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Abstract

The OMEGA architecture provides end-to-end quality of service (QoS) guarantees for dis-
tributed applications. QoS parameters are translated between application and network require-
ments by the QoS Broker, thus integrating media and network QoS management into a single
entity. Admission control uses a schedulability test derived from application requirements. A
novel task priority and precedence based scheme is used to represent complex application re-
quirements and ensure correct feasible schedules.

A prototype of OMEGA has been implemented using workstations connected by a 155 Mbps
dedicated ATM LAN. To simplify implementation, we assumed a networked multimedia appli-
cation with periodic media streams, specifically a master/slave telerobotics application. This
application employs media with highly diverse QoS requirements (e.g., interarrival times, loss
rate, bandwidth) and therefore provides a good platform for testing how closely one can achieve
QoS guarantees with workstation hosts and cell-switching. Experience with this implementa-
tion has helped to identify new challenges to extending these techniques to a larger domain of
applications and systems, and suggests promising new research questions.

1 Introduction

The need for end-to-end QoS guarantees in networked multimedia systems (NMS) has become
clear in a number of application domains and while there is a great deal of excitement, a number
of research challenges have emerged. At their center, these challenges raise the issue of resource
management. There are a variety of views on how this resource management is to be accomplished.
One view is embedded in today’s IP Internet and UNIX operating system, which might be char-
acterized as communitarian. This means that the system is designed to accommodate additional
load by decreasing the “share” of resources given to each system user. This policy, while philo-
sophically attractive, can have some unfortunate consequences for some applications in the face of
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system dynamics, e.g., resource starvation, or at least large variations in delay for less extreme cases
(best effort QoS). A contrary view, also somewhat extreme, is that resources should be completely
dedicated. Such systems are exemplified by dedicated microcontrollers connected by dedicated
communications channels (deterministic guaranteed QoS).

The attraction of the first view is that sharing of resources is maximized, while the attraction of
the second is that application requirements are guaranteed to be met, unfortunately at a possibly
large cost in efficient usage of resources. It is our view that while networked multimedia systems
may have stringent resource management requirements, these can be accommodated much more
efficiently than with dedicated processors and communications links. New tools for accomplishing
this include the link multiplexing technology known as the Asynchronous Transfer Mode (ATM).
ATM multiplexing provides greater control of network resource sharing. New algorithms and soft-
ware technologies, e.g., the TENET protocols and real-time support in operating systems such as
IBM’s Advanced Interactive Executive (AIX), a version of UNIX, are also helpful.

This view can only be realized where there are some limitations on resource sharing. The
OMEGA end-point architecture described in this paper has been the result of an interdisciplinary
research effort which examines the relationships among the requirements of applications, which have
periodic resource demands, and the ability of the local resource manager (the operating system) and
the global resource management (combining the communications system and remotely managed
resources) to satisfy these demands. Focusing on such relationships has provided the necessary
insight to identify which issues are meaningful to the end-to-end provision of Quality-of-Service
(QoS) to applications, particularly those requiring stringent resource management.

The OMEGA architecture presumes a network subsystem capable of providing QoS specified
via some parameters such as bounds on round-trip or interarrival delays, errors, or throughput. An
example of such a subsystem would be a realization of an ATM B-ISDN network [TS93] with METS
(Multimedia Enhanced Transport Service) support [CCH93], Native-mode ATM stack [KS95], the
TENET suite [FV90, BM91] (RCAP, RTIP,CMTP, RMTP), or other architectures. Figure 1 shows
several end-point network /transport architectures for provision of transport-to-transport layer guar-
antees. OMEGA also presumes an operating system providing some real-time capabilities.

To provide application-to-application guarantees, these components in isolation are not enough.
The contribution of the OMEGA architecture is:

e Integration of application, OS and network resources in Networked Multimedia Systems
(NMS) for end-to-end QoS guarantees;

e Integration of application QoS with network QoS towards end-to-end QoS;

e Use of a global precedence graph shared by the application, I/O and transport subsystem for
time synchronization among all task participating in successful end-to-end QoS of a networked
multimedia application.

e Transfer of task priorities from the application to the transport subsystem.

