
Design, Implementation and Experiences of the OMEGAEnd-Point ArchitectureKlara NahrstedtComputer Science DepartmentUniversity of Illinois at Urbana-Champaign, IL 61801Jonathan M. Smith�Distributed Systems LaboratoryUniversity of Pennsylvania, Philadelphia, PA 19104AbstractThe OMEGA architecture provides end-to-end quality of service (QoS) guarantees for dis-tributed applications. QoS parameters are translated between application and network require-ments by the QoS Broker, thus integrating media and network QoS management into a singleentity. Admission control uses a schedulability test derived from application requirements. Anovel task priority and precedence based scheme is used to represent complex application re-quirements and ensure correct feasible schedules.A prototype of OMEGA has been implemented using workstations connected by a 155 Mbpsdedicated ATM LAN. To simplify implementation, we assumed a networked multimedia appli-cation with periodic media streams, speci�cally a master/slave telerobotics application. Thisapplication employs media with highly diverse QoS requirements (e.g., interarrival times, lossrate, bandwidth) and therefore provides a good platform for testing how closely one can achieveQoS guarantees with workstation hosts and cell-switching. Experience with this implementa-tion has helped to identify new challenges to extending these techniques to a larger domain ofapplications and systems, and suggests promising new research questions.1 IntroductionThe need for end-to-end QoS guarantees in networked multimedia systems (NMS) has becomeclear in a number of application domains and while there is a great deal of excitement, a numberof research challenges have emerged. At their center, these challenges raise the issue of resourcemanagement. There are a variety of views on how this resource management is to be accomplished.One view is embedded in today's IP Internet and UNIX operating system, which might be char-acterized as communitarian. This means that the system is designed to accommodate additionalload by decreasing the \share" of resources given to each system user. This policy, while philo-sophically attractive, can have some unfortunate consequences for some applications in the face of�Research support of both researchers for work at Penn came from Bellcore (through Project DAWN), IBM,Hewlett-Packard, and from the Corporation for National Research Initiatives (CNRI), which is funded by the NationalScience Foundation and the Defense Advanced Research Projects Agency under cooperative agreement # NCR-8919038, and from the National Science Foundation under CDA-92-14924. Nahrstedt's work was supported in partby funds from the Research Board of the University of Illinois at Urbana Champaign1

system dynamics, e.g., resource starvation, or at least large variations in delay for less extreme cases(best e�ort QoS). A contrary view, also somewhat extreme, is that resources should be completelydedicated. Such systems are exempli�ed by dedicated microcontrollers connected by dedicatedcommunications channels (deterministic guaranteed QoS).The attraction of the �rst view is that sharing of resources is maximized, while the attraction ofthe second is that application requirements are guaranteed to be met, unfortunately at a possiblylarge cost in e�cient usage of resources. It is our view that while networked multimedia systemsmay have stringent resource management requirements, these can be accommodated much moree�ciently than with dedicated processors and communications links. New tools for accomplishingthis include the link multiplexing technology known as the Asynchronous Transfer Mode (ATM).ATM multiplexing provides greater control of network resource sharing. New algorithms and soft-ware technologies, e.g., the TENET protocols and real-time support in operating systems such asIBM's Advanced Interactive Executive (AIX), a version of UNIX, are also helpful.This view can only be realized where there are some limitations on resource sharing. TheOMEGA end-point architecture described in this paper has been the result of an interdisciplinaryresearch e�ort which examines the relationships among the requirements of applications, which haveperiodic resource demands, and the ability of the local resource manager (the operating system) andthe global resource management (combining the communications system and remotely managedresources) to satisfy these demands. Focusing on such relationships has provided the necessaryinsight to identify which issues are meaningful to the end-to-end provision of Quality-of-Service(QoS) to applications, particularly those requiring stringent resource management.The OMEGA architecture presumes a network subsystem capable of providing QoS speci�edvia some parameters such as bounds on round-trip or interarrival delays, errors, or throughput. Anexample of such a subsystem would be a realization of an ATM B-ISDN network [TS93] with METS(Multimedia Enhanced Transport Service) support [CCH93], Native-mode ATM stack [KS95], theTENET suite [FV90, BM91] (RCAP, RTIP,CMTP, RMTP), or other architectures. Figure 1 showsseveral end-point network/transport architectures for provision of transport-to-transport layer guar-antees. OMEGA also presumes an operating system providing some real-time capabilities.To provide application-to-application guarantees, these components in isolation are not enough.The contribution of the OMEGA architecture is:� Integration of application, OS and network resources in Networked Multimedia Systems(NMS) for end-to-end QoS guarantees;� Integration of application QoS with network QoS towards end-to-end QoS;� Use of a global precedence graph shared by the application, I/O and transport subsystem fortime synchronization among all task participating in successful end-to-end QoS of a networkedmultimedia application.� Transfer of task priorities from the application to the transport subsystem.The rest of the paper is organized as follows: in Section 2 we describe communication andresource models used for the OMEGA architecture. Section 3 briey discusses the design of the QoSBroker[NS95], and concentrates on services for provision of QoS during the call establishment phase.In Section 4 we describe our experimental testbed, implementation, and measured results. Section5 concludes the paper with lessons learned and suggests promising directions for future research.2

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Subsystem

Transmission Protocols

OMEGA

CMTP/
XTP HeiTS

ST-II IP

Q
oS

-A

Na
tiv

e-
m

od
e A

TM
 S

ta
ck

RMTP

RTIP

RSVP
RCAP

Establishment ProtocolsFigure 1: End-Point Architectures Providing Guarantees according to QoSReaders interested in real-time systems and scheduler design should pay particular attention toSections 3.2.2, 3.3, 3.5, 4.2.4 and 4.2.5. Readers interested in networking can skim these sections,but should capture from Section 3.5 that the protocol elements must be part of the schedulingdiscipline. Roboticists can obtain important highlights of the work from Sections 3.2.1, 4 and 5.2 Modeling of OMEGA ArchitectureWe model networked multimedia systems (NMS) as end-points connected by a network infras-tructure. Network infrastructures such as ATM can provide customized connections where theproperties of tra�c within the network are guaranteed within some limits. Applications, however,rarely interact directly with the network, but rather, interact via an intervening operating system.The operating system implements a sharing policy under which processing capacity is shared be-tween applications. The set of applications, the operating system, and the protocol stack comprisethe end-points of the NMS.The OMEGA architecture is an end-point architecture for provision of QoS guarantees in NMS.We assume in this paper that network management and transmission protocols for provision ofguarantees in intermediate network nodes exist [PZF94, CCH93, KS95] and concentrate on the roleand elements of OMEGA. Hence, together with a proper network management for QoS guaranteesOMEGA achieves global application-to-application guarantees.Since OMEGA functions can be partitioned into remote and local, we model the system in twoparts, (1) the communication model, and (2) the resource model at the end-points.2.1 Communication ModelThe communication system is modeled as a two layer system (Figure 2).2.1.1 Application SubsystemThe application subsystem layer contains the functions of the application and session layers whichcomprise the Real-Time Application Protocol (RTAP). Application protocol functions specify the3

Q
o

S
 B

ro
k

e
r

Real-Time

Application

Protocol (RTAP)

A
pp

lic
at

io
n

Su
bs

ys
te

m

Call

Management

Connection

Management

Real-Time

Network

Protocol (RTNP)

Tr
an

sp
or

t S
ub

sy
st

em Figure 2: OMEGA Communication Modelgoal of the application. Our example is a set of application protocol functions for support of real-time remote control applications. For other applications, the set of functions might be di�erent.The basic set of functions is : call management for uni-directional media streams, read/writeof Application Protocol Data Unit (APDU) such as display images, grab data from a device, in-put/output device rate control for multimedia devices, and error detection/reporting. Optionalfunctions are manipulations of an APDU such as fragmentation, integration/disintegration (whichdepends on the size of an APDU and the similarity/dissimilarity of application QoS), and intraframesynchronization if application subsamples are speci�ed.2.1.2 Transport SubsystemThe transport subsystem layer includes the functionalities of the network and transport layers usingIntegrated Layer Processing [CT90]. Network protocol functions provide services between the ap-plication subsystem and the network host interface. They build the core of the Real-Time NetworkProtocol (RTNP). The basic services are: connection management for uni-directional connections,data movement from/to application ring bu�ers to/from network host interface, and time errordetection/reporting mechanism. As an optional function, we currently support a Forward ErrorCorrection mechanism.2.1.3 QoS BrokerBoth subsystems must provide guaranteed services over speci�ed calls/connections for applications.Therefore, they require guarantees on the resources needed for the communication. Resource guar-antees are negotiated during the call establishment phase by the QoS Broker protocol [NS95] whichis an addition to the communication architecture present in both application and transport layers,as shown in Figure 2. The broker orchestrates both local and global end-point resource availability.2.2 Resource ModelAt the end-point, three logical groups of resources (Figure 3) must be managed, namelymultimediadevices, CPU scheduling and memory allocation, and network resources. As can be seen from thediagram, this grouping follows the communications layeringmodel for the application and transport4

