed by any processing element in the chain. For example,if one of the processing elements performs data compression, it would typicallyrequest a delay in cell generation if it produced output shorter than 48 bytesbefore new data appeared. Delaying the cell for a limited amount of time mightavoid padding the payload with idle data and improve the bandwidth utilization.However, a cell must not be arbitrarily delayed; we will study tradeo�s across aselection of tra�c types.3.3 Switching ArrayThe switching array improves
exibility of the P4 architecture as functions inthe PEs are not necessarely commutative. If a new processing element must beactivated, it can be downloaded into any available FPGA device. The switchingarray will allow placing of the processing element at the appropriate point in thepipeline chain regardless of the actual FPGA device used; it serves to virtualizepipeline ordering.3.4 Processing Element (PE)The Processing Element (PE) is the generic part of the architecture. It is acombination of a FIFO bu�er and an FPGA device. The output of the FPGAdevice is the set of control and data signals compatible with the FIFO bu�erinput. Processing consists of reading from the FIFO bu�er, processing the dataand writing it into the FIFO bu�er associated with the next PE in the chain.In the minimal case (no PE active), the IIF reads the data from the linkand writes into the FIFO bu�er of the OIF. The boundary between PEs is theFIFO data and control bus interface. Since this is well de�ned for the givenFIFO[Cyp95] it is simple to insert and remove PEs in the P4's chain.

3.5 ControllerFrom the controller's perspective, PEs are I/O devices. The controller has a poolof FPGA con�gurations with which it can implement a processing algorithm.Depending on the policy and network conditions, it chooses the appropriate setof con�gurations and downloads the FPGA devices on demand. Downloadingis managed by the controller, and the FPGA is in the passive con�gurationmode[Alt94]. Using the switching array, the controller creates the chain withprocessing elements ordered appropriately.3.6 P4 Role and Placement in a NetworkThe P4 board is intended to work as an \edge" device for the boosted portionof a network cloud as shown in Fig.4. Although the prototype is designed tooperate on the stream of ATM cells, the same concept can be applied to anytype of packet stream.The P4 can work as a standalone unit with its own controller or as part of aswitch or other network element. In the latter case the P4 can be an integral partof the switch and thus managed by the network element's controller. A singlecontroller may be responsible for multiple P4 boards.
Boosted
Network

Cloud
P4

P4

B

A

Non boosted

Network

Cloud

P4

Fig. 4. P4 as the part of the networkIn Fig.4, the boosted portion of the network has a P4 board associated withall access points. If a user connected to the P4 enhanced access point com-municates with another user connected to the P4 enhanced access point, theircommunication can be point-to-point boosted provided that there is a route en-tirely through boosted portion of the network. An important property of the P4as used in this mode is that if the route has to pass through the non-boostedportion of the network, the P4 board at the boundary will act as a conversionunit by deboosting the outgoing tra�c and boosting the incoming tra�c. Thisenhances the interoperability of the scheme.

