Protocol Boosters:

Applying Programmability to

Network Infrastructures

William S. Marcus, Bellcore
llija Hadzic, University of Pennsylvania
Anthony J. McAuley, Bellcore

Jonathan M. Smith, University of Pennsylvania

A This article describes a novel methodology for protocol design,
BST RA CT using incremental construction of the protocol from elements
called protocol boosters on an as-needed basis. Protocol boosters are an adaptation tech-
nique that allows dynamic and efficient protocol customization to heterogeneous environ-
ments. By design, the boosting mechanism is under control of a policy, which determines
when augmentation is required. Thus, many portions of a protocol stack execute only as
necessary, permitting significant increases in performance relative to general-purpose pro-
tocols. Design principles for protocol boosters are presented, as well as an example boost-
er. Two implementation platforms are described: (1) an augmented Linux operating
system, which is freely available to other researchers; and (2) a rapidly reprogrammable
hardware prototype, called the Programmable Protocol Processing Pipeline (P4), which is
based on off-the-shelf FPGA technology. Since protocol boosters are programmed func-
tions and can be network-resident, a programmable network infrastructure is necessary to
exploit their full capability. Thus, protocol boosters are an ideal application for an on-the-

network infrastructures, but prevents
the protocol from taking full advantage
of lower-layer services. Ideally, a proto-
col would adapt (e.g., be repro-
grammed) to provide the best possible
performance given the path of the data.
For instance, when on a LAN the pro-
tocol would adjust itself to give perfor-
mance similar to that of a specialized
LAN protocol. It is this need for proto-
col adaptation and programmability

fly programmable network infrastructure.

t the heart of the success and power of the world-

wide IP Internet are the general-purpose proto-
cols in the TCPAP protocol suite. Although these protocols,
such as TCP and IP, provide a flexible framework for building
diverse applications, two limitations can be seen precisely
because of their success and generality. First, they evolve
more slowly than the changes in networking technology and
application requirements. Second, they trade some loss in effi-
ciency for their ability to handle increased heterogeneity.

In many instances existing protocols do not operate well
for emerging applications or take advantage of novel network
technologies. Cases in point include TCF's poor handling of
the VAorld Wide WAéb or IP's inability to capitalize on subnet-
works which offer quality of service (QoS) guarantees. Both
the user community and the Internet Engineering Task Force
(IETF) recognize these deficiencies, but remedial action has
been slow mainly because of administrative and political barri-
ers rather than technological ones. For example, in 1922the
potential problem of address exhaustion and the degree of
options processing in IPv4led to the three-year design cycle
of IPv6& However, three more years have expired and IPvGhas
still made insignificant penetration into operational networks.
Paradoxically, it is the success of IPv4 that has led to this
problem. The problem is not with the specific protocol or
standardization method, but with the need to have many peo-
ple (sometimes with competing agendas) agree on the stan-
dard and its deployment. Forming a consensus within large
groups is a slow process, and is likely to remain slow; there-
fore, protocol standards will continue to evolve at a slow pace.

General-purpose protocols are designed to operate in het-
erogeneous network environments by minimizing the services
required from lower layers. Minimizing lower-layer service
requirements allows robust operation over the widest variety of

that has driven our design and imple-
mentation of protocol boosters.

PROTOCOL BOOSTERS

Protocol boosters [1] are a methodology for protocol design
aimed at overcoming the slow evolution and inefficiencies
associated with general-purpose protocols. They incrementally
construct protocols from elements called protocol boosters on
an as-needed basis. Protocol boosters allow:
* Design of protocols under optimistic assumptions
* On-the-fly customization of a protocol to heterogeneous
environments
e Transparent and rapid deployment, independent of stan-
dards, into existing network infrastructures
WAhen applied, this protocol construction methodology improves
the network performance and/6r augments bearer services. VAé
envision that the protocol booster methodology shall hasten the
development and deployment of new protocols for the rapidly
expanding collection of network and application technologies.
By definition, a protocol booster adds, deletes, or delays
messages of an existing protocol, but does not originate or
terminate that protocol. A protocol booster consists of one or
more booster elements. The elements of a booster may use
protocols to exchange messages among themselves, but these
protocols are originated and terminated by the booster ele-
ments, and are not visible external to the booster. The defini-
tion of a protocol booster can be relaxed to allow message
conversion between booster elements in networks which
assume static routing (e.g., ATM), but on the periphery of the
entire booster, message syntax must be maintained. Conse-
quently, protocol boosters are transparent to the protocol
being boosted. Boosters can reside anywhere in the network
or end systems and are designed to improve the performance
or features of an existing protocol.
Multiple protocol boosters can operate on the same pro-