The rest of the paper is organized as follows: in Section 2 we describe communication and
resource models used for the OMEGA architecture. Section 3 briefly discusses the design of the QoS
Broker[NS95], and concentrates on services for provision of QoS during the call establishment phase.
In Section 4 we describe our experimental testbed, implementation, and measured results. Section
5 concludes the paper with lessons learned and suggests promising directions for future research.
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Figure 1: End-Point Architectures Providing Guarantees according to QoS

Readers interested in real-time systems and scheduler design should pay particular attention to
Sections 3.2.2, 3.3, 3.5, 4.2.4 and 4.2.5. Readers interested in networking can skim these sections,
but should capture from Section 3.5 that the protocol elements must be part of the scheduling
discipline. Roboticists can obtain important highlights of the work from Sections 3.2.1, 4 and 5.

2 Modeling of OMEGA Architecture

We model networked multimedia systems (NMS) as end-points connected by a network infras-
tructure. Network infrastructures such as ATM can provide customized connections where the
properties of traffic within the network are guaranteed within some limits. Applications, however,
rarely interact directly with the network, but rather, interact via an intervening operating system.
The operating system implements a sharing policy under which processing capacity is shared be-
tween applications. The set of applications, the operating system, and the protocol stack comprise
the end-points of the NMS.

The OMEGA architecture is an end-point architecture for provision of QoS guarantees in NMS.
We assume in this paper that network management and transmission protocols for provision of
guarantees in intermediate network nodes exist [PZF94, CCH93, KS95] and concentrate on the role
and elements of OMEGA. Hence, together with a proper network management for QoS guarantees
OMEGA achieves global application-to-application guarantees.

Since OMEGA functions can be partitioned into remote and local, we model the system in two
parts, (1) the communication model, and (2) the resource model at the end-points.

2.1 Communication Model

The communication system is modeled as a two layer system (Figure 2).

2.1.1 Application Subsystem

The application subsystem layer contains the functions of the application and session layers which
comprise the Real-Time Application Protocol (RTAP). Application protocol functions specify the
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Figure 2: OMEGA Communication Model

goal of the application. Qur example is a set of application protocol functions for support of real-
time remote control applications. For other applications, the set of functions might be different.

The basic set of functions is : call management for uni-directional media streams, read/write
of Application Protocol Data Unit (APDU) such as display images, grab data from a device, in-
put/output device rate control for multimedia devices, and error detection/reporting. Optional
functions are manipulations of an APDU such as fragmentation, integration/disintegration (which
depends on the size of an APDU and the similarity/dissimilarity of application QoS), and intraframe
synchronization if application subsamples are specified.

2.1.2 Transport Subsystem

The transport subsystem layer includes the functionalities of the network and transport layers using
Integrated Layer Processing [CT90]. Network protocol functions provide services between the ap-
plication subsystem and the network host interface. They build the core of the Real-Time Network
Protocol (RTNP). The basic services are: connection management for uni-directional connections,
data movement from/to application ring buffers to/from network host interface, and time error
detection/reporting mechanism. As an optional function, we currently support a Forward Error
Correction mechanism.

2.1.3 QoS Broker

Both subsystems must provide guaranteed services over specified calls/connections for applications.
Therefore, they require guarantees on the resources needed for the communication. Resource guar-
antees are negotiated during the call establishment phase by the QoS Broker protocol [NS95] which
is an addition to the communication architecture present in both application and transport layers,
as shown in Figure 2. The broker orchestrates both local and global end-point resource availability.

2.2 Resource Model

At the end-point, three logical groups of resources (Figure 3) must be managed, namely multimedia
devices, CPU scheduling and memory allocation, and network resources. As can be seen from the
diagram, this grouping follows the communications layering model for the application and transport
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Figure 3: OMEGA Resource Model

subsystem, but since the operating system functions are shared by both layers, the layer boundary
should not exist. We describe all end-point resources with Quality of Service (QoS) parameters
maintained in small profiles, which represent the requirements for the resources [NS95].

The resources in each domain (application, OS, network) maintain domain-specific representa-
tions. Therefore, we introduce multiple views of QoS:

o Application QoS Parameters

Application requirements for multimedia devices are specified with application QoS parame-
ters. For example, video quality is described with frame rate (30 frames/s), frame size (height
* width in pixels), color ( bits/pixel), etc.