Sy
st

em
 Q

oS
 P

ar
am

et
er

s

B
uf

fe
rs

C
PU

 S
ch

ed
ul

in
g

T
as

ks M
em

or
y

T
ra

ns
po

rt
 S

ub
sy

st
em Network

Multimedia Devices

Input/Output Devices

Application QoS Parameters

A
pp

lic
at

io
n

Su
bs

ys
te

m

Sending/Receiving Connections

Network QoS ParametersFigure 3: OMEGA Resource Modelsubsystem, but since the operating system functions are shared by both layers, the layer boundaryshould not exist. We describe all end-point resources with Quality of Service (QoS) parametersmaintained in small pro�les, which represent the requirements for the resources [NS95].The resources in each domain (application, OS, network) maintain domain-speci�c representa-tions. Therefore, we introduce multiple views of QoS:� Application QoS ParametersApplication requirements for multimedia devices are speci�ed with application QoS parame-ters. For example, video quality is described with frame rate (30 frames/s), frame size (height* width in pixels), color (bits/pixel), etc.The application QoS of a multimedia stream consists of descriptions of both the qualitiesof individual media within the stream, and the way in which these media are combined in amultimedia stream. We call these descriptionsmedia qualities andmedia relations. The mediaquality component consists of an interframe speci�cation and an intraframe speci�cation. Theinterframe speci�cation gives the characteristics of a homogeneous media stream (e.g., samplesize, sample rate, loss tolerance). If the individual samples in the stream di�er in quality,intraframe speci�cation must occur. The media relations specify relations among the streams.Synchronization skew represents a time o�set between two streams in a single direction.Precedence relation speci�es any time dependency between two streams in di�erent directions.For example, in the telerobotics application (see discussion in 3.3.2), there exists a precedencerelation between the sensory stream carrying position information from an operator to arobot, and the sensory stream carrying feedback information from a robot to an operator.Communication relation de�nes the communication topology such as unicast, multicast, orbroadcast. Conversion relation speci�es transformations of a medium (e.g. conversion fromaudio to text in speech recognition application).The parameters are stored in an application QoS pro�le. An example of an entry in theapplication QoS pro�les (in pseudocode) is:MEDIA_QUALITY:Type = ROBOT;Intra_spec = FALSE; /* no interframe specification */5

Direction = INPUT;Sample_size = 64;Sample_rate = 50; /* 50 samples/sec */End_to_end_delay = 20; /* upper bound 20 ms */Loss_rate = 1 /* 1 sample/sec */Importance = HIGH_IMPORTANCE;� Network QoS ParametersThe transport subsystem is con�gured with network QoS parameters, which describe therequirements on the quality of the network connection (network resources). The networkQoS contains the throughput speci�cation (e.g., packet size, bandwidth, burstiness), tra�cspeci�cation (e.g., packet loss, jitter, end-to-end delay) and performance speci�cation (e.g.,ordering, error correction, fragmentation). The network QoS parameter structure describesthe QoS of data over a single network connection. The parameters are stored in a networkdatabase at the end-point. The network pro�le includes as many network QoS descriptionsas there are active connections for sending and receiving data.� System QoS ParametersThe OS behavior is speci�ed by system parameters which are stored in a system pro�le. Thesystem parameters mirror the requirements on CPU scheduling (e.g., task start time, duration,and deadline) and bu�er allocation of the multimedia stream across both subsystems.Perceptual QoS is outside of the OMEGA architecture; it represents the sense-perceptivequality view of a human user (e.g., TV quality of video, telephone quality of audio). It is hard toquantify and its evaluation is subjective and user-dependent.As we explained in the introduction, resource allocation must be performed for guarantees to bemade. We also noted that one of the key questions was the strictness with which resource allocationwould be performed versus the potentially contrary design goal of accommodating dynamics. Thepoint at which the allocation decisions are made in a networked system (such as those we focuson) is called \call establishment". The next section of the paper explains the new mechanisms andtechniques we have developed for the end-to-end call establishment in the OMEGA architecture.3 Call EstablishmentAmong the new mechanisms for the end-to-end call establishment are the QoS Broker, and itsunderlying services for a proper preparation of the schedulable protocol stack. A full descriptionof the QoS Broker protocol design and implementation is presented in [NS95]; we provide a briefoverview here and concentrate on a detailed discussion of services used by the broker, which areillustrated in [NS95] only through examples.3.1 Design of QoS BrokerPreviously, QoS requirements were speci�ed in terms of network QoS parameters and the applicationspeci�ed these parameters to the network. The answer was either Yes, the requirements can bemet, or No, the network cannot provide resources for the required quality (Figure 4). However,6

QoS Request/Response

driven by Application

System

Y/N QoS

QoS/Y/N QoS

QoS/Y/N
QoS/Y/N QoS/Y/N

QoS Brokerage

CPU/OS

QoS Broker

Application User

Application

Network

System

(Network)Figure 4: The QoS Broker Conceptto provide applications with end-to-end guarantees, network resource management alone is notsu�cient, particularly when end-points become more sophisticated (e.g., workstations are equippedwith a rich set of multimedia devices, and support multiprocessing and multiple users.). Thisrequires balancing resources among the application, network, and operating system within the end-points as well as balancing resources between end-points and the network [And93]. As a part ofthe OMEGA system, we designed and implemented a resource management entity, called the QoSBroker, which provides local and global resource management as shown in Figure 5.
Network
Resources

Local

Resources

QoS Broker

(BUYER)

Application
Subsystem

Resources

QoS Broker

(SELLER)

Remote

Resources
System

Resources

Operating

Local Availability of Resources

Renegotiation

Negotiation

Transport
Subsystem
Resources

Global Availability of Resources

Admission

QoS TranslationFigure 5: QoS Broker FunctionalityLocal resource management services include communication of QoS parameters among appli-cation, network and operating system components, testing for availability of end-point resourcesbased on QoS requirements, and reservation/allocation of these resources. This is achieved by usingsubservices such as translation among di�erent QoS views (such as those illustrated in Figure 3)and admission.For global resource availability, the broker uses a negotiation protocol between the end-pointsand relies on network resource guarantees provided by the network subsystem, e.g., by B-ISDNswitches. The goal of the broker is to negotiate a resource deal among all the system components(application, OS, network). In the negotiation process, the broker assumes di�erent roles (sellerand buyer) to distinguish between the participating partners.7

Negotiation is performed during the establishment phase. During the transmission phase ofthe communication system, QoS parameters can change due to (1) network resource change (e.g.,congestion occurred because some other source-user did not behave according to the deal), (2) OSresource change (e.g., priority inversion), and (3) user/application requests for change (e.g., the goalof task changed). To accommodate a QoS parameter change, we support a renegotiation service.In the next subsections, we discuss individual services participating in the QoS brokerage pro-cess.3.2 TranslationTo enforce coordinated management of the resources at the end-points, multiple QoS views mustbe translated among each other. This is done by translation services. These services, in brief,translate QoS speci�cations between layers in the system.3.2.1 Tuning ServiceThe tuning service provides a translation between the perceptual QoS and application QoS param-eters. The goal of this service is to allow the human user to specify QoS using his/her senses, ratherthan numbers and text. We provide a graphical user interface (GUI) and use sample audio/videoclips. For a telerobotics application, the sample might be an animation/video clip of a robot armto specify the required video frame rate. An example is shown in Figure 6.
520x480

240x160

R
an

ge

Frame Size

15

1

Frames/second

R
an

geFigure 6: Graphical User InterfaceThe user controls the perceptual quality of the video display by adjusting the application (play-back) QoS parameters, such as frame rate and picture size, by manipulating a set of sliders. Thepositions of the sliders encode values for application QoS parameters. The GUI allows the user toimmediately see the correlation between the perceptual and application quality parameters. Theprototype is a �rst step towards user-directed QoS parameterization. General translation betweenperceptual QoS and application QoS is nontrivial and still an open research issue, largely becausethe perceptual issues are not completely understood. Future research will likely focus on the in-terplay between computer-human interface research, and the support mechanisms for multimediadisplay and interaction. 8