IEEE Communications Magazine ¢ Cctober 1968

AE&36334B510000 1SEBIEEE 79

elements, never to be processed by the
two hosts. Likewise, the single-element
booster can monitor the protocol mes-
sage flow of the augmented base protocol
and add, delete, or delay legal protocol
messages to or from the message stream.

i ‘New !
! | protocol!
E é})oster message excha[@:
Multi- Multi-
Host X || protocol element »protocol
%ooster PITED) Fl’)ooster
element A DEEELET element A)

PRACTICAL EXAMPLE:

Host ¥ THE FZC BOOSTER

Our Forward EraZure Correction

M Figure 1. The protocol booster model.

tocol, using either concatenation or nesting of boosters.
The transparency of boosters to the underlying existing
protocol means that any boosters designed to operate on a
protocol can be arbitrarily ordered, although this may not
always produce desirable properties, e.g., compression fol-
lowed by forward error correction. Protocol booster nesting
is more sophisticated than concatenation. Although a
booster itself is not a protocol, a protocol and a multi-ele-
ment booster combine to form a new protocol. The new
protocol consists of messages of the original protocol com-
bined with messages exchanged among the booster ele-
ments. A second booster can be applied to the new protocol
in which it is nested. Booster nesting can continue to an
arbitrary depth.

With a set of nested boosters, it is natural to talk about a
protocol family generated by the boosters. The base protocol
is the protocol operated on by the outermost booster of the
nested boosters. Additional family members are generated at
deeper and deeper levels of the booster nesting. Thus, proto-
col boosters can be viewed as modular building blocks for a
family of related protocols, each suited to a specific network
environment.

A policy associated with a booster determines under
which conditions booster functions are invoked. Since boost-
ers vary widely in their functions, it is impossible to have a
completely generic invocation policy. Policies may be based
on, but not limited to, observed network behavior, packet
source and destination, or time of day. These policies can be
quite subtle and may even include metapolicies aimed at
preventing undesirable effects when nesting or concatenating
booster elements.

Figure 1 illustrates the above concepts. It depicts boosting
communications, via the nesting of a single element booster
within a multi-element booster, between two hosts, labeled
Host X and Host Y. The establishment of the boosted chan-
nel was arranged via a policy decision which determined that
the network path between Host X and Host Y required addi-
tional support, beyond that which could be provided by the
base protocol. As an example, if the two hosts were running
an application requiring low latency but were connected via a
high-latency, high-loss satellite link, the boosters would con-
spire, at the expense of additional bandwidth and processing
within the network, to hide the retransmission latency from
the application. If Host X was running a similar application
between itself and another host on its local low-latency sub-
net, the boosters would not be deployed; thus, the overall pro-
tocol processing between the two endpoints would be
minimized. Note that the end-to-end communication proper-
ties between Host X and Host Y are not compromised. The
two hosts are unaware of the protocol booster modules insert-
ed in their communication path; they continue to communi-
cate using the original base protocol. The multi-element
booster messages are originated and consumed by the booster

(FZC) booster is a good example of a

multi-element booster. It reduces the

effective packet loss rate on noisy links,
such as terrestrial and satellite wireless networks. Although
packet error correction is normally most efficiently and flex-
ibly done by packet retransmission (automatic repeat
request, ARQ), forward error correction (FEC) is desirable
for some latency-constrained and multicast applications, or
where the return channel is unavailable or slow and where
the loss of a single packet causes other packets to need
retransmission. The FZC booster uses a packet FEC code
with erasure decoding. This booster is part of our TCPAP
booster family, which also includes ARQ boosters, a reorder
booster, and an error detection booster. Each booster is
designed to provide a specific function and work harmo-
niously with the other boosters in the family. The FZC
booster is not well suited for dealing with packet loss due to
congestion; other members of our TCP/AP error control
booster family handle this situation.