The application QoS of a multimedia stream consists of descriptions of both the qualities
of individual media within the stream, and the way in which these media are combined in a
multimedia stream. We call these descriptions media qualities and media relations. The media
quality component consists of an interframe specification and an intraframe specification. The
interframe specification gives the characteristics of a homogeneous media stream (e.g., sample
size, sample rate, loss tolerance). If the individual samples in the stream differ in quality,
intraframe specification must occur. The media relations specify relations among the streams.
Synchronization skew represents a time offset between two streams in a single direction.
Precedence relation specifies any time dependency between two streams in different directions.
For example, in the telerobotics application (see discussion in 3.3.2), there exists a precedence
relation between the sensory stream carrying position information from an operator to a
robot, and the sensory stream carrying feedback information from a robot to an operator.
Communication relation defines the communication topology such as unicast, multicast, or
broadcast. Conversion relation specifies transformations of a medium (e.g. conversion from

audio to text in speech recognition application).

The parameters are stored in an application QoS profile. An example of an entry in the
application QoS profiles (in pseudocode) is:

MEDIA_QUALTITY:
Type = ROBOT;
Intra_spec = FALSE; /* no interframe specification */



Direction = INPUT;

Sample_size = 64;

Sample_rate = 50; /x 50 samples/sec */
End_to_end_delay = 20; /* upper bound 20 ms */
Loss_rate = 1 /* 1 sample/sec */

Importance = HIGH_IMPORTANCE;

e Network QoS Parameters

The transport subsystem is configured with network QoS parameters, which describe the
requirements on the quality of the network connection (network resources). The network
QoS contains the throughput specification (e.g., packet size, bandwidth, burstiness), traffic
specification (e.g., packet loss, jitter, end-to-end delay) and performance specification (e.g.,
ordering, error correction, fragmentation). The network QoS parameter structure describes
the QoS of data over a single network connection. The parameters are stored in a network
database at the end-point. The network profile includes as many network QoS descriptions
as there are active connections for sending and receiving data.

o System QoS Parameters

The OS behavior is specified by system parameters which are stored in a system profile. The
system parameters mirror the requirements on CPU scheduling (e.g., task start time, duration,
and deadline) and buffer allocation of the multimedia stream across both subsystems.

Perceptual QoS is outside of the OMEGA architecture; it represents the sense-perceptive
quality view of a human user (e.g., TV quality of video, telephone quality of audio). It is hard to
quantify and its evaluation is subjective and user-dependent.

As we explained in the introduction, resource allocation must be performed for guarantees to be
made. We also noted that one of the key questions was the strictness with which resource allocation
would be performed versus the potentially contrary design goal of accommodating dynamics. The
point at which the allocation decisions are made in a networked system (such as those we focus
on) is called “call establishment”. The next section of the paper explains the new mechanisms and
techniques we have developed for the end-to-end call establishment in the OMEGA architecture.

3 Call Establishment

Among the new mechanisms for the end-to-end call establishment are the QoS Broker, and its
underlying services for a proper preparation of the schedulable protocol stack. A full description
of the QoS Broker protocol design and implementation is presented in [NS95]; we provide a brief
overview here and concentrate on a detailed discussion of services used by the broker, which are
illustrated in [NS95] only through examples.

3.1 Design of QoS Broker

Previously, QoS requirements were specified in terms of network QoS parameters and the application
specified these parameters to the network. The answer was either Yes, the requirements can be
met, or No, the network cannot provide resources for the required quality (Figure 4). However,
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Figure 4: The QoS Broker Concept

to provide applications with end-to-end guarantees, network resource management alone is not
sufficient, particularly when end-points become more sophisticated (e.g., workstations are equipped
with a rich set of multimedia devices, and support multiprocessing and multiple users.). This
requires balancing resources among the application, network, and operating system within the end-
points as well as balancing resources between end-points and the network [And93]. As a part of
the OMEGA system, we designed and implemented a resource management entity, called the QoS
Broker, which provides local and global resource management as shown in Figure 5.
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Figure b: QoS Broker Functionality

Local resource management services include communication of QoS parameters among appli-
cation, network and operating system components, testing for availability of end-point resources
based on QoS requirements, and reservation/allocation of these resources. This is achieved by using
subservices such as translation among different QoS views (such as those illustrated in Figure 3)
and admisston.

For global resource availability, the broker uses a negotiation protocol between the end-points
and relies on network resource guarantees provided by the network subsystem, e.g., by B-ISDN
switches. The goal of the broker is to negotiate a resource deal among all the system components
(application, OS, network). In the negotiation process, the broker assumes different roles (seller
and buyer) to distinguish between the participating partners.



Negotiation is performed during the establishment phase. During the transmission phase of
the communication system, QoS parameters can change due to (1) network resource change (e.g.,
congestion occurred because some other source-user did not behave according to the deal), (2) OS
resource change (e.g., priority inversion), and (3) user/application requests for change (e.g., the goal
of task changed). To accommodate a QoS parameter change, we support a renegotiation service.