3.2.2 QoS TranslatorThe translation between the application QoS and the network QoS is performed by the QoS Trans-lator service. The translation is bidirectional and may includes at least three activities:1. One-to-one translation (1-1 mapping) involves a translation between the medium quality andnetwork connection quality. In our prototype, we focused on translation relations betweenperiodic uncompressed streams and CBR (Constant Bit Rate) tra�c, however, this is only asubset of translation relations.Table 1 gives the notation for our variables used in 1-1 mapping; we use x0 to denote a changedvariable x. Table 2 gives a set of translation relations between media quality (application QoS)Application Subsystem (A) Transport Subsystem (N)MA Sample Size MN Packet SizeRA Sample Rate RN Packet RateITN Interarrival Time between PacketsPA Period between Samples PN Period between PacketsCA End-to-End Delay CN End-to-End DelayLRA Sample Loss Rate LRN Packet Loss RateIA Sample Importance IN Packet PriorityBN BandwidthTSA Guaranteed Application ServiceTime per Sample at the Sender HHD Host-to-Host DelayTRA Guaranteed Application Ser-vice Time per Sample at theReceiver BN BandwidthTable 1: Basic Notation for Application and Network QoS (Quantitative Parameters)and throughput/tra�c speci�cation (network QoS). The translations involving change maycause ambiguity when performing inverse translation from network QoS to application QoS.For example, the BN 0 change (Table 2) can result either in change of the APDU size MA 0 orthe application sample rate RA0.The media relations a�ect the performance speci�cation as follows:� Packet Priority (IN) is inherited from the sample importance (IA).� The speci�cation of communication (unicast/multicast/broadcast) is copied to the com-munication type.� Fragmentation is set TRUE if dMA=MNe > 1. If fragmentation occurs, it inuencesthe performance for CA because new operations must occur which requires additionalprocessing time.� Ordering is set TRUE, if continuous media with real-time behavior are sent. For non-real-time media, the ordering requirement merely depends on the application's abilityto handle out of order data. 9

Relation A�ects A�ected by Additional NotesdMA=MN e > 1 Fragmentationand CA Size of MA andMNRN = dMA=MNe �RA RN , Tra�cShaping MA; RAITN = PA = 1RA ITN PA no fragmentation, dMA=MNe = 1ITN 2 (0; PN) ITN , Tra�cShaping PN = 1RN ,dMA=MNe > 1 ITN for 2 consecutive packetsfrom same sampleITN 2 (PN ; PA) ITN , Tra�cShaping PN ; PA ITN for 2 consecutive packetsfrom 2 di�erent samplesCN = (CA�TSA�TRA)dMA=MNe CN CA; TSA ; TRA ;dMA=MNeLRN = LRA LRN LRA Network loss rate for reliablemediumLRN = LRA � dMA=MNe LRN LRA,dMA=MNe Network loss rate for loss-tolerantmediumBN = RN �MN BN RN ;MN After computation of RNR0N = B0NMN RN B0N After negotiation response;M 0A = bR0N=RAc �MN M 0A B0N RA is �xedR0A = R0N=dMA=MNe R0A B0N MA is �xedC0A = dMAMN e � C 0N + TSA + TRA C0A dMA=MNe,C0N if (C 0A > CA) ^ (dMA=MNe >1)) (M 0N > MN)Table 2: 1-1 Mapping between Media Quality and Throughput/Tra�c Speci�cation� Error Correction depends on the importance parameter (IA) and sample loss rate (LRA)of the medium quality. If real-time behavior of the continuous media is required, itsimportance is high and sample loss rate is low, then a Forward Error Correction (FEC)[Bie93] mechanism is used in the RTNP protocol. In other protocol suites, a di�erenterror correction mechanism (e.g., selective retransmission) can be speci�ed. In our RTNPimplementation, if FEC is not needed, then only error detection is performed.� Cost and Burstiness mappings are currently not supported.2. Mixing means multiplexing (at the application subsystem level) di�erent media into a singlestream which will be sent through a single network connection, as shown in Figure 7. Aftermixing, a one-to-one translation occurs between the resulting mixed media quality and thenetwork QoS for a connection. The resulting medium quality is the union with precedenceof the media qualities being integrated. Mixing should be done on media which have similarQoS requirements, otherwise a stream with unrealistic QoS requirements will result.Because the translation is bidirectional, ambiguities can also occur in this case. Therefore,the QoS Translator passes to the application several possibilities and lets the application/user10

Media Quality Parameters

Sample Size (M)

Sample Rate (R)

End-to-End Delay (C)

Sample Loss Rate (LR)

M = <min(M 1,M 2), max(M 1, M 2)>

R = max(R 1, R 2)

C = min(C 1,C 2)

LR = <min(LR 1,LR 2),max(LR 1,LR 2)>

End-to-End Delay (C 2)

Sample Loss Rate (LR 2)

Sample Rate (R 2)

Sample Size (M 2)

End-to-End Delay (C 1)

Sample Loss Rate (LR 1)

Sample Rate (R 1)

Sample Size (M 1)

Media 1 Quality Parameters

Media 2 Quality ParametersFigure 7: Media Quality Mixingdecide which medium will su�er in quality. In a more sophisticated system, a rule-based QoSTranslator can be deployed which will make decisions based on rules given by the user apriori.3. Splitting means demultiplexing (at the application subsystem level) a media stream into sev-eral streams which will be transmitted through several connections. This occurs when themedium stream carries di�erent kinds of information (e.g., in a MPEG compressed videostream we have speci�cation of I-frames, P-frames, and B-frames). Since the interframemedium quality speci�cation includes the intraframe speci�cation, the QoS Translator canperform one-to-one translation immediately between the intraframe component speci�cationand the network QoS.3.2.3 Layer-to-OS Resources TranslationEach communication layer uses OS resources; hence, a mapping between the layer QoS parametersand OS requirements is needed. We consider translations between application QoS parametersand OS resources with respect to the application subsystem protocol (RTAP), as well as networkQoS parameters and OS resources with respect to the transport subsystem protocol (RTNP). Thismapping is done within the admission services.3.3 AdmissionAdmission control is an essential element to achieve guaranteed services. For distributed multime-dia communications systems, each resource along the path(s) between source(s) and sink(s) mustmonitor its availability [And93].In our OMEGA architecture, the control and monitor of end-point resources is done by theQoS Broker, which performs admission control at both layers of the OMEGA system (Figure 2).For the admission and scheduling of RTAP and RTNP protocol data units (PDUs) we assume that(1) RTAP and RTNP protocols consist of set of tasks where each task is processing one PDU;11

(2) for ease of implementation, we assume networked multimedia applications with periodic mediastreams; (3) aperiodic requests may occur, for these requests our scheduler polls periodically andtreats them as deadline-driven requests; (4) all tasks (application and network) are non-preemptivebasic tasks. Non-preemptive algorithms are relatively easy to implement, but the drawback is thata high priority message can be blocked by a long low priority message. This is called priorityinversion [R.L94].Due to the isomorphic mapping between the communication message (application PDU ornetwork PDU) and its equivalent protocol tasks, the application/network QoS parameters aremapped onto the system parameters (1) task priorities, (2) task periods, and (3) bu�er spacerequirements as follows: The application task priorities are inherited from the importance of thestream sample and equivalent to the assignment of priorities according to task deadlines (Section3.3.1). For network tasks, the task priorities are inherited from the application tasks as discussedin Section 3.3.2. The importance of priority inheritance for support of guarantees is clear. Taskdurations are pre-computed and stored a priori in the system QoS pro�le. This is an approachused in the real-time system community when using dedicated resources. However, because weare working in a communitarian environment, we are aware of non-deterministic variations due toI/O or CPU load which are not strictly controlled and do not provide QoS guarantees. SimpleQoS monitoring and adaptation services are used for dynamic resource allocation adjustments.Our current implementation does QoS monitoring, but when violations of deadlines during thetransmission phase occur, a QoS degradation report is issued to the user and the user takes arenegotiation action; this can be viewed as a form of exception handling. There is no automaticdynamic resource allocation adjustment.Task processing times are estimated using a worst-case sample of measured resource utilizations.In practice, such pessimistic estimation let the tasks meet their deadlines.The task period (P) is computed as the inverse of the sample rate/packet rate. The sam-ple/packet size, fragmentation/reassembly, mixing/splitting, and error correction mechanisms de-termine space requirements. In our communication protocols, we allocated at least 2�MA spacefor each unidirectional channel for ring bu�ers, so that sampling and transport can be overlapped.3.3.1 Admission Service in the Application SubsystemThe admission service performs four tests at the application subsystem level: device quality test,local schedulability test, end-to-end delay test and bu�er allocation test. These tests check themultimedia devices and system resources availability for the RTAP. Using the naming conventionof Tables 3 and 4, the tests are summarized in Table 5 and discussed below:� The device quality test compares the con�guration parameters of the multimedia devices withthe speci�ed application QoS requirements. For example, if a video device can provide amaximal frame rate of 15 frames/second and the user speci�es the application QoS samplerate as 30 frames/s, then the admission service either rejects the QoS requirement and waitsfor correct user input, or \falls back" to the possible QoS and informs the user of the change.� The local schedulability test takes the system QoS parameters which specify the applicationtasks for processing of multimedia streams and checks if the tasks are schedulable. Thebehavior of the considered application tasks allows us to test the tasks as if they would be12