Figure 2highlights the basic operation of the FZC booster.
At the transmitter side of the wireless network the FZC booster
adds parity packets. The FZCbooster at the receiver side of the
wireless network removes the parity packets and regenerates
missing data packets. This appears similar to link FEC; howev-
er, link FEC only corrects bits (or words), not IP packets or
TCP segments, and cannot be applied between any two points
in a network (including the end systems). Also, the FZC boost-
er can be applied incrementally. In Fig. 2 for example, we
could add an extra FZC booster at the fixed terminal. If this
booster adds h1 parity packets and the second booster adds A2
parity packets, the portable terminal can recover from up to Al
+ hZ2packet erasures. In the reverse direction the second
booster could reduce the number of redundant packets to
reduce congestion in the wireline network.

BOOSTER IMPLEMENTATIONS

W\é added protocol boosters support to the Linux 2Q32
operating system for the i335 (Intel) architecture [4. Kernel-
level implementation offers efficiency and transparency. Indi-
vidual boosters are implemented as loadable kernel modules
(Ikms), which allow dynamic loadingfemoval of booster mod-
ules into network elements at runtime. Since lkm support is
not unique to Linux, this implementation is amenable to other
variants of UNIX

The implementation’s system components consist of boost-
er instances, booster sequences, and booster traps. A booster
instance is an instantiation of a protocol booster lkm that
behaves in accordance with arguments passed to the booster
when it is invoked or with arguments passed via ioctl system
calls. A booster sequence is a concatenated chain of booster
instances, and a booster trap directs individual packets to a
specific booster sequence. QOur implementation currently lim-
its sequences to 16booster instances and traps boosted chan-
nels by source and destination IP addresses. Stronger trapping
based on other information, such as protocol-specific port
numbers, can be added.

80

IEEE Communications Magazine ¢ Cctober 1968

W& implemented the aforemen-
tioned FZC booster on this platform.
'This booster caches, then immediately
forwards, each data packet it receives,
whether the packet is from an upper-

Base protocol

=

layer protocol or the IP forwarder.

FZC Wireless FZC

network Wireline

The only modification to each data booster booster N
. twol —
packet is that the FZC booster over- / N A neework =
writes the IP packet’s 16bit identifica- Portable e
p terminal terminal

tion field with a sequence number,

allowing the decoder to know the pack-
et’s position information. Practically
speaking, this does not change the
end-to-end UDP datagrams or TCP segments. However, if an
application requires, IP options can be used for packet
sequence information. After receiving k packets (k is defined
per channel) on a given channel, the cached packets are zero-
padded to the size of the largest packet in the cache. Also,
each packet’s size and protocol type are appended to the
packet’s tail. The transmitter performs an FZC matrix multi-
plication over the payload, padding, and appended tail of the
k packets. The h overcode packet payloads produced by the
FEC encoder are then prepended with an IP header and a
booster header. This IP header contains a prototype field
identifying it as a protocol booster packet and a sequence
number in the 16bit identification field. The booster header
contains the type of booster (FZC booster), the value &, and
the sequence number of the first of the k packets. The A
packets are then transmitted toward the same destination as
the data packets.

The FZC debooster at the receive side caches incoming
data packets and immediately forwards them either to an
upper-layer protocol or toward their eventual destination.
Overcode packets are also cached, but are not forwarded.
Packets are released from the cache when either:

1. An entire collection of k data packets are present.

2The received data packets plus parity packets equal 4.
3The cache occupancy dictates cache content replacement.
Only in situation 2are the matrix computations performed to
generate the missing data packets.

To assess the effectiveness of this booster arrangement we
deployed it in a simulated wireless environment running UDP.
The amount and types of errors on wireless networks depend
on link conditions and link error control. In general, however,
errors are not random but come in a burst of consecutive bits.
VAhether the packet errors are also bursty depends on the size
of packets and average burst error lengths. Based on the actu-
al packet loss results obtained in satellite experiments, we
constructed two basic packet error models: random and
bursty. These error models were used in a loss module (imple-
mented as a booster lkm) that can delete packets based on
the chosen error model.

