
79IEEE Communications Magazine • October 1998

Protocol Boosters:Applying Programmability toNetwork Infrastructures

0163-6804/98/$10.00 © 1998 IEEE

t the heart of the success and power of the world-wide IP Internet are the general-purpose proto-cols in the TCP/IP protocol suite. Although these protocols,such as TCP and IP, provide a flexible framework for buildingdiverse applications, two limitations can be seen preciselybecause of their success and generality. First, they evolvemore slowly than the changes in networking technology andapplication requirements. Second, they trade some loss in effi-ciency for their ability to handle increased heterogeneity.In many instances existing protocols do not operate wellfor emerging applications or take advantage of novel networktechnologies. Cases in point include TCP’s poor handling ofthe World Wide Web or IP’s inability to capitalize on subnet-works which offer quality of service (QoS) guarantees. Boththe user community and the Internet Engineering Task Force(IETF) recognize these deficiencies, but remedial action hasbeen slow mainly because of administrative and political barri-ers rather than technological ones. For example, in 1992 thepotential problem of address exhaustion and the degree ofoptions processing in IPv4 led to the three-year design cycleof IPv6. However, three more years have expired and IPv6 hasstill made insignificant penetration into operational networks.Paradoxically, it is the success of IPv4 that has led to thisproblem. The problem is not with the specific protocol orstandardization method, but with the need to have many peo-ple (sometimes with competing agendas) agree on the stan-dard and its deployment. Forming a consensus within largegroups is a slow process, and is likely to remain slow; there-fore, protocol standards will continue to evolve at a slow pace.General-purpose protocols are designed to operate in het-erogeneous network environments by minimizing the servicesrequired from lower layers. Minimizing lower-layer servicerequirements allows robust operation over the widest variety of

network infrastructures, but preventsthe protocol from taking full advantageof lower-layer services. Ideally, a proto-col would adapt (e.g., be repro-grammed) to provide the best possibleperformance given the path of the data.For instance, when on a LAN the pro-tocol would adjust itself to give perfor-mance similar to that of a specializedLAN protocol. It is this need for proto-col adaptation and programmabilitythat has driven our design and imple-mentation of protocol boosters.
PROTOCOL BOOSTERS

Protocol boosters [1] are a methodology for protocol designaimed at overcoming the slow evolution and inefficienciesassociated with general-purpose protocols. They incrementallyconstruct protocols from elements called protocol boosters onan as-needed basis. Protocol boosters allow:• Design of protocols under optimistic assumptions• On-the-fly customization of a protocol to heterogeneousenvironments• Transparent and rapid deployment, independent of stan-dards, into existing network infrastructuresWhen applied, this protocol construction methodology improvesthe network performance and/or augments bearer services. Weenvision that the protocol booster methodology shall hasten thedevelopment and deployment of new protocols for the rapidlyexpanding collection of network and application technologies.By definition, a protocol booster adds, deletes, or delaysmessages of an existing protocol, but does not originate orterminate that protocol. A protocol booster consists of one ormore booster elements. The elements of a booster may useprotocols to exchange messages among themselves, but theseprotocols are originated and terminated by the booster ele-ments, and are not visible external to the booster. The defini-tion of a protocol booster can be relaxed to allow messageconversion between booster elements in networks whichassume static routing (e.g., ATM), but on the periphery of theentire booster, message syntax must be maintained. Conse-quently, protocol boosters are transparent to the protocolbeing boosted. Boosters can reside anywhere in the networkor end systems and are designed to improve the performanceor features of an existing protocol.Multiple protocol boosters can operate on the same pro-

William S. Marcus, Bellcore
Ilija Hadzic, University of Pennsylvania
Anthony J. McAuley, Bellcore
Jonathan M. Smith, University of Pennsylvania

A

This article describes a novel methodology for protocol design,using incremental construction of the protocol from elementscalled protocol boosters on an as-needed basis. Protocol boosters are an adaptation tech-nique that allows dynamic and efficient protocol customization to heterogeneous environ-ments. By design, the boosting mechanism is under control of a policy, which determineswhen augmentation is required. Thus, many portions of a protocol stack execute only asnecessary, permitting significant increases in performance relative to general-purpose pro-tocols. Design principles for protocol boosters are presented, as well as an example boost-er. Two implementation platforms are described: (1) an augmented Linux operatingsystem, which is freely available to other researchers; and (2) a rapidly reprogrammablehardware prototype, called the Programmable Protocol Processing Pipeline (P4), which isbased on off-the-shelf FPGA technology. Since protocol boosters are programmed func-tions and can be network-resident, a programmable network infrastructure is necessary toexploit their full capability. Thus, protocol boosters are an ideal application for an on-the-fly programmable network infrastructure.