Application Subsystem Transport Subsystemi index of streams k index of connectionski index of connections carrying i streamd index for stream direction(S)end/(R)ecv d index for connection direction S/Rr index of RTAP tasks m index of RTNP tasksri index of RTAP tasks per stream i mk index of RTNP tasks per connection krd(i) index of RTAP tasks per stream i indirection d md(k) index of RTNP tasks per k in direction dcsA RTAP tasks context switch time csN RTNP tasks context switch timej index of cs among RTAP tasks n index of cs among RTNP taskseA processing time of a RTAP task eN processing time of a RTNP taski �! i0 relation: stream i precedes stream i0Table 3: Indices for QoS Parameters in Admission Servicescheduled using modi�ed non-preemptive Rate-Monotonic scheduling policy1.The modi�ed schedulability test translates for the application subsystem to the test #(1) inTable 5. Further, for each stream i in direction d, the deadline test #(2) in Table 5 holds.This means that we at �rst admit 1 stream testing (1) and (2), then admit stream 2 underthe consideration that resources for the previous stream 1 were already allocated, etc.If the schedulability test #(1) cannot be met, the stream with later deadline (lower rate) willbe rejected. If the schedulability test is satis�ed, the task precedences are assigned accordingto their deadline (highest priority is assigned to the earliest deadline). If there are input andoutput tasks with the same period, the input tasks get higher precedence than the outputtasks.� The end-to-end delay (EED) test consists of two steps. At the buyer side, the test #(3) takesthe durations of the local buyer application tasks and checks them against the speci�ed QoSEED (CA) bound. Here, we make sure that the tasks, although schedulable, don't violatethe EED requirement. This is especially important in cases where PA > CA. For example,sensory data in telerobotics provide such a behavior (e.g., the task period is PA=20 ms andEED CA=10 ms).At the seller side, all processing times of application tasks ri, network tasks mk over con-nections ki, which carry the stream i, and the actual network latency HHD (Host-to-HostDelay) is taken into account. The test #(3') must hold.� The bu�er allocation test checks if there is enough memory for the ring bu�ers to lockthem in real memory and smooth the tra�c jitter. Smoothing tra�c is required whenmeasured EED < requested EED. Real-time networked applications want the right data1The general Liu and Layland [LL73] schedulability test is modi�ed for non-preemptive tasks: Pnr=1 erPr �1minr(Pr)Pnr=1 er � 1 13

Variable Name RelationSI max. number of schedulableintervals SI = lcm(P 1A ;:::;PnA)min(P 1A;:::;PnA)T iA aggregate processing time of allRTAP tasks per stream i (onesample) T iA =Pr eriA +Pj csjiATS(i)A aggregate processing time of RTAPtasks per sending stream i TS(i)A =Pr erS(i)ATR(i)A aggregate processing time of RTAPtasks per receiving stream i TR(i)A =Pr erR(i)AT 1;:::;i�1A allocated time of all RTAP tasks toprocess previous 1; :::; i� 1 streamsin period mind(i)(P d(i)A) T 1;:::;i�1A =Pi�1ii=1 T iiAT kN time of set of RTNP tasks per con-nection (packet) k T kN =Pmk emkN +Pn csnkNT 1;:::;k�1N allocated time of all RTNP tasks toprocess 1; :::; k�1 previous connec-tions in period mind(i)(P d(i)A) T 1;:::;k�1N =Pk�1kk=1 T kkNWFF wait for feedback time (i �! i0) WFF = 2 � HHD + (Pk TR(ki)N + TR(i)A) +(Pk TS(ki0)N + TS(i0)A)Table 4: Abbreviated Naming and Relations for Admission Servicesat the right time (requested EED), not sooner or later (although sooner is still better thanlater). The ring bu�ers are pinned into real memory, hence Test #(4) holds in our system.The size 2�M iA is then locked in the memory. The 32 MBytes is an upper bound which canbe allocated as a pinned region for user processes in the AIX 3.1 system.3.3.2 Admission Service in the Transport SubsystemThe admission service at the transport subsystem level performs tests on network resources suchas a throughput test, rate control test, network EED test, and system resources such as CPUschedulability test for RTAP/RTNP. Table 6 summarizes the admission tests in the transportsubsystem.� The throughput test controls the assignment of bandwidth to individual connections. Theupper bound of available aggregate throughput at the end-point is determined by the networkhost interface and its device driver. For example, in our system the ATM host interface(hardware) provides a transmission rate of 155 Mbps, however, the ATM transport subsystem,after overhead, provides 135 Mbps [ST93]. Hence, any throughput requested for the sendingor receiving connections is checked against the 135 Mbps limit bound (Test #(6)).14

Admitted Resources Admission Tests Test #CPU for i (T 1;:::;i�1A + T iA � mini(P iA) (1)Deadline for i T iA � P iA (2)EED for i at buyer side T iA < CiA (3)EED for i at seller side (TS(i)A + TR(i)A + (PdPk T d(k)N +HHD)) � CiA (3')Bu�er for i 2�M iA < 32MBytes (4)Table 5: Admission Tests in the Application Subsystem for Stream iAdmitted Resources Admission Tests Test #Bandwidth Pk BkN � 135Mbps (6)Rate Control PdPk Rd(k)N � 1000 (7)CPU for ki T 1;:::;iA + T 1;:::;k�1N + T kN � mini(P iA) (8)Deadline for ki T kN � P kN (9)CPU for ki if (TR(i)A �!TS(i0)A) TS(i0A + TR(i)A + TS(ki0)N + TR(ki)N +WFF � P i0A (10)T 1;:::;iA + T 1;:::;k�1N +WFF + T kN � mini(P iA) (10')EED for k at buyer side T kN � CkN (11)EED for k at seller side Pd T d(k)N +HHD � CkN (11')Table 6: Admission Tests in Transport Subsystem� The rate control test checks the packet rate RN for each connection k in sending and receivingdirections against a certain bound (in our implementation, 1000). This bound results fromthe OS cost (due to overhead) of moving data between the user and kernel space (Test #(7)).� The end-to-end delay test checks the duration of network tasks at the end-points against therequired end-to-end delay bound. The same approach as in the application subsystem withrespect to buyer #(11) and seller sides #(11') must be considered here.� The schedulability test checks the schedulability of all tasks (application and network tasks).The scheduling at the transport subsystem level, where we test schedulability of tasks (ap-plication and network tasks) sharing a single processor, must consider the following timedependencies:1. Time dependencies between application and network tasksWe cannot use the modi�ed RM scheduling and priority assignment according to ratesat the transport subsystem as discussed in Section 3.3.1. The application and networktasks share a single processor and are time dependent on each other, and network tasksmay not be strongly periodic, as is the case for application tasks which must be consid-ered in the schedulability tests and priority assignments (see the computation of ITN15

in Section 3.2.2). The dependency (precedence �! [NS94]) relation is, for example,read sample(i) �! send packet(ki). A further implicit precedence between applicationand network tasks is receive packet(ki)) �! write sample(i).The priority is assigned by the application subsystem to the application tasks (accordingto the rate) and the network tasks must inherit these priorities in order to enforce jointscheduling.The schedulability tests in the transport subsystem for this type of dependency are#(8) and #(9). To illustrate the tests (8) and (9), consider two streams 1 and 2 to beadmitted. Figure 8 shows the ow of admission.
Admit
Net QoS and RTNP Tasks