In the next subsections, we discuss individual services participating in the QoS brokerage pro-
cess.

3.2 Translation

To enforce coordinated management of the resources at the end-points, multiple QoS views must
be translated among each other. This is done by translation services. These services, in brief,
translate QoS specifications between layers in the system.

3.2.1 Tuning Service

The tuning service provides a translation between the perceptual QoS and application QoS param-
eters. The goal of this service is to allow the human user to specify QoS using his/her senses, rather
than numbers and text. We provide a graphical user interface (GUI) and use sample audio/video
clips. For a telerobotics application, the sample might be an animation/video clip of a robot arm
to specify the required video frame rate. An example is shown in Figure 6.
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Figure 6: Graphical User Interface

The user controls the perceptual quality of the video display by adjusting the application (play-
back) QoS parameters, such as frame rate and picture size, by manipulating a set of sliders. The
positions of the sliders encode values for application QoS parameters. The GUI allows the user to
immediately see the correlation between the perceptual and application quality parameters. The
prototype is a first step towards user-directed QoS parameterization. General translation between
perceptual QoS and application QoS is nontrivial and still an open research issue, largely because
the perceptual issues are not completely understood. Future research will likely focus on the in-
terplay between computer-human interface research, and the support mechanisms for multimedia
display and interaction.



3.2.2 QoS Translator

The translation between the application QoS and the network QoS is performed by the QoS Trans-
lator service. The translation is bidirectional and may includes at least three activities:

1. One-to-one translation (1-1 mapping) involves a translation between the medium quality and
network connection quality. In our prototype, we focused on translation relations between
periodic uncompressed streams and CBR (Constant Bit Rate) traffic, however, this is only a
subset of translation relations.

Table 1 gives the notation for our variables used in 1-1 mapping; we use z’ to denote a changed
variable z. Table 2 gives a set of translation relations between media quality (application QoS)

Application Subsystem (A) Transport Subsystem (N)
M,  Sample Size My Packet Size
Ry Sample Rate Ry Packet Rate

ITN Interarrival Time between Packets

Py Period between Samples Py Period between Packets
Ca End-to-End Delay Cn End-to-End Delay
LR, Sample Loss Rate LRy  Packet Loss Rate
Iy Sample Importance In Packet Priority

By Bandwidth

TE Guaranteed Application Service | HHD Host-to-Host Delay
Time per Sample at the Sender

T}f Guaranteed Application Ser- | By Bandwidth
vice Time per Sample at the

Receiver

Table 1: Basic Notation for Application and Network QoS (Quantitative Parameters)

and throughput/traffic specification (network QoS). The translations involving change may
cause ambiguity when performing inverse translation from network QoS to application QoS.
For example, the By’ change (Table 2) can result either in change of the APDU size M4’ or
the application sample rate R,'.

The media relations affect the performance specification as follows:

e Packet Priority (In) is inherited from the sample importance (I4).

e The specification of communication (unicast/multicast/broadcast) is copied to the com-
munication type.
Fragmentation is set TRUE if [My/Mpy]| > 1. If fragmentation occurs, it influences
the performance for C'y because new operations must occur which requires additional
processing time.

e Ordering is set TRUE, if continuous media with real-time behavior are sent. For non-
real-time media, the ordering requirement merely depends on the application’s ability
to handle out of order data.



Relation Affects Affected by Additional Notes
[Ma/Mn]>1 Fragmentation | Size of M, and
and C'y My
Ry = [MA/MN-| X Ry RN, Traffic MA,RA
Shaping
ITy = P4y = Rl_A ITy Py no fragmentation, [My4/My]| =1
ITN € (0, Py) 1Ty, Traffic | Py = ﬁ, ITy for 2 consecutive packets
Shaping [Ma/My] > 1 from same sample
ITN € (Pn, Pa) ITy, Traffic | Py, Py ITy for 2 consecutive packets
Shaping from 2 different samples
oy = Ca T ) Cy Ca, T3, TE,
[M4/MnN ]
LRy = LR,4 LRy LRy Network loss rate for reliable
medium
LRy = LRy X [Ma/Mn] LRy LRy, Network loss rate for loss-tolerant
[Ma/Mny] medium
By = Ry X My By Ry, My After computation of Ry
N = ﬁ—é‘\’r Ry By After negotiation response;
MA: L §V/RAJ XMN MA B;V RA is fixed
"W =Ry/[Ma/Mp] Ry By M, is fixed
Ch=TaA1xCy+TE+TF | Cy [My/Mn], if (Cy > Ca) A ([Ma/Mn] >
C;V 1) = (M]Iv > MN)