ABSTRACT

IEEE Communications Magazine • October 199880

tocol, using either concatenation or nesting of boosters.The transparency of boosters to the underlying existingprotocol means that any boosters designed to operate on aprotocol can be arbitrarily ordered, although this may notalways produce desirable properties, e.g., compression fol-lowed by forward error correction. Protocol booster nestingis more sophisticated than concatenation. Although abooster itself is not a protocol, a protocol and a multi-ele-ment booster combine to form a new protocol. The newprotocol consists of messages of the original protocol com-bined with messages exchanged among the booster ele-ments. A second booster can be applied to the new protocolin which it is nested. Booster nesting can continue to anarbitrary depth.With a set of nested boosters, it is natural to talk about aprotocol family generated by the boosters. The base protocolis the protocol operated on by the outermost booster of thenested boosters. Additional family members are generated atdeeper and deeper levels of the booster nesting. Thus, proto-col boosters can be viewed as modular building blocks for afamily of related protocols, each suited to a specific networkenvironment.A policy associated with a booster determines underwhich conditions booster functions are invoked. Since boost-ers vary widely in their functions, it is impossible to have acompletely generic invocation policy. Policies may be basedon, but not limited to, observed network behavior, packetsource and destination, or time of day. These policies can bequite subtle and may even include metapolicies aimed atpreventing undesirable effects when nesting or concatenatingbooster elements.Figure 1 illustrates the above concepts. It depicts boostingcommunications, via the nesting of a single element boosterwithin a multi-element booster, between two hosts, labeledHost X and Host Y. The establishment of the boosted chan-nel was arranged via a policy decision which determined thatthe network path between Host X and Host Y required addi-tional support, beyond that which could be provided by thebase protocol. As an example, if the two hosts were runningan application requiring low latency but were connected via ahigh-latency, high-loss satellite link, the boosters would con-spire, at the expense of additional bandwidth and processingwithin the network, to hide the retransmission latency fromthe application. If Host X was running a similar applicationbetween itself and another host on its local low-latency sub-net, the boosters would not be deployed; thus, the overall pro-tocol processing between the two endpoints would beminimized. Note that the end-to-end communication proper-ties between Host X and Host Y are not compromised. Thetwo hosts are unaware of the protocol booster modules insert-ed in their communication path; they continue to communi-cate using the original base protocol. The multi-elementbooster messages are originated and consumed by the booster

elements, never to be processed by thetwo hosts. Likewise, the single-elementbooster can monitor the protocol mes-sage flow of the augmented base protocoland add, delete, or delay legal protocolmessages to or from the message stream.
PRACTICAL EXAMPLE:THE FZC BOOSTER

