
A Service Kernel for MultimediaEndstationsKlara Nahrstedt and Jonathan Smith�Distributed Systems Lab, University of Pennsylvaniae-mail: klara,jms@aurora.cis.upenn.eduAbstractQuality of Service (QoS) guarantees for delay sensitive networked mul-timedia applications, such as teleoperation, must be application-to-application.We describe a set of services, a service kernel, required at the end points,for multimedia call establishment with QoS guarantees. These servicesprovide: (1) Translation among di�erent domain speci�cations (layer-to-layer translation) and domain-resource speci�cations (layer-to-resourcetranslation); (2) Admission and Allocation of resources; and (3) Negotia-tion and Coordination of QoS speci�cations among the distributed end-points. For each service we propose architectural solutions.We are testing the service kernel with an ATM-based telerobotics ap-plication.1 Problem DescriptionQuality of Service (QoS) guarantees for delay sensitive networked multimediaapplications must be application-to-application. Guarantees are achieved if: (1)the information is carried between end-points using delay-bounded communi-cation protocols [6], [5], (2) the end-points use delay-bounded services of theoperating system (OS) [4], [9], and (3) the application, OS and network are ableto prepare and con�gure the environment for delay sensitive multimedia callswith QoS guarantees.We identify a set of services required for QoS guarantees(in end-to-end multi-media establishment protocols) in a multimedia environment at the end-points.We call this set a kernel, because while additional services may be required(e.g., services for establishment of a video conference), these particular serviceare essential.�This work was supported by the National Science Foundation and the Advanced ResearchProjects Agency under Cooperative Agreement NCR-8919038 with the Corporation for Na-tional Research Initiatives. Additional supportwas provided by Bell CommunicationsResearchunder Project DAWN, by an IBM Faculty Development Award, and by Hewlett-Packard.
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Figure 1: End-Point Model with Application, Transport Subsystems and Operat-ing System Speci�cationsWe believe that kernel services must provide the following functions: (1)Admission and Allocation of resources (e.g., task scheduling) for the local pro-cessor; (2) Admission and Allocation of network resources, such as bandwidthand pacing requirements; (3) Negotiation and Coordination among the other ap-plication end-points; and (4) Translation among di�erent resource and domain(application, OS, network) speci�cations. For each, we propose architecturalsolutions.2 End-Point ArchitectureThe kernel services assume the end-point model of Figure 1. The communica-tion stack consists of an user interface, an application subsystem, a transportsubsystem, and a network interface. Both subsystems are embedded in a multi-user/multi-process OS environment.An application identi�es its speci�c requirements to the application subsys-tem using application QoS parameters (Figure 2). The application QoS parame-ter structure describes a multimedia stream in one direction. Hence, one has tokeep in mind that for both directions (input and output) a multimedia streamdescription has to be given. The media quality component consists of an inter-frame speci�cation and an intraframe speci�cation. The interframe speci�cationgives the characteristics of the homogeneous medium stream. If the individualsamples in the stream di�er in quality, intraframe speci�cation has to occur.The parameters are stored in an application database.The transport subsystem is con�gured with network QoS parameters (Figure3), which describe the requirements on the quality of the network connection.The network QoS parameter structure (Figure 3) describes the QoS of data whichis transmitted over one network connection. The network QoS parameters arestored in a network database at the end-point. Hence, the network database
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changed packet rate, R0N , inuences sample rate, RA, and sample size(MA) as follows:MA = bR0NRA c �MNRA = R0NdMAMN e� Fragmentation is set TRUE when sample size is bigger than the packetsize. If fragmentation occurs, it inuences the computation of theend-to-end delay (CN ) for the packet as shown in Figure 6.� Ordering is set TRUE, if continuous media with real-time behaviorare sent. In non-real-time media behavior, the ordering requirementmerely depends on the application's ability to handle out of orderdata.� Error Control depends on the importance parameter and sample lossrate of the medium quality. If real-time behavior of the continu-ous media is required, its importance is high and sample loss rate islow, then a forward error correction (FEC) [7] mechanism is used inthe communication protocol.3 Otherwise, a di�erent error correctionmechanism (e.g., retransmission) can be speci�ed, if supported by thecommunication protocol suite.� Cost and Burstiness mappings are currently not supported.2. Integration means interleaving (multiplexing) di�erent media into one me-dia stream which will be sent through one network connection. This impliesthat the di�erent media qualities have to be merged into a new mediumquality speci�cation (many-to-one), as shown in Figure 8. After integrationof the media qualities, one-to-one translation occurs between the resultantmedium quality and the network QoS for the connection. It is important topoint out that the resultant medium quality is the union with precedenceof the media qualities being integrated. Therefore, integration should bedone on media which have similar QoS requirements.Because the translation is bidirectional, ambiguities can also occur in thiscase. Therefore, the QoS Translator passes to the application several pos-sibilities and lets the user decide which medium will su�er in quality. In amore sophisticated system, a rule-based QoS Translator can be deployedwhich will make decisions based on rules given by the user a priori.3. Disintegration means splitting of a medium stream into several streamswhich will be transmitted through several connections. This case occurs3We use our own RTNP { Real-Time Network Protocol. It is a rate-based network protocolworking above the AAL 4 layer. RTNP currently supports FEC if high reliability is required.Otherwise error correction is turned o�. RTNP has error-detection and it reports to RTAP(Real-Time Application Protocol) about missing information. RTAP must resolve the conictwhen missing information occurs.