Table 2: 1-1 Mapping between Media Quality and Throughput/Traffic Specification

e Error Correction depends on the importance parameter (/4) and sample loss rate (LR 4)
of the medium quality. If real-time behavior of the continuous media is required, its
importance is high and sample loss rate is low, then a Forward Error Correction (FEC)
[Bie93] mechanism is used in the RTNP protocol. In other protocol suites, a different
error correction mechanism (e.g., selective retransmission) can be specified. In our RTNP
implementation, if FEC is not needed, then only error detection is performed.

e (ost and Burstiness mappings are currently not supported.

2. Mizing means multiplexing (at the application subsystem level) different media into a single
stream which will be sent through a single network connection, as shown in Figure 7. After
mixing, a one-to-one translation occurs between the resulting mized media quality and the
network QoS for a connection. The resulting medium quality is the union with precedence
of the media qualities being integrated. Mixing should be done on media which have similar
QoS requirements, otherwise a stream with unrealistic QoS requirements will result.

Because the translation is bidirectional, ambiguities can also occur in this case. Therefore,
the QoS Translator passes to the application several possibilities and lets the application/user
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Media 1 Quality Parameters

Sample Size (M 1)

Sample Rate (R 1)

End-to-End Delay (C 1) Media Quality Parameters

SampleLossRate (LR 1)
Sample Size (M) M =<min(M 1L,M 2), max(M 1, M 2)>
Sample Rate (R) R=max(R1,R2)
Media 2 Quality Parameters End-to-End Delay (C) | C=min(C 1C2)
Sample Loss Rate (LR) LR=<min(LR 1LR 2)max(LR 1,LR 2)>
Sample Size (M 2)

SampleRate (R 2)

End-to-End Delay (C 2)

SampleLossRate (LR 2)

Figure 7: Media Quality Mizing

decide which medium will suffer in quality. In a more sophisticated system, a rule-based QoS
Translator can be deployed which will make decisions based on rules given by the user a
Ppriori.

3. Splitting means demultiplexing (at the application subsystem level) a media stream into sev-
eral streams which will be transmitted through several connections. This occurs when the
medium stream carries different kinds of information (e.g., in a MPEG compressed video
stream we have specification of I-frames, P-frames, and B-frames). Since the interframe
medium quality specification includes the intraframe specification, the QoS Translator can
perform one-to-one translation immediately between the intraframe component specification
and the network QoS.

3.2.3 Layer-to-OS Resources Translation

Each communication layer uses OS resources; hence, a mapping between the layer QoS parameters
and OS requirements is needed. We consider translations between application QoS parameters
and OS resources with respect to the application subsystem protocol (RTAP), as well as network
QoS parameters and OS resources with respect to the transport subsystem protocol (RTNP). This
mapping is done within the admission services.

3.3 Admission

Admission control is an essential element to achieve guaranteed services. For distributed multime-
dia communications systems, each resource along the path(s) between source(s) and sink(s) must
monitor its availability [And93].

In our OMEGA architecture, the control and monitor of end-point resources is done by the
QoS Broker, which performs admission control at both layers of the OMEGA system (Figure 2).
For the admission and scheduling of RTAP and RTNP protocol data units (PDUs) we assume that
(1) RTAP and RTNP protocols consist of set of tasks where each task is processing one PDU;

11



(2) for ease of implementation, we assume networked multimedia applications with periodic media
streams; (3) aperiodic requests may occur, for these requests our scheduler polls periodically and
treats them as deadline-driven requests; (4) all tasks (application and network) are non-preemptive
basic tasks. Non-preemptive algorithms are relatively easy to implement, but the drawback is that
a high priority message can be blocked by a long low priority message. This is called priority
inversion [R.L94].