Our Forward EraZure Correction(FZC) booster is a good example of amulti-element booster. It reduces theeffective packet loss rate on noisy links,such as terrestrial and satellite wireless networks. Althoughpacket error correction is normally most efficiently and flex-ibly done by packet retransmission (automatic repeatrequest, ARQ), forward error correction (FEC) is desirablefor some latency-constrained and multicast applications, orwhere the return channel is unavailable or slow and wherethe loss of a single packet causes other packets to needretransmission. The FZC booster uses a packet FEC codewith erasure decoding. This booster is part of our TCP/IPbooster family, which also includes ARQ boosters, a reorderbooster, and an error detection booster. Each booster isdesigned to provide a specific function and work harmo-niously with the other boosters in the family. The FZCbooster is not well suited for dealing with packet loss due tocongestion; other members of our TCP/IP error controlbooster family handle this situation.Figure 2 highlights the basic operation of the FZC booster.At the transmitter side of the wireless network the FZC boosteradds parity packets. The FZC booster at the receiver side of thewireless network removes the parity packets and regeneratesmissing data packets. This appears similar to link FEC; howev-er, link FEC only corrects bits (or words), not IP packets orTCP segments, and cannot be applied between any two pointsin a network (including the end systems). Also, the FZC boost-er can be applied incrementally. In Fig. 2, for example, wecould add an extra FZC booster at the fixed terminal. If thisbooster adds h1 parity packets and the second booster adds h2parity packets, the portable terminal can recover from up to h1+ h2 packet erasures. In the reverse direction the secondbooster could reduce the number of redundant packets toreduce congestion in the wireline network.
BOOSTER IMPLEMENTATIONSWe added protocol boosters support to the Linux 2.0.32operating system for the i386 (Intel) architecture [2]. Kernel-level implementation offers efficiency and transparency. Indi-vidual boosters are implemented as loadable kernel modules(lkms), which allow dynamic loading/removal of booster mod-ules into network elements at runtime. Since lkm support isnot unique to Linux, this implementation is amenable to othervariants of UNIX.The implementation’s system components consist of boost-er instances, booster sequences, and booster traps. A boosterinstance is an instantiation of a protocol booster lkm thatbehaves in accordance with arguments passed to the boosterwhen it is invoked or with arguments passed via ioctl systemcalls. A booster sequence is a concatenated chain of boosterinstances, and a booster trap directs individual packets to aspecific booster sequence. Our implementation currently lim-its sequences to 16 booster instances and traps boosted chan-nels by source and destination IP addresses. Stronger trappingbased on other information, such as protocol-specific portnumbers, can be added.

n Figure 1. The protocol booster model.

Host X
Multi-elementprotocolboosterelement A

Host YSingleelementprotocolbooster
Multi-elementprotocolboosterelement A'

Newprotocol
Base protocol

Booster message exchange

IEEE Communications Magazine • October 1998 81

We implemented the aforemen-tioned FZC booster on this platform.This booster caches, then immediatelyforwards, each data packet it receives,whether the packet is from an upper-layer protocol or the IP forwarder.The only modification to each datapacket is that the FZC booster over-writes the IP packet’s 16-bit identifica-tion field with a sequence number,allowing the decoder to know the pack-et’s position information. Practicallyspeaking, this does not change theend-to-end UDP datagrams or TCP segments. However, if anapplication requires, IP options can be used for packetsequence information. After receiving k packets (k is definedper channel) on a given channel, the cached packets are zero-padded to the size of the largest packet in the cache. Also,each packet’s size and protocol type are appended to thepacket’s tail. The transmitter performs an FZC matrix multi-plication over the payload, padding, and appended tail of thek packets. The h overcode packet payloads produced by theFEC encoder are then prepended with an IP header and abooster header. This IP header contains a prototype fieldidentifying it as a protocol booster packet and a sequencenumber in the 16-bit identification field. The booster headercontains the type of booster (FZC booster), the value k, andthe sequence number of the first of the k packets. The hpackets are then transmitted toward the same destination asthe data packets.The FZC debooster at the receive side caches incomingdata packets and immediately forwards them either to anupper-layer protocol or toward their eventual destination.Overcode packets are also cached, but are not forwarded.Packets are released from the cache when either:1. An entire collection of k data packets are present.2. The received data packets plus parity packets equal k.3. The cache occupancy dictates cache content replacement.Only in situation 2 are the matrix computations performed togenerate the missing data packets.To assess the effectiveness of this booster arrangement wedeployed it in a simulated wireless environment running UDP.The amount and types of errors on wireless networks dependon link conditions and link error control. In general, however,errors are not random but come in a burst of consecutive bits.Whether the packet errors are also bursty depends on the sizeof packets and average burst error lengths. Based on the actu-al packet loss results obtained in satellite experiments, weconstructed two basic packet error models: random andbursty. These error models were used in a loss module (imple-mented as a booster lkm) that can delete packets based onthe chosen error model.As our application we used the public domain Test TCPprogram (ttcp) with the UDP option. We ran ttcpbetween two 166 MHz Pentium-based machines on a dedi-cated 10base-T Ethernet. Both machines ran the FZC boost-er, and the receiver also ran the loss module. Theexperiments used a packet size of 512 bytes, with 1000 pack-ets/trial and a block size of 20 packets. As expected, theresults show that with no parity packets the effective packetloss is roughly the same as the loss rate defined in the lossmodule, and that increasing redundancy decreases the effec-tive packet loss [3]. Although burstiness further increases thenetwork packet loss, the FZC booster is still effective. Infact, larger block sizes make the difference between burstyloss and random loss negligible. In this test environment ourimplementation was shown to have no performance impact