for Stream 2

of Connection 2

Admit
App QoS and RTAP Tasks

Admit
App QoS and RTAP Tasks

Admit
Net QoS and RTNP Tasks

for Stream 1 for Stream 2

of Connection 1

for Stream 1

ADMISSION IN APPLICATION SUBSYSTEM

GLOBAL ADMISSION IN TRANSPORT SUBSYSTEMFigure 8: Global Admission Flow (Example for test # (8))The network tasks T kN , added to T 1;:::;iA in test #(8), might violate the schedulabilitytest, hence, some task might be rescheduled to the next interval(s), if #(9) is valid. Inthe case of sending tasks, sending network tasks are rescheduled to the next interval(s),if they satisfy the network EED test #(11,11')2. In the case of receiving tasks, theapplication tasks might be rescheduled (see Figure 11). Again, the EED tests # (11,11')need to be checked.2. Time dependencies between input/output streamsWhen testing for schedulability of tasks at the end-points, other types of time depen-dencies might occur and must be considered.For example, Figure 9 shows sensory data dependency relations in our telerobotics appli-cation, where the operator sends position data - sample l in stream i, the slave receivesthe data and returns the force feedback data f(il). The application needs f(il) so thatthe computation of the next sample in stream il+1 can be based on f(il).If this kind of dependency occurs, a wait for feedback (WFF) time interval must beincluded into the schedulability test because the input and output stream informationare interdependent.The schedulability tests for these types of dependencies at an end-point (e.g., the opera-tor side in the telerobotics) are #(10,10'). The knowledge of WFF time can be utilizedfor scheduling of another task which serves a di�erent stream. At the slave side theschedulability test #(8) can be used.2The number of possible intervals to schedule a task is SI (Table 4).16

W
ait

 fo
r F

eed
ba

ck

0

Pr
og

res
sin

g T
im

e

20

Operator Network Slave

Net. i

App. i

l

l

l

App. f(i)

Host-Host Delay

Host-Host Delay

App. i

Net. i

l

l

Net. f(i)l

lApp. f(i)

Net. f(i)lFigure 9: Distributed Scheduling - Precedence Graph (Example)The QoS Broker gets the application precedence relations from the user (through applicationQoS parameters) and together with the implicit application/network precedence relations itcreates a precedence graph (see Section 3.5.3). According to the precedence graph, negotiationand admission services provide the distribution and acceptance of the system QoS parameters(tasks). The broker suggests a joint schedule based on time slicing [NS94]. The joint scheduleconsists of an ordered set of RTAP/RTNP tasks where each task includes an assignment of afeasible time slice. Given a precedence relation among tasks, a feasible time slicing is de�nedas one which assigns to each task a <start time, end time> interval preserving precedenceordering.� The bu�er allocation test is needed if the network tasks queue the incoming/outgoing packets.Our current system queues packets (ATM cells) in the network host interface (ATM layer)and application PDUs at the application subsystem level, but not in the transport subsystem.3.4 Negotiation/RenegotiationThe QoS parameters are exchanged between brokers (buyer and seller) through peer-to-peer nego-tiation as well as between layers using layer-to-layer negotiation.� Peer-to-peer NegotiationThe peer-to-peer negotiation is separated into two levels: application QoS negotiation andnetwork QoS negotiation. This approach allows the application to negotiate application spe-ci�c goals without reserving/allocating/holding shared network resources (which might beexpensive).The network negotiation of QoS exchanges negotiation messages about the tra�c quality ondi�erent connections. The sender reports connection/network QoS values mappings. Theremote side checks its own capabilities to provide the receiving tra�c quality and reports theresult to the sending subsystem. The network QoS parameters can be also changed by thenetwork management. Hence, this negotiation is actually a three party negotiation becausethe network management at the switches can modify the QoS. The response is either `accept',`modify' or `reject'. For `accept'/`modify', the response is sent to the broker buyer with the17

possible network QoS, which means that resources are allocated. In case of `reject' deeperanalysis must occur as to what media, which connections, and what quality were rejected. Forexample, if robotics data and their quality is rejected, the multimedia call makes no sense, sothe application has to terminate. A possible application negotiation in our implementationis described in Section 4.2.3.� Layer-to-layer NegotiationIf the negotiation at the application subsystem level succeeded, the QoS Broker initiatesapplication-to-transport negotiation. From the view of the application it is a negotiation be-cause application QoS parameters are forwarded (through the QoS Translator) to the trans-port subsystem, and the transport subsystem negotiates the QoS values within the subsystemand may change them. The translated application QoS values come to the buyer (initiator)application subsystem. An important part of the negotiation process is the bidirectionaltranslation of QoS parameters done by the QoS Translator as described in 3.2.2.The ow of negotiation is shown in Figure 10.
Buyer Seller

‘accept’

Recv Net QoS

Admit

Send Response

Send App QoS
Recv App QoS

Admit

Send Response

Recv Response

Translate
App QoS to Net QoS

Admit

Admit

Peer-to-Peer Negotiation

Layer-to-Layer
Negotiation

Send Net QoS

Recv Response

Peer-to-Peer Negotiation

Negotiate Net QoS

Negotiate App QoS

Figure 10: Flow of NegotiationRenegotiation is performed during the transmission phase. The joint schedule includes a task`renegotiation' which is scheduled periodically to read a shared variable. The user/application ornetwork can store their request for renegotiation and one possible parameter to change3. If a requestfor change is speci�ed, the QoS Broker is invoked (now in renegotiation state) and it changes thecontract.3Currently, in our implementation we allow the change of only one parameter - video frame rate. Further, we allowonly the relaxation of the bound because we want to do renegotiation in real-time. If a tighter bound is speci�ed thannegotiated, the renegotiation can't be made in real-time because a new schedulability analysis must be performed.In this case, the QoS parameters must be negotiated from the beginning, i.e., the medium call/connection has to betorn down and a new connection must be established. 18

3.5 Schedulable Protocol StackThe RTAP/RTNP protocol functions (tasks) are scheduled according to the joint schedule whichthe broker creates using QoS requirements. The broker puts this schedule in the system QoS pro�le.The joint schedule represents the contract of the broker and it is a precedence graph of protocolfunctions with respect to explicit precedence relations (speci�ed in application QoS) between pro-tocol functions within a protocol layer and implicit precedence relations (given by the protocolstack structure) between the protocol layers to provide global guarantees. The implementation isdetailed in [Nah95]. We will show on an example (Figure 11) how the algorithm for computationof the precedence graph works.
T

A
R(f-sen)

T
A
S(sen)

T
1

N

T
A
S(sen)

T
1

N

T
A
R(f-sen)

T
A
S(sen)

T
A
R(f-sen)

T
A
R(f-sen)

T
A
S(sen)

T
N
2

A
TR(f-sen)T

N
1

T S(sen)
A

T
N
1T S(sen)

A
T S(sen)

A
T

N
1

A
TR(f-sen)T

N
2

A
TR(f-sen) TR(v)

A

sensory data feedback sensory data

Register streams

T
N

2

Globale

Precedence

Graph

T
2

N

WFF

T
2

N

WFF

Application

Graph

Precedence

receive
2

send
1

video
receive

3

WFF T
A

Time Slicing

3

WFF T
N

1 2

WFF T 1
N

T S(sen)
A

T
N
1

A
TR(f-sen)

WFF T
N
2 T

N
2

s s s

T
N

1

T 1
N

T
N

2

3(v) 3(v)

3(v) 3(v)

T
A

T
A

T
A

R(v)

R(v)

R(v)

23(v) 3(v)

R(v)

T
A
R(f-sen)