4 Research QuestionsThe P4 board will aid exploration of the design space for hardware implemen-tation of Protocol Boosters. It should process the 155Mb/s ATM cell stream inreal time, and allow dynamic recon�guration with minimal delay. This sectiondescribes the performance metrics for the architecture.4.1 Protocol Processing PerformanceOne goal of Protocol Boosting is end-to-end performance improvement via addinga parasitic module to the original protocol[FMS96]. As shown with the soft-ware prototype of Protocol Boosters[MCS97], some functions can be e�cientlyimplemented in software resulting in better end-to-end performance. However,functions such as data encryption signi�cantly degrade throughput while addingtheir functionality (e.g., privacy of communication).Preliminary measurements with the P4 board using the convolutional FECbooster have shown that the processing delay is minimal compared to the celltransmission delay. Due to the pipelined nature of the architecture, link through-put is preserved2 and the processing overhead is re
ected in latency through theP4. The limit on the pipeline depth depends on the existing propagation delayand the total delay acceptable by the application.4.2 Resource Management IssuesA second important issue is the functional \agility" of the P4. By agility we meanlatency for reaction to the network anomalies. For example, consider the casewhere we want to address load-induced congestion by adding data compressionto the link protocol (provided we can successfully compress!). At a link speed of155Mb/s the time to download the FLEX8K device[Alt96] can be too long tosuccessfully address the problem of congestion.For some applications, agility is not a critical issue. For example, a user is notlikely to notice the slight delay in adding FEC to audio tra�c to improve soundquality. Thus, there are applications which require very fast reaction (\agility")from the protocol booster and there are also applications where the low agilitycan be tolerated.Use of the P4 architecture for non-trivial Protocol Boosters implementationsraises the question of management of limited resources (namely FPGA deviceswhich implement the processing elements) to achieve statistically (i.e., almostalways) high agility. Resource management in the P4 architecture is analogousto cache management in a general purpose computer system. A cache controllertakes advantage of the correlation between accesses to nearby memory locationsand statistically reduces the memory access time. In a similar fashion, we can2 It should be understood that if the booster generates additional cells, the input datacan not arrive at the maximum bit rate. However this limitation is not due to theP4 processing overhead but the link capacity.

achieve statistically improved agility of the Protocol Booster running on the P4architecture.A well-designed management algorithm will try to keep the agility sensitivecon�gurations pre-loaded in the FPGA devices and clear them only if deemednecessary (i.e., if an FPGA device is needed for some other algorithm and thereis no free device available). Resource management algorithms and statisticalproperties of the events in the network that can be used to trigger the activationof the speci�c Protocol Booster will be major (and we believe generalizable)results of this research.4.3 Policy ModulesAn important part of the Protocol Booster is the policy module. The policymodule decides when a function should be activated based on its observationsof the data stream.In this paper, we have focused on the issues of implementing processing func-tions (i.e., mechanism modules) in the P4 architecture. As the controller decideswhich function to download, enforcing the policy is the task of the controller.The controller can delegate some of this role to a PE by con�guring it tomonitor the link instead of performing the actual processing. The controller hasfull access to the PE and can communicate with it via its data bus, and thussome PEs can be programmed to monitor the events on the link and provide thecontroller with information crucial to policy decisions.Thus, the P4 controller enforces the policy but PEs can perform functionswhich are part of both policy and mechanism module.4.4 Need for SynchronizationBoosting a portion of the network means adding some processing on one sideand restoring the original data on the other side. For convenience, assume anon-transparent booster and call these functions boosting and deboosting re-spectively. The booster needs to be synchronized with the debooster3, that is,the debooster must know when to engage. This requires a signalling protocol,either explicit or implicit.Consider the infrastructure shown in Fig.4, and suppose that side A decidesto load a booster and that its matching debooster must be loaded on side B.Side A needs a method of in-band signalling to inform side B when the boosteris to be activated. As a simple scheme for testing the P4 architecture prototype,we will use in-band signalling with control cells in the same virtual channel asthe data, and use the payload-type �eld[ATM94] to distinguish signalling anduser data.3 This is not strictly required for transparent boosters[FMS96], but of course they aremore e�ective when synchronized!