on traffic that is not boosted, and a performance impactcommensurate with particular enhancement modules on traf-fic that is boosted. In particular, comparing the runs of
ttcp between two hosts having no booster infrastructurepresent with runs of ttcp between the same two hosts hav-ing the booster infrastructure installed and a null boosterlkm present reveals no perceptible change in throughput.The null booster merely logs packet and byte counts. Replac-ing the null booster lkm with FZC booster lkms using 4 per-cent (k = 50, h = 2) and 30 percent (k = 20, h = 6)overcode, respectively, reduces the application-to-applicationthroughput to approximately 7.7 Mb/s and 3.9 Mb/s (from9.6 Mb/s achievable on an Ethernet), which is still veryacceptable for most current access network technologies.Many protocol boosters that we have designed perform bit-intensive operations, and are thus computationally expensive ongeneral-purpose processors. This is a significant potential limi-tation, since the operating regime where boosting increasesend-to-end performance may be very small, and thus designersmay be resistant to using the technique, particularly in high-speed backbone networks. An example of this phenomenon isfile compression; users now compress only where networkaccess is slow or the file to be transferred is very large.Protocol boosters are a discipline for use of programmablenetwork infrastructures. Therefore, if, in the design space ofprogrammable network infrastructures, other factors (cost,complexity) could be traded off against performance, the ideaof protocol boosters should still be useful. Field programmablegate arrays (FPGAs) offer such a performance trade-off. Thefirst and most important fact is that the devices can now bereprogrammed on the fly; that is, new logic can be download-ed rapidly into devices that are in-system. Thus, the designspace of programmable network infrastructures includes hard-ware. The trade-off is this: there is little or no storage on thedevices themselves, and the complexity of boosting operationsis severely limited by the densities and sizes of the devices, yetthe devices are certainly capable of operating at extremelyhigh data rates.We have explored this trade-off experimentally with ourProgrammable Protocol Processing Pipeline (P4) prototype[4] on ATM cells streams at the OC-3c line rate. The P4channels selected ATM cells (e.g., a virtual circuit) throughlogic in a series of up to six SRAM-configured FPGAs(Altera 8000 series devices). A crossbar switch performs thechanneling of cells to the various devices. Rate decouplingbetween devices is performed via FIFOs dedicated to eachFPGA. The crossbar can be reconfigured in approximately 1
µs. If some protocol-processing element is necessary, thehardware implementation (i.e., FPGA configuration) can bedownloaded into the FPGA device in approximately 100 mson an as-needed basis. Unnecessary modules are simplyremoved from the protocol stack by disconnecting the FPGAdevice from the processing stream and putting it back intothe pool of available empty devices. The freed device can

n Figure 2. Communications over a wireless network with an FZC booster.

Wirelessnetwork WirelinenetworkPortableterminal Fixedterminal

Base protocol

FZCbooster

FZC booster protocol

FZCbooster

IEEE Communications Magazine • October 199882

later be downloaded with some other configuration and usedfor some other processing.We have demonstrated the operation of an FEC encoderand decoder running at the OC-3 link rate (155 Mb/s) andboosting the TCP/IP (over ATM) protocol stack in a noisyenvironment by dynamically adding and removing FEC [5].The FEC consists of an R = 1/2 convolutional encoder and aViterbi decoder. The encoder consumes one FPGA device,the decoder four devices. To assess the effectiveness of thisbooster arrangement we constructed a testbed consisting of a300 MHz Pentium II-based machine running Linux 2.0.29with a Fore PCA200 ATM NIC, two P4 systems, an ATMswitch, and a broadband network analyzer. ttcp tests wereperformed using the FEC booster running at the OC-3 ratewith a range of bit error rates (BERs) spanning severalorders of magnitude (from 10–12 to 10–4). For BER > 10–7(e.g., a bad link) TCP benefits from the FEC booster, while itrepresents a performance cost for BER < 10–7 (e.g., a goodlink). At BER around 10–5 an improvement of a factor of 10has been observed, and the improvement grows exponentiallyas the BER becomes worse. At BER 10–4 and worse, TCPwithout FEC completely stalls, while TCP with FEC is stillable to operate.
PROTOCOL BOOSTERS, ACTIVE NETWORKS,AND OTHER ADAPTATION TECHNIQUES