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4 Resource Admission ServicesFor call establishment with QoS guarantees, shared resource availability must bechecked. The control is performed by the resource admission services.There are di�erences between resource admission services in network switchesand end-points: An admission service in the network switches limits its respon-sibility to shared network resources. Thus, the resource admission service reliesonly on network resource availability tests (e.g., a schedulability test for admis-sion of outgoing tra�c over a shared link.) Also, in the case of ATM networksthere is only the ATM layer, so all admission tests are at the cell level.End-point admission is more complex. The OS resources (e.g., CPU) aswell as network resources (e.g., bandwidth to/from the network interface) areshared. Further, we have several communication layers; therefore, we have multi-layer admission with multiple resource availability tests, such as OS resourceavailability tests and network resource availability tests. In our end-point model,we assume admission services in the application subsystem and in the transportsubsystem. Further, these admission services rely on the resource admissionservice in the ATM network.54.1 Assumptions for Admission TestsFor speci�cation of schedulability tests (and a feasible task scheduler) in theadmission services, it is important to specify:1. Types of TasksWe examine applications with (i) periodic tasks, due to periodic productionof media; and (ii) deadline-driven tasks for the movement of data from/todevices.6 The deadline-driven tasks can be further classi�ed into hard-real-time deadline tasks which process media streams such as tactile andkinesthetic data; soft-real-time deadline which process media streams suchas audio and video streams; and non-real-time deadline tasks, such as QoSmanagement tasks.2. Scheduling AlgorithmTo schedule a set of periodic and deadline-driven tasks we choose a mixedscheduling algorithm [11] which combines rate-monotonic and deadline-driven scheduling algorithms. The rate monotony applies to the task pro-cessing media/connections according to the sample and packet productionand the consumption rate at the devices. The deadline-driven algorithmapplies to intermediate tasks such as moving data between devices, wherethe deadline is less than or equal to the period allocated to tasks respon-sible for producing/consuming the data.5In the current implementation of the ATM network, there is no admission control inthe ATM or AAL layer. Hence, we assume a lightly loaded ATM LAN, which provides anenvironment where the network resources are available.6The periodic tasks are a subset of deadline-driven tasks, because the task period representsalso a deadline.