As our application we used the public domain Test TCP
program (tt cp) with the UDP option. We ran tt cp
between two 166MHz Pentium-based machines on a dedi-
cated 10base-T Ethernet. Both machines ran the FZC boost-
er, and the receiver also ran the loss module. The
experiments used a packet size of 512bytes, with 1000 pack-
ets/trial and a block size of 2) packets. As expected, the
results show that with no parity packets the effective packet
loss is roughly the same as the loss rate defined in the loss
module, and that increasing redundancy decreases the effec-
tive packet loss [3. Although burstiness further increases the
network packet loss, the FZC booster is still effective. In
fact, larger block sizes make the difference between bursty
loss and random loss negligible. In this test environment our
implementation was shown to have no performance impact

M Figure 2. Communications over a wireless network with an FZC booster.

on traffic that is not boosted, and a performance impact
commensurate with particular enhancement modules on traf-
fic that is boosted. In particular, comparing the runs of
tt cp between two hosts having no booster infrastructure
present with runs of t t cp between the same two hosts hav-
ing the booster infrastructure installed and a null booster
lkm present reveals no perceptible change in throughput.
The null booster merely logs packet and byte counts. R eplac-
ing the null booster lkm with FZC booster lkms using 4 per-
cent (k= 50, h= 2 and Q) percent (k= 2D, h= ©
overcode, respectively, reduces the application-to-application
throughput to approximately 7.7 Mb/s and 39Mb/s (from
96 Mb/s achievable on an Ethernet), which is still very
acceptable for most current access network technologies.

Many protocol boosters that we have designed perform bit-
intensive operations, and are thus computationally expensive on
general-purpose processors. This is a significant potential limi-
tation, since the operating regime where boosting increases
end-to-end performance may be very small, and thus designers
may be resistant to using the technique, particularly in high-
speed backbone networks. An example of this phenomenon is
file compression; users now compress only where network
access is slow or the file to be transferred is very large.

Protocol boosters are a discipline for use of programmable
network infrastructures. Therefore, if, in the design space of
programmable network infrastructures, other factors (cost,
complexity) could be traded off against performance, the idea
of protocol boosters should still be useful. Field programmable
gate arrays (FPG As) offer such a performance trade-off. The
first and most important fact is that the devices can now be
reprogrammed on the fly; that is, new logic can be download-
ed rapidly into devices that are in-system. Thus, the design
space of programmable network infrastructures includes hard-
ware. The trade-off is this: there is little or no storage on the
devices themselves, and the complexity of boosting operations
is severely limited by the densities and sizes of the devices, yet
the devices are certainly capable of operating at extremely
high data rates.

WA have explored this trade-off experimentally with our
Programmable Protocol Processing Pipeline (P4) prototype
[4] on ATM cells streams at the OC-3 line rate. The P4
channels selected ATM cells (e.g., a virtual circuit) through
logic in a series of up to six SR AM-configured FPG As
(Altera 800 series devices). A crossbar switch performs the
channeling of cells to the various devices. R ate decoupling
between devices is performed via FIFOs dedicated to each
FPG A. The crossbar can be reconfigured in approximately 1
ps. If some protocol-processing element is necessary, the
hardware implementation (i.e., FPG A configuration) can be
downloaded into the FPG A device in approximately 100 ms
on an as-needed basis. Unnecessary modules are simply
removed from the protocol stack by disconnecting the FFG A
device from the processing stream and putting it back into
the pool of available empty devices. The freed device can

IEEE Communications Magazine ¢ Cctober 1968

81

later be downloaded with some other configuration and used
for some other processing.

W& have demonstrated the operation of an FEC encoder
and decoder running at the OC-3link rate (155Mb/) and
boosting the TCPAP (over ATM) protocol stack in a noisy
environment by dynamically adding and removing FEC [F.
The FEC consists of an R = 1/2convolutional encoder and a
Viterbi decoder. The encoder consumes one FPGA device,
the decoder four devices. To assess the effectiveness of this
booster arrangement we constructed a testbed consisting of a
33OMHz Pentium II-based machine running Linux 2Q29
with a Fore PCAZO0ATM NIC, two P4 systems, an ATM
switch, and a broadband network analyzer. t t cp tests were
performed using the FEC booster running at the OC-3rate
with a range of bit error rates (BERs) spanning several
orders of magnitude (from 10'2to 104). For BER > 107
(e.g., a bad link) TCP benefits from the FEC booster, while it
represents a performance cost for BER < 107 (e.g., a good
link). At BER around 10 an improvement of a factor of 10
has been observed, and the improvement grows exponentially
as the BER becomes worse. At BER 10*and worse, TCP
without FEC completely stalls, while TCP with FEC is still
able to operate.