T
A

l+1S(sen)l

Figure 11: Precedence Graph Creation and Mapping to Time SlicingWe consider at the buyer side registration of (1) one sensory stream sen in direction (s)end(application task period - 20 time units; one-to-one translation), (2) one sensory stream f-sen indirection (R)ecv (application task period - 20 time units; one-to-one translation) and (3) one videostream v in direction (R)ecv (application task period - 60 time units; one-to-one translation). Thelcm is 60 time units, and the number of intervals, scheduled di�erently, is SI = 3 (see Table 4for computation of SI). The intervals are labeled as s1; s2; s3. The tasks are labeled according toTables 3 and 4.The algorithm for computation of precedence graphs works as follows: First, the user regis-ters (speci�es application QoS) sending sensory stream with equivalent application task TS(sen)A ,receiving sensory stream with TR(f�sen)A , and receiving video stream with TR(v)A .Second, we check if resources for application subsystem tasks are available. It means, in theapplication subsystem admission phase TS(sen)A ; TR(f�sen)A andTR(v)A are checked for schedulability,EED and bu�er requirements (tests in Table 5). When these tests are satis�ed for the application19

tasks, the broker forms the tasks into a application precedence graph.Third, in the transport subsystem, the resources for application and network tasks are checkedtogether for availability as follows: The broker-buyer at the application layer gets the correspondingtask TS(sen)A , checks the schedulability and end-to-end delay and if they are satis�ed, it appendsit to the scheduler list in interval s1 (as \reserved"). Going through the brokerage process at thetransport level, the broker gets the corresponding network task T 1N , does tests on both tasks TS(sen)Aand T 1N (tests #(8,9)). If the tests are satis�ed, it appends the network task to the task queue in s1.After getting accept from the broker-seller, the broker-buyer changes the state for the schedulingtask to \allocate". In the next step, the broker-buyer takes the receiving sensory stream, andcomputes gcm from period of both sensory streams (the already accepted S(sen) and the one tobe admitted R(f � sen)). Next, the broker obtains the corresponding application task TR(f�sen)Aand according to the precedence relation it orders the task in the task queue with respect to theprevious application tasks. At the transport level, the network task T 2N including the applicationprecedence relation (force feedback data should be received before the next position is sent out) aretested together with the corresponding application task TR(f�sen)A and all previously accepted tasks(tests #(10,10')). If the tests are positive, the tasks are appended according to their precedencerelations to the global scheduler. The ordering of the tasks is (TS(sen)A ; T 1N ;WFF; T 2N ; TR(f�sen)A).In the next step, the corresponding application task TR(v)A for video is taken and checked againsttests in Table 6. If tests are positive, TR(v)A is appended to the interval s1. In the following step,we consider the network tasks T 3(v1)N , T 3(v2)N which transport video fragments. They preempt TR(v)Afrom s1 to s3 because of the implicit precedence relation between transport and application tasksin receiving direction and violation of test #(8). All equivalent video application/transport tasksare appended to the global precedence graphs accordingly. Note that when video stream startsto be included the number of intervals increases to 3. Hence, copying of previous tasks must bedone before appending corresponding video tasks. The reason is that the copied tasks are alreadyaccepted.4 Validation of OMEGA ArchitectureWe validated the OMEGA architecture using a telerobotics application an Asynchronous TransferMode (ATM) LAN. The telerobotics/teleoperation application is nontrivial and has challengesdistinct from teleconferencing.1. Telerobotics includes end-points (robots) without a human user as well as end-point with ahuman operator. A system con�guration for a possible telerobotics environment4 is shown inFigure 15. Here, the setup of the remote (slave) side must occur remotely without help of ahuman operator. This setup process must be done in a robust manner.2. The media used in our environment are sensory data, video and audio. The sensory dataspecify the positions of the robot arm and are transmitted to the slave. The slave sends forcefeedback sensory data indicating the forces of the robot arm. Audio/Visual feedback5 gives4This telerobotics system con�guration was used for our measurements.5The implementation currently uses only video. 20

the operator control over the working space of the remote robot, and allows proper decisionsin case of a robot failure.Based on the feedback information the operator decides6 on the next move of the master armwhich then translates into position coordinates, transmitted to the slave. A closed loop existsbetween the master arm and the slave arm.3. The telerobotics requirements on the sensor data transmission are: (1) very high reliability,i.e., loss of one position in 1 minute is allowed, and no two consecutive positions can belost; (2) the position is encoded as a vector of 12 oating point values; (3) the end-to-enddelay of position information must be guaranteed and the upper bound is 10 ms; (4) thepositions (samples) should arrive with approximately the same interarrival time (20 ms), i.e.,the sample rate of the positions is 50 samples/s; (5) sensory data are transmitted in bothdirections with the same quality, and (6) the precedence relation between sensory streams atthe operator side is write(f(mk)) �! read(mk+1).4. The requirements on video data transmission are: (1) loss of one frame per second, (2) end-to-end delay is less than 200 ms, and (3) the frame rate is 5 frames/s.4.1 Experimental SetupAn OMEGA prototype is currently running on IBM RISC System/6000 workstations under theAIX OS. The master side uses an IBM RISC System/6000 Model 530, the slave side uses anIBM RISC System/6000 Model 360. The robot control software and hardware resides on two othermachines: the JIFFE real-time processor (supplied to the General Robotics and Sensory PerceptionLab at Penn by AT&T Bell Laboratories) at the master side and a SUN 4 workstation with real-time OS support for UNIX. The two RISC System/6000 workstations are connected through ATMhost interfaces[TS93], using HP G-LINK/UTP5 transmission systems operating at 155 Mbps. TheRISC System/6000 workstations are connected to the individual robot control stations via BIT3S-Bus-to-MCA adapter cards. OMEGA treats access to a robot control bus as a multimedia deviceaccess. The RISC System/6000 Model 360 is equipped with an IBM Ultimedia video card, whichcan produce images at the rate of 30 frames/second.4.2 Software StructureOMEGA is implemented in software and operates in unprivileged user space, as shown in Figure12. The QoS Broker is implemented as a central process with which media streams are registered. Auser interface provides visualization of application QoS using the tuning service. All RTAP/RTNPfunctions per application are integrated in one process which respects the contract (joint schedule,Application QoS, Network QoS in Figure 12) negotiated by the broker. The completion times ofthe X-window manager are taken into account implicitly through the processing time value of theRTAP task responsible for display of a video frame.6Feedback can also be used to run a simulator/planner at the operator side. The simulator determines the nextmove of the master arm and hence the slave arm. The operator serves as an observer to cope with failure/disastercases. 21

X window
manager

Devices

Process

QoS Broker

Process

Local Scheduler

Set of Tasks

Process

RTAP/RTNP

App QoS

Schedule

Net QoS

AIX OS Scheduling (RT Extension)

(Specification of QoS)

User
Interface

Figure 12: Software Structure at the Master SideWe now address implementation issues of the services and functions of Section 3 for the teler-obotics application.4.2.1 Translation� Video TranslationFirst, even a small video frame (e.g.,MA = 38400 bytes) needs to be fragmented due to TPDUsize limitations of the transport subsystem (e.g., MN = 8 KB). The number of fragments(dMA=MN 0e) is computed where M 0N = (MN - header) in bytes. Each video fragment has itsown header, hence the size of the video fragment in MN is altered and throughput requiredfrom the network subsystem is larger than the actual MA � RA from the perspective of theapplication subsystem : BN = MN � dMA=M 0Ne �RA.Second, the loss rate of video frames, requested to be less than one frame/second, requiresthe transport subsystem to detect possible lost video fragments with a window of one second.If a fragment is lost, the associated frame is presumed to be lost, and if fragments from morethan one frame are lost, an exception is signaled.Third, we may use multiple ATM virtual circuits to send the fragments over the ATM network.This makes sense when di�erent qualities are attached to di�erent fragments of the videoframe.� Sensor Data TranslationSensory data consists of four components N, O, A, P represented as a transformation matrixof oating point values. The components have di�erent relative importance ratings for therobotics application. The P component, meaning position coordinates of the robot hand,is the most important. Robotics data are separated in transport PDUs according to theirimportance.The xP ; yP ; zP values and robotics header form one PDU and can be packed into one ATMcell. This PDU gets connection assignment (VCI1) and is transported with no ATM Adap-tation Layer (AAL) support. This connection gets the highest priority in scheduling of the22

connections in OMEGA. The throughput for V CI1 is cell size * sensor data rate + redundantinformation from FEC. FEC is used for V CI1 due to the data's high reliability requirement.The other data are split into three PDUs and sent over connections V CI2, VCI3, and VCI4with a lower priority. There is no FEC performed for these PDUs. Each PDU �ts into anATM cell, hence the throughput of data over each V CI2; V CI3; V CI4 is cell size * sensorydata rate. For these PDUs at the receiver (slave side) the application subsystem bu�ers aprevious copy in case of error detection/report from the transport subsystem, and the copycan be forwarded to the application. Because of the reliability requirement from the roboticsapplication (1 robotics packet per minute), this translates to 1 dropped PDU per VCI perminute.4.2.2 AdmissionThe admission service has access to shared requirements pro�les (databases described in Section3). When all resources are allocated, the contract for each group of resources is stored in thesepro�les.The systempro�le at system startup includes a priori precomputed task durations (RTAP/RTNPtasks) for each medium/connection supported in the real-time networked multimedia application.This is required for schedulability decisions. The result of the schedulability tests is a suggestedfeasible schedule (precedence graph) of all tasks participating in that particular application. Thisschedule is stored in the system pro�le as the contract for CPU scheduling. These precedencegraphs can be used to test possible interleavings of tasks in the system.4.2.3 NegotiationApplication QoS negotiation is application-speci�c. In telerobotics, it is initiated at the operator(QoS Broker - buyer) side. It is performed out-of-band. The buyer speci�es the application QoS ,and additional information such as (image, position). The slave, receiving the negotiation message,(1) checks the application QoS parameters, (2) grabs a video image of the robot arm, (3) gets theinitial position coordinates of the robot arm, and (4) sends a response negotiation message. Thenegotiation message includes (1) a response to the operator's sending QoS parameters (`accept',`modify', or `reject'), and (2) the video image and initial position. The operator checks the accep-tance response and if the answer is `reject', the teleoperation between the operator and slave cannotbe performed. If the answer is `accept'/`modify', the operator allocates resources, and examinesthe video image as well as the position of the robot arm. The robot arm should be in the `PARK'position. It is crucial for the operator to view the working space of the robot arm in case thereare obstacles. If the working space (`robot work envelope') is free, the next negotiation messageincludes a request for the slave to move the robot arm to a starting (`READY') position.The slave moves to the speci�ed position after receiving the second negotiation message andresponds with `prepared' for further operations and positions.4.2.4 SchedulingThe OMEGA implementation utilizes the AIX real-time (RT) extension support. This extension (1)allows real-time applications to be executed within the user space; (2) provides lower context-switch23