4.2 OS Resource Availability TestsThe resource admission service at each subsystem level tests its own OS re-sources with a schedulability test. The �nal decision about the end-point OSresource CPU (i.e., if all tasks are schedulable) must be performed by the trans-port subsystem admission service which has more complete information aboutresource multiplexing at the end-point.For the schedulability test, parameters of interests are: (1) task duration,e; (2) task period, p; and (3) context-switching time between two OS pro-cesses/threads cs.From the schedulability condition for the mixed scheduling algorithm [11]Pi eipi � 1, where i is a number of tasks, we can derive the schedulability test inthe application and transport subsystems:� Schedulability Tests in the Application SubsystemLet us assume that eAo;i;r speci�es in application A the task r duration(processing time) of medium i sample (video/robotics data) in directiono (input/output). Let csAj be the j-th context switching time betweenapplication A tasks. Let min(Pi;o) represent the minimal period amongthe media i sample periods Pi (inverse of sample rate) in direction o. Theschedulability test in the application subsystem is:TA =Xo Xi Xr eAo;i;r +Xj csj � min(Po;i) (1)Further, for each medium i in direction o, the following must hold:Xr eAo;i;r � Po;i (2)� Schedulability Tests in the Transport SubsystemLet eNETo;k;r denote the processing time of the task r performed over connec-tion k packet in direction o in transport subsystem NET. Depending onthe implementation of network tasks, csNETn represents the n-th contextswitching between network tasks. The schedulability test in the transportsubsystem is:TA +Xo Xk Xr eNETo;k;r +Xn csNETn � min(Po;i) (3)Xr eNETo;k;r � Po;k (4)The schedulability test - equation (3) - represents the global schedulabilitytest at the end-point for CPU resource sharing.Both tests assume that there is no interference of other applications and/orusers. If an interference time DI is present, it has to be added to the left side of



the equations (1), (2), (3), and (4). The interference can be formally boundedas described in [10], but the current operating systems provide limited meansto bound the interference [2] and provide a deterministic behavior. Becauseof an insu�cient support of a determinism in OS, in our implementation wehave limited the number of applications and users on the workstation. Further,the context switching contributes to unpredictable behavior [2], therefore thegoal is to have a minimal number of context switching. The most predictablecase is achieved when tasks are implemented in one process (no process contextswitching).4.3 Network Resource Availability TestsThe network resource availability test is needed for end-to-end QoS guarantees.We discuss two tests: an end-to-end delay test and a throughput test. The �naldecision of the end-to-end QoS guarantees is performed at the remote (receiver)end-point in the application subsystem admission service, which has the completeinformation about the application-to-application behavior.� End-to-End Delay TestFor the end-to-end delay test, the parameters of interest are: (1) access andprocessing delay of a sample at the sender side DS , which consists of thesum of (a) processing time of all application tasks for the sample and (b)processing time of all network tasks; (2) delivery and processing delay of asample at the receiver side DR which is computed similar to DS , and (3)network propagation and queuing delay DN . The �nal end-to-end delaytest is performed in the application subsystem by the admission service.The sum of DS , DR, and DN for medium i sample has to satisfy equation:DSi +DRi +DNi � CAi (5)� Throughput TestIn the throughput test we test that: (1) the throughput over one connectionmust be less than the total bandwidth of the host interface in that partic-ular direction; and (2) the sum of throughputs over all connection in eachdirection must be less than or equal to the total bandwidth of the hostinterface in each direction. For example, our ATM host interface has ane�ective bandwidth in each direction of 135 Mbits/second. Therefore, thesum of throughputs of all connections for sending data is checked againstthe 135 Mbits/second bound. The same test is done for connection overwhich we receive data. These tests are performed at the transport sub-system level. The throughput parameter is then translated into samplerate (sample size) and the schedulability test is done thereby determiningif the network throughput can be propagated through the end-point to theapplication.



5 Information Distribution ServicesDistributed networked applications have distributed resources, so QoS param-eters as well as local decisions must be propagated between consecutive layersand between corresponding peers.Layer-to-layer communication includes propagation of responses (`accept',`reject', `modify') about the acceptance of QoS between two consecutive lay-ers. Communication between the layers is carried out by the tuning service atthe user/application interface and by the QoS translator service at the appli-cation/transport interface. Further, if the QoS speci�cation in every layer isdi�erent, translation is involved in the layer-to-layer communication as it wasdescribed above.Peer-to-peer layer communication is performed by the negotiation/renegotiationservices. In peer-to-peer negotiation two separate negotiations are supported:� Application QoS NegotiationApplication QoS negotiation happens between the application subsystems.It has some general properties, such as exchange of application QoS amongthe remote sites. It can also include some application-speci�c properties:{ in our telerobotics experiment the application QoS negotiation is ini-tiated at the operator side;{ the operator speci�es additionally to application QoS (Figure 2) also anon-QoS information (e.g., initial operation `send me video frame' toevaluate the remote environment) which is sent to the remote robot.� Network QoS NegotiationThe network QoS negotiation is performed by the transport subsystem andincludes: (1) exchange of the network QoS values, and (2) exchange of VCImappings to speci�c connections supporting the media transmission.A detailed description of the QoS negotiation service in a robotics environmentis presented in [3].6 Implementation IssuesThe implementation of the service kernel is tested through our driving appli-cation { telerobotics. The hardware components of the experiment are shownin Figure 10. The end-point communication architecture (Figure 5) is imple-mented on the IBM RS/6000s. The connections between the robot control andthe communication system is achieved through bit3 cards via bus-bus communi-cation. This application puts new constraints on the system architecture of theend-points as well as on communication protocols and services in the networkarchitecture.As we pointed out earlier, this application has several speci�c propertieswhich need to be considered in the implementation of the service kernel: (1)
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