Programmable network infrastructures such as active net-works [6] have attracted attention recently, particularly dueto their potential for accelerating network evolution. Net-work evolution occurs when the network changes to benefitapplications with advanced services. With programmablenetworks, once the service is defined the network can be cus-tomized to optimize for the delivery of the service. Simpleexamples include Web proxy caches, specialized firewalls,and adaptive FECs.Protocol boosters represent a design methodology for net-work protocols. The design methodology is centered on the useof transparent, composable protocol functions called “protocolboosters” which are injected into protocol stacks at hosts andinside the network. This latter role relies on the presence of aprogrammable network infrastructure. Thus, one simple view ofprotocol boosters is an application of active networking.A second, and more compelling, view of protocol boostersis as a design methodology for programming active networks.Several design decisions which underlie the current definitionof protocol boosters were motivated by our experiments withearly boosters. An example is the design restriction that abooster can operate correctly (albeit with lower performance)in the absence of any booster-aware code at a receiver. Thisseems like a rather odd restriction, but it is strongly motivatedby the preference of packet-switched networks for dynamicrerouting. Table 1 illustrates where boosters are robust.If we presumed that routes were static, we could assumethat a boosted packet or message would encounter a deboostersimply by traveling along a path where we had placed one.However, given that dynamic routing provides fault-toleranceadvantages, it is clear that choosing a model where no deboost-er is required opens the approach to a wider range of networks.Thus, protocol boosters can be profitably viewed as a program-ming style for active networks. While active networks areintended to provide flexible programming of networks, thisflexibility will not result in robust systems unless disciplined.Protocol boosters also share a similar problem space with:• Link-layer adaptation• Protocol termination [7]

• Protocol conversion [8]• Special end-to-end protocols [9]Link-layer protocol adaptation operates independent ofthe higher-layer protocols. This greatly simplifies link protocoldesign, but can have many undesirable side effects, such asincreased latency on applications that do not require theadaptation or uncomplementary protocol interaction withthose that do. Protocol termination is the serial concatenationof several protocols, each tailored for their local environment,operating along the path of an application’s data channel.While protocol termination permits the exchange of informa-tion between two or more entities over heterogeneous net-works, it very often comes at the cost of losing desirableend-to-end properties. In addition, protocol terminationexposes applications to single points of failure and longer per-packet processing times. Protocol conversion is very much likeprotocol termination, with the restriction that only the proto-col’s syntax is changed; thus, the desirable end-to-end proper-ties are maintained. Like protocol termination, protocolconversion exposes applications to single points of failure andlonger per-packet processing times. Protocol boosters havethe advantage over these two techniques in that applicationsare not further exposed to single points of failure. Like thesetwo other solutions, protocol boosters do, in most cases,induce increased packet processing times to the applicationsbeing boosted. Special end-to-end protocols remove the over-head associated with general-purpose end-to-end protocols.This solution creates protocols that are specifically designedwith a single application and network infrastructure in mind.The performance of such protocols is unmatched by any ofthe other alternatives; however, this solution suffers from along and expensive development time which may not be cost-effective for niche applications.
SUMMARY

We described a method for protocol design based on incre-mental, dynamic construction of protocols on an as-neededbasis. The elements of these protocols, protocol boosters,can be composed in a “Tinkertoy”-like manner, to form afamily of protocols. The methodology motivates optimisticprotocol design, where protocols are designed assuming thebest case, and adds additional functionality on an as-neededbasis. This is in direct contrast with building for the worstcase and optimizing by finding common fast paths throughthe protocol implementation. Prototypes of the boosterdesign methodology have been implemented. The perfor-mance was sufficiently encouraging that a larger-scale designis being investigated.Protocol boosters can be viewed as a step toward thefully programmable infrastructure proposed by a number ofresearchers under the rubric of active networks. While manyof the problems are the same (e.g., robust end-to-endbehavior, security for systems into which boosters are load-ed, etc.), a key advantage of boosters is that they can easilybe injected into today’s systems without a wholesale changein network infrastructure. In that sense, they offer an earlytest of the promise, as well as a programming model, ofactive networks.The protocol booster methodology offers some excitingpossibilities for accelerating the evolution of protocols,

n Table 1. Booster robustness in static and dynamic routing.

x x No debooster required
x Debooster required

Static routing Dynamic routing