time between user processes than in traditional UNIX due to preemptable kernel and e�cient dis-patcher data structures; (3) allows assignment of RT �xed priorities which are not altered accordingto the traditional UNIX priority policy; (4) o�ers timer services of the same granularity for theuser as the kernel services have; (5) provides code and data pinning mechanisms accessible to theuser. The RT extension does not provide direct access to the AIX scheduler for the user, thereforewe split the scheduling. The networked application and network protocol tasks (RTAP/RTNP)run as a separate process where the individual tasks are scheduled with the joint scheduler. Thesingle process uses �xed priority scheduling (Figure 13). We assign a priority higher than the AIXscheduler (priority 16). This provides a crude guarantee that it is not preempted by the scheduler.
Other Tasks

16

Scheduler

Scheduling
Joint

RT priorities

Fixed Priority Scheduling

RT priorities0 40

X

QoS Broker

Protocol

used by RTAP/
RTNP

Other Tasks
RTAP/RTNP

Priority-based Scheduling

Non-RT prioritiesFigure 13: Mapping of the Scheduling4.2.5 Restrictions in our ImplementationThere are some signi�cant restrictions in our prototype implementation. First, we tested OMEGAfor one user per workstation and one multimedia application (telerobotics). This restriction allowedus to put aside the non-deterministic behavior introduced by multiple users and multiple applica-tions sharing one CPU and concentrate on providing QoS guarantees for multiple tasks (threads)of a networked multimedia application �rst. We will extend the OMEGA concepts into OS andthen gradually study QoS guarantees for multiple applications/users.Second, the QoS Broker functions for interaction with networkmanagement in the ATM networkare not completely implemented, as our dedicated ATM LAN does not support any signaling. Theuse of a dedicated ATM LAN allows us to assume that network resources are always available, andto concentrate on end-point issues.4.3 Results� QoS Broker PerformanceThe establishment of a resource contract for a unidirectional QoS call/connection, if one-to-one translation (1-1 mapping) is performed, takes on average 60 milliseconds. Much of thistime is consumed in the analysis of schedule feasibility. If the QoS Translator splits the dataacross VCIs (e.g., the 1-4 mapping for sensory data discussed above), the resource deal takes24

an average of 67 milliseconds. The extra 7 milliseconds is a consequence of the more complexcommunications and QoS structure. Figure 14 shows the run-times of the QoS Broker duringthe negotiation process. Clearly these times are too long, but we used extremely simplealgorithms with poor performance to speed up our implementation of the prototype. Unlessfrequent renegotiation is required, even these times should not present a problem.
450

00
500

00
550

00
600

00
650

00
700

00

1-1 Mapping 1-4 Mapping

QoS Broker with Different Mappings

Du
rati

on
[us

ec]Figure 14: Run-time of the QoS Broker for Sensory Data� RTAP/RTNP PerformanceOMEGA was tested under various scenarios with di�erent combinations of sensory and videodata. The RTAP/RTNP tasks performed well. The measured end-to-end delays of the sensorydata for our telerobotics application are 3 ms (average value) using an ATM LAN environment[NS95], which is about a factor of 60 better than the application had previously achieved. Theapplication subsystem had been running in user space and used TCP/IP over a lightly loadedEthernet (180 ms!) on lightly loaded SUN(slave)/SGI(master) [Nah95] (the same restrictionswere used for OMEGA measurements). Figure 15 shows the con�guration of our teleroboticssystem with support of both systems. The performance di�erence is less due to Ethernetand TCP/IP, and more to the decoupling of the application subsystem from TCP/IP, andlack of real-time support (e.g., no �ne granularity timers, and UNIX process scheduling).For the telerobotics application, the problem with delay larger than 20 ms is that the slavebecomes unstable if the position information does not arrive on time and the slave does nothave any information to react on. An uncontrolled slave can cause severe damage. Since the20 ms bounds could not be met in the more communitarian environment, the older roboticssystem had used open-loop control with a time-delay. With OMEGA roboticists can beginto model their master/slave communication in communitarian environments as closed-loopcontrol utilizing force feedback.When video and sensory data were transmitted together, the performance of the sensorydata was poor due to late packets. We tested this scenario by disabling the admission controlbecause otherwise the broker admission rejected it. The violation of deadlines for sensory datacould be attributed to at least two bottlenecks: (1) head of line blocking (priority inversionbetween video packet and sensory packets) in the ATM host interface architecture caused byserial DMA of packet data for large packets; (2) display of the video frame using not-shared X25

Display Camera

JIFFE station

Robot Control

Software&Hardware

Puma 250

SUN station

Robot Control

Software&Hardware

Puma560

Application

Subsystem

TCP/IP

Adapter

Ethernet

OMEGA

ATM Card

Application

Subsystem

TCP/IP

Adapter

Ethernet

OMEGA

ATM Card

Network

Bus

(master)

Operator Side

Bus

(slave)

Robot Side

Figure 15: Telerobotics System Con�guration with OMEGA/ATM, resp. TCP/IP/Ethernet Sup-port windows. Figure 16 shows the results when 5 video frames are sent every second and sensorydata are sent every 20 ms. The error rate for the sensory data due to late packets is high.
Transmission Interval

QoS
(average values)

End-to-End Delay 149.5 ms

Protocol Processing

RTAP/RTNP

Read/Send : 0.4 ms

Recv/Write: 1.1 ms

200 ms

Media

20 ms

70%

3 ms

Video DataRobotics Data

Late Packets

Recv/Display: 59/38 ms

Read/Send: 3.7/3.2 ms

(no fragmentation)

1 frame = 240x160pixels
8 bits/pixel1 sample=64 bytes

0.0001%Figure 16: Sensory and Video Data TogetherThere are several approaches to this problem, among which are (1) introducing priorityscheduling and multiplexing into the ATM host interface, or (2) minimizing delay due toserializing. Bottleneck (1) could be solved by sending very small video fragments. How-ever, this approach means that the very small video fragments inuence the quality of videoand the user ends up with frame rate of 1 frame/second or lower which might be useless inapplications such as telerobotics.Bottleneck (2) could be solved by using shared X which decreases the display time below 20ms per frame and is necessary when sensory data are multiplexed with the video tra�c. Our26