PrRoTOCOL BOOSTERS, ACTIVE NETWORKS,
AND OTHER ADAPTATION TECHNIQUES

Programmable network infrastructures such as active net-
works [@ have attracted attention recently, particularly due
to their potential for accelerating network evolution. Net-
work evolution occurs when the network changes to benefit
applications with advanced services. With programmable
networks, once the service is defined the network can be cus-
tomized to optimize for the delivery of the service. Simple
examples include VAéb proxy caches, specialized firewalls,
and adaptive FECs.

Protocol boosters represent a design methodology for net-
work protocols. The design methodology is centered on the use
of transparent, composable protocol functions called “protocol
boosters” which are injected into protocol stacks at hosts and
inside the network. This latter role relies on the presence of a
programmable network infrastructure. Thus, one simple view of
protocol boosters is an application of active networking.

A second, and more compelling, view of protocol boosters
is as a design methodology for programming active networks.
Several design decisions which underlie the current definition
of protocol boosters were motivated by our experiments with
early boosters. An example is the design restriction that a
booster can operate correctly (albeit with lower performance)
in the absence of any booster-aware code at a receiver. This
seems like a rather odd restriction, but it is strongly motivated
by the preference of packet-switched networks for dynamic
rerouting. Table 1 illustrates where boosters are robust.

If we presumed that routes were static, we could assume
that a boosted packet or message would encounter a debooster
simply by traveling along a path where we had placed one.
However, given that dynamic routing provides fault-tolerance
advantages, it is clear that choosing a model where no deboost-
er is required opens the approach to a wider range of networks.
Thus, protocol boosters can be profitably viewed as a program-
ming style for active networks. While active networks are
intended to provide flexible programming of networks, this
flexibility will not result in robust systems unless disciplined.

Protocol boosters also share a similar problem space with:

* Link-layer adaptation
* Protocol termination [7]

X X No debooster required

X Debooster required

M Table 1. Booster robustness in static and dynamic routing

¢ Protocol conversion [§
* Special end-to-end protocols [9

Link-layer protocol adaptation operates independent of
the higher-layer protocols. This greatly simplifies link protocol
design, but can have many undesirable side effects, such as
increased latency on applications that do not require the
adaptation or uncomplementary protocol interaction with
those that do. Protocol termination is the serial concatenation
of several protocols, each tailored for their local environment,
operating along the path of an application’s data channel.
WAhile protocol termination permits the exchange of informa-
tion between two or more entities over heterogeneous net-
works, it very often comes at the cost of losing desirable
end-to-end properties. In addition, protocol termination
exposes applications to single points of failure and longer per-
packet processing times. Protocol conversion is very much like
protocol termination, with the restriction that only the proto-
col’s syntax is changed; thus, the desirable end-to-end proper-
ties are maintained. Like protocol termination, protocol
conversion exposes applications to single points of failure and
longer per-packet processing times. Protocol boosters have
the advantage over these two techniques in that applications
are not further exposed to single points of failure. Like these
two other solutions, protocol boosters do, in most cases,
induce increased packet processing times to the applications
being boosted. Special end-to-end protocols remove the over-
head associated with general-purpose end-to-end protocols.
This solution creates protocols that are specifically designed
with a single application and network infrastructure in mind.
The performance of such protocols is unmatched by any of
the other alternatives; however, this solution suffers from a
long and expensive development time which may not be cost-
effective for niche applications.

SUMMARY

WA described a method for protocol design based on incre-
mental, dynamic construction of protocols on an as-needed
basis. The elements of these protocols, protocol boosters,
can be composed in a “Tinkertoy”-like manner, to form a
family of protocols. The methodology motivates optimistic
protocol design, where protocols are designed assuming the
best case, and adds additional functionality on an as-needed
basis. This is in direct contrast with building for the worst
case and optimizing by finding common fast paths through
the protocol implementation. Prototypes of the booster
design methodology have been implemented. The perfor-
mance was sufficiently encouraging that a larger-scale design
is being investigated.

Protocol boosters can be viewed as a step toward the
fully programmable infrastructure proposed by a number of
researchers under the rubric of active networks. VAhile many
of the problems are the same (e.g., robust end-to-end
behavior, security for systems into which boosters are load-
ed, etc.), a key advantage of boosters is that they can easily
be injected into today’s systems without a wholesale change
in network infrastructure. In that sense, they offer an early
test of the promise, as well as a programming model, of
active networks.

The protocol booster methodology offers some exciting
possibilities for accelerating the evolution of protocols,

82

IEEE Communications Magazine ¢ Cctober 1968