4.5 Extension to Multiple Virtual CircuitsThe architecture has been described assuming single virtual channel (VC) pro-cessing. The current prototype is limited to one VC, as the focus is on the basicP4 architecture. In later versions we plan to implement multiple VC processingon one board.Besides the pipeline topology, the switching array can connect processingelements in the parallel pipelines and provide di�erent processing on di�erentVCs. It is also straightforward to modify the IIF to use VPI only instead of theVPI/VCI combination to identify the boosted cell stream.An interesting approach (suggested by Bill Marcus of Bellcore) is to use \con-text switch"-like processing in the PE. The state of the PE can be stored away inthe content addressable memory (CAM) and VPI/VCI can be used as an indexto the state information in the CAM. A PE can thus switch state accordinglyand apply the same algorithm to multiple concurrent virtual channels.5 ConclusionWe have presented an architecture which has the software-like
exibility requiredfor the Protocol Boosters design methodology, while providing the performanceexpected from a hardware implementation. However, the P4 is more generallyuseful; for example, as an array of downloadable devices which perform proto-col processing, it might function as a high-performance element in an ActiveNetwork[SDG+96].The P4 prototype raises several issues in networking subsystem design. Onone hand, it is a generic architecture with a limited number of resources (i.e.,the processing elements) which need a good management policy. On the otherhand it is a platform which allows the implementation of certain functions inhardware and gives us a new tool for addressing the balance between hardwareand software in protocol implementation. It is particularly important for eval-uating these engineering tradeo�s that the generic structure of the P4 allows�ne-grained control of the boundary between functions implemented in hard-ware and software.The prototype is operating as a wirewrap card. Next is PCB implementation,and evaluation of various processing functions that will run on the P4 board.The construction of the testbed involving the ATM subnet enhanced with theP4 boards at the entry points will allow us to outline the domain of applicabilityof P4-like architectures for protocol processing, and evaluate algorithms for dy-namically allocating the hardware resources based on application demands andnetwork dynamics.6 AcknowledgementsBill Marcus of Bellcore provided a number of helpful comments in addition to themultiple VC scheme (Sect. 4.5). Tony McAuley, also of Bellcore, helped clarify

our thinking on the roles of transparency, routing and booster state. Dave Feld-meier of MUSIC Semiconductors made some useful suggestions. Tyler Arnoldhas been investigating the implementation of a convolutional FEC booster foruse in the P4.References[Alt94] Altera, Corporation, 2610 Orchard Pkwy., San Jose, CA 95134. Con�guringthe FLEX8000 devices - Application Note 33, 3 edition, May 1994.[Alt96] Altera, Corporation, 2610 Orchard Pkwy., San Jose, CA 95134. FLEX8000Programmable Logic Device Family - Data Sheet, 8 edition, June 1996.[ATM94] ATM Forum. ATM User Network Interface Speci�cation, version 3.1,September 1994.[CJRS89] David D. Clark, Van Jacobson, John Romkey, and Howard Salwen. An anal-ysis of tcp processing overhead. IEEE Communications Magazine, 27(6):23{29, June 1989.[Cyp95] Cypress Semiconductor Corporation, 3901 N. 1st St, San Jose, CA 95134.CY7C421 Data Sheet, January 1995.[DGH+97] R.W. Dmitroca, S.G. Gibson, T. R. Hill, L. M. Morales, and C. T. Ong.Emulating atm network impairments in the laboratory. Hewlett-PackardJournal, 48(2):45{50, April 1997.[FMS96] D. C. Feldmeier, A. J. McAuley, and J. M. Smith. Protocol boosters. sub-mitted to IEEE JSAC Special Issue on Protocol Architectures for the 21stCentury, 1996. U. Penn CIS TR MS-CIS-96-34.[Hew94] Hewlett - Packard, IDACOM Telecommunications Operation, 4211 95Street, Edmonton, Alberta, Canada. Optical Line Interface User's Guide,3 edition, June 1994.[McA95] A. J. McAuley. Error control for messaging applications in a wireless envi-ronment. In INFOCOM 95, April 1995.[MCS97] A. Mallet, J. D. Chung, and J. M. Smith. Operating systems support forprotocol boosters. In Proceedings, HIPPARCH Workshop, June 1997.[SDG+96] J. M. Smith, D.J.Farber, C. A. Gunter, S. M. Nettles, D. C. Feld-meier, and W.D. Sincoskie. Switchware: Accelerating network evolu-tion (white paper). Technical report, University of Pennsylvania, URL:http//www.cis.upenn.edu/ jms/white-paper.ps, June 1996.[SRC81] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in sys-tem design. In Proceedings of the 2'nd IEEE International Conference onDistributed Computing Systems, pages 509{512, April 1981.[Tex95] Texas Instruments, P.O. Box 655303, Dallas, TX 75265. TNETA 1500,155.52Mb/s Sonet/SDH ATM receiver/transmitter, July 1995.
This article was processed using the LATEX macro package with LLNCS style