platform did not support shared X.5 ConclusionThe whole is more than the sum of the parts (Aristotle, Metaphysica)Many distributed multimedia applications need system support for con�gurable and adaptivebehavior. Among the most important con�guration support is that of application-to-applicationreal-time guarantees. Previous to the work presented here, Quality of Service (QoS) was oftenbelieved to be purely a network phenomenon, deliverable via proper con�guration of switches andother network sharing mechanisms. When an application perspective is applied, many of the QoSmeasures do not make sense { mainly because the network QoS is necessary, but is only part of thepicture.The QoS Broker provides a method for coordinating the several layers of the system to provideend-to-end service guarantees. We have used the model of striking a deal, as it reects the notions ofnegotiation and renegotiation of QoS central to adaptive applications. Where guarantees are madein the deal struck, the broker ensures that the necessary resources are guaranteed to be availableat the relevant points in the end-to-end communications path. These guarantees are made possibleby a robust admission service, which ensures that a feasible schedule exists for allocated resources.We noted that traditional schedulability tests were insu�cient for our environment due to theirassumptions about task structure.In this paper, we showed the value of splitting the system into layers based on the natureof the QoS criteria speci�ed in that layer. The layering provides two things. First, providedthat there is a good understanding of the application (which may be encapsulated in applicationpro�les), translation can be performed between speci�cations of QoS. Second, the layer structurecan be used to hide transparent adaptation, e.g., some of the automatic recon�guration of the QoSBroker.To ensure that the transport subsystem was under scheduler control (and hence included in theQoS Broker's set of guaranteed services) we designed and implemented prototypes of a Real-TimeApplication Protocol and Real-Time Network Protocol. While not full-featured, these new stackswere necessary to implement a scheduled multiplexing policy, which we required for end-to-endguarantees.We have implemented a prototype of the OMEGA architecture on a dedicated 155 Mbps ATMLAN. We tested the architecture with a demanding application, that of sensory-feedback teleop-eration. Our application environment tested tactile data and video feedback in the control of aPuma 560 robot arm. For a key parameter in system performance, the end-to-end delay boundobserved by the application, we showed a 3 millisecond versus 180 millisecond advantage overapplication subsystem with TCP/IP operating on an Ethernet LAN. While some of this can beattributed to throughput, the total advantage of about 60 to 1 argues that structuring systems withresource guarantees can have signi�cant advantages for applications. This was the �rst teleroboticsapplication tested over ATM, and our roboticist colleagues are enthused about these results.The prototype OMEGA implementation has limitations, varying between the trivially remediedand deep research questions. An example of the �rst is pacing required by the video service dueto some bugs in the ATM interface device driver. There are many limitations from the computingand communication environment. In particular, there needs to be more control of scheduling for all27

elements of the computing system endpoint. This does not mean that all services must be allocated;rather, it means that the design must allow allocated services to e�ectively interoperate with serviceswhich can operate in a more dynamic environment. An example system containing support ofseveral scheduling policies such as rate-monotonic algorithm, earliest deadline �rst, time slicing,mixed priority scheduling, etc. is the ARTS (A Distributed Real-Time System) kernel[TM89].Among the deepest research questions is that of renegotiation paradigms with adaptive algorithms,and mapping perceptual QoS to the kinds of algorithms and mechanisms we have discussed in thispaper; we have only touched on these topics.There are several promising directions for future work stemming from our research.First, we found that the programming of systems with time constraints was clumsy. To be moreprecise, it required a mixture of application code and system code used to access timer services.This indicates a need for better support for time in programming languages. Such support mightinclude �ner divisions of Application QoS descriptions of media behavior rather than only stronglyversus weakly periodic behavior, as well as re�nements of the API for timing constraints and QoS.It would be desirable to specify more complex behaviors such as:between (t1 and t2)send data with QoS1;after t2send data with QoS2;Experimental language support should be designed and prototyped, combining language supportfor QoS speci�cation [FY94] and language support for time, as in Dannenberg's[Dan84] Arcticlanguage or Lee's CSR (Communicating Shared Resources) [LDG91].Second, while automatic management of resources can be managed by the operating systeminferring application behavior, our observation is that current OS management policies do least wellwith the most complex multimedia application { those that in some sense push the edge. In makingour observations above, we observed that there should be more scheduler control, as we foundthis particularly problematic. More generally, though, the question of application participation inresource management of all types needs examination by the operating systems community. Oneexample of a useful step in this direction was given by Druschel, et al.,[DPD94] who showed thevalue of a di�erent perspective on bu�er management as well as direct access to device resourcesthrough protected \Application Device Channels."Finally, and extending the previous point, we think that the rebalancing of the roles of appli-cation, network and operating system should include the notion of negotiation and renegotiation.Many new systems will require adaptive behavior and we think that research should be done toidentify a general kernel of functions which support this adaptation. We believe that both appli-cation adaptation to system resource changes and system adaptation to application demands mustbe supported.Our OMEGA architecture provides a tested framework for exible adaptive resource man-agement. It provides automatic translation/admission/negotiation, dynamics and guarantees tonetworked multimedia systems. The �rst successful experiments with telerobotics are encouraging,and among our future trials will be the challenge of mobile systems based on wireless networks.28

6 AcknowledgmentWe gratefully acknowledge discussions with David Farber, S. Keshav, Richard Paul, Insup Lee,and Ralf Steinmetz. Brendan Traw designed the ATM infrastructure, and Drew Moore designedthe G-LINK transmission systems used for our experiments. Ruzena Bajcsy, Director of Penn'sGRASP Laboratory, suggested the telerobotics application. Craig Sayers, Nikolaos Fahantidis andD. Venkatesh of the GRASP laboratory helped with our understanding of the application. Theanonymous reviewers provided useful technical and editorial advice.References[And93] D. P. Anderson. Meta-Scheduling for Distributed Continuous Media. ACM Transactionon Computer Systems, 11(3), August 1993.[Bie93] E. W. Biersack. Performance Evaluation of Forward Error Correction in an ATM Envi-ronment. IEEE JSAC, 11(4):631{640, May 1993.[BM91] A. Banerjea and B. Mah. The Real-Time Channel Administration Protocol. In 2nd In-ternational Workshop on Network and Operating System for Digital Audio and Video,Heidelberg, Germany, November 1991.[CCH93] A. Campbell, G. Coulson, and D. Hutchison. A Multimedia Enhanced Transport Servicein a Quality of Service Architecture. In Workshop on Network and Operating SystemSupport for Digital Audio and Video '93, Lancaster, England, November 1993.[CT90] D.D. Clark and D.L. Tennenhouse. Architectural Considerations for a New Generation ofProtocols. In ACM SIGCOMM'90, pages 200{208, Philadelphia, PA, September 2 1990.[Dan84] R.B. Dannenberg. Arctic: A Functional Language for Real-Time Control. In ACM Sym-posium on LISP and Functional Programming, pages 96{103, August 1984.[DPD94] P. Druschel, L.L. Peterson, and B.S. Davie. Experiences with a High-Speed NetworkAdaptor. In ACM SIGCOMM, pages 2{13, London, UK, September 1994.[FV90] D. Ferrari and D. C. Verma. A Scheme for Real-Time Channel Establishment in Wide-AreaNetworks. IEEE JSAC, 8(3):368{379, April 1990.[FY94] P.G.S. Florissi and Y. Yemini. Managing Quality of Service in QuAL. In Workshop onDistributed Multimedia Applications and Quality of Service Veri�cation, Montreal, Canada,June 1994.[KS95] S. Keshav and H. Saran. Semantics and Implementation of a Native-Mode ATM ProtocolStack. Internal technical memo, AT&T Bell Laboratories, Murray Hill, NJ, January 1995.[LDG91] I. Lee, S. Davidson, and R. Gerber. Communicating Shared Resources: A Paradigm forIntegrating Real-Time Speci�cation and Implementation. In A.M. van Tilborg and G.M.Koob, editors, Foundations of Real-Time Computing: Formal Speci�cations and Methods,pages 87{109. Kluwer Academic Press, 1991.29

[LL73] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a HardReal-Time Environment. Journal of the ACM, 20(1):46{61, January 1973.[Nah95] K. Nahrstedt. An Architecture for End-to-End Quality of Service Provision and its Ex-perimental Validation. PhD thesis, Department of Computer and Information Science,University of Pennsylvania, August 1995.[NS94] M. Di Natale and J. A. Stankovic. Dynamic End-to-End Guarantees in Distributed Real-Time Systems. In Real-Time Systems Symposium, pages 216{227, December 1994.[NS95] K. Nahrstedt and J. M. Smith. The QoS Broker. IEEE Multimedia, 2(1):53{67, Spring1995.[PZF94] C. Parris, H. Zhang, and D. Ferrari. Dynamic Management of Guaranteed PerformanceMultimedia Connections. Multimedia Systems, 1(6), 1994.[R.L94] R.L.R Carmo et al. Real-Time Communication Services in a DQDB Network. In Real-TimeSystems Symposium, pages 249 {258, San Juan, Puerto Rico, December 1994.[ST93] J. M. Smith and C. Brendan S. Traw. Giving Applications Access to Gbit/s Networking.IEEE Network, pages 44{52, July 1993.[TM89] H. Tokuda and C. W. Mercer. ARTS: A Distributed Real-Time Kernel. ACM Press,Operating Systems Review, 23(3):29{53, July 1989.[TS93] C. B. S. Traw and J. M. Smith. Hardware/Software Organization of a High-PerformanceATM Host Interface. IEEE JSAC, Special Issue on High-Speed Computer/Network Inter-faces, 11(2):240{253, February 1993.

30