Due to the isomorphic mapping between the communication message (application PDU or
network PDU) and its equivalent protocol tasks, the application/network QoS parameters are
mapped onto the system parameters (1) task priorities, (2) task periods, and (3) buffer space
requirements as follows: The application task priorities are inherited from the importance of the
stream sample and equivalent to the assignment of priorities according to task deadlines (Section
3.3.1). For network tasks, the task priorities are inherited from the application tasks as discussed
in Section 3.3.2. The importance of priority inheritance for support of guarantees is clear. Task
durations are pre-computed and stored a priori in the system QoS profile. This is an approach
used in the real-time system community when using dedicated resources. However, because we
are working in a communitarian environment, we are aware of non-deterministic variations due to
I/O or CPU load which are not strictly controlled and do not provide QoS guarantees. Simple
QoS monitoring and adaptation services are used for dynamic resource allocation adjustments.
Our current implementation does QoS monitoring, but when violations of deadlines during the
transmission phase occur, a QoS degradation report is issued to the user and the user takes a
renegotiation action; this can be viewed as a form of exception handling. There is no automatic
dynamic resource allocation adjustment.

Task processing times are estimated using a worst-case sample of measured resource utilizations.
In practice, such pessimistic estimation let the tasks meet their deadlines.

The task period (P) is computed as the inverse of the sample rate/packet rate. The sam-
ple/packet size, fragmentation/reassembly, mixing/splitting, and error correction mechanisms de-
termine space requirements. In our communication protocols, we allocated at least 2 X M, space
for each unidirectional channel for ring buffers, so that sampling and transport can be overlapped.

3.3.1 Admission Service in the Application Subsystem

The admission service performs four tests at the application subsystem level: device quality test,
local schedulability test, end-to-end delay test and buffer allocation test. These tests check the
multimedia devices and system resources availability for the RTAP. Using the naming convention
of Tables 3 and 4, the tests are summarized in Table 5 and discussed below:

e The device quality test compares the configuration parameters of the multimedia devices with
the specified application QoS requirements. For example, if a video device can provide a
maximal frame rate of 15 frames/second and the user specifies the application QoS sample
rate as 30 frames/s, then the admission service either rejects the QoS requirement and waits
for correct user input, or “falls back” to the possible QoS and informs the user of the change.

o The local schedulability test takes the system QoS parameters which specify the application
tasks for processing of multimedia streams and checks if the tasks are schedulable. The
behavior of the considered application tasks allows us to test the tasks as if they would be

12



Application Subsystem Transport Subsystem
i index of streams k index of connections
k index of connections carrying i stream
d index for stream direction | d index for connection direction S/R
(S)end/(R)ecv
r index of RTAP tasks m index of RTNP tasks
7t index of RTAP tasks per stream 3 mkF index of RTNP tasks per connection &
pa(?) index of RTAP tasks per stream 7 in | m**) index of RTNP tasks per k in direction d
direction d
cS4 RTAP tasks context switch time CcSN RTNP tasks context switch time
J index of ¢s among RTAP tasks n index of ¢s among RTNP tasks
ea processing time of a RTAP task EN processing time of a RTNP task
1 — ¢’ relation: stream ¢ precedes stream ¢’

Table 3: Indices for QoS Parameters in Admission Service

scheduled using modified non-preemptive Rate-Monotonic scheduling policy!.

The modified schedulability test translates for the application subsystem to the test #(1) in
Table 5. Further, for each stream ¢ in direction d, the deadline test #(2) in Table 5 holds.
This means that we at first admit 1 stream testing (1) and (2), then admit stream 2 under
the consideration that resources for the previous stream 1 were already allocated, etc.

If the schedulability test #(1) cannot be met, the stream with later deadline (lower rate) will
be rejected. If the schedulability test is satisfied, the task precedences are assigned according
to their deadline (highest priority is assigned to the earliest deadline). If there are input and
output tasks with the same period, the input tasks get higher precedence than the output
tasks.

e The end-to-end delay (EED) test consists of two steps. At the buyer side, the test #(3) takes
the durations of the local buyer application tasks and checks them against the specified QoS
EED (C4) bound. Here, we make sure that the tasks, although schedulable, don’t violate
the EED requirement. This is especially important in cases where Py, > C4. For example,

sensory data in telerobotics provide such a behavior (e.g., the task period is P4=20 ms and
EED C4=10 ms).

At the seller side, all processing times of application tasks 7¢, network tasks m* over con-
nections k?, which carry the stream i, and the actual network latency HH D (Host-to-Host
Delay) is taken into account. The test #(3’) must hold.

e The buffer allocation test checks if there is enough memory for the ring buffers to lock
them in real memory and smooth the traffic jitter. Smoothing traffic is required when
measured EED < requested EED. Real-time networked applications want the right data

!The general Liu and Layland [LL73] schedulability test is modified for non-preemptive tasks: Z" e <

1 n ” r=1 P* =
min,(P") Zr:l € S 1
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Variable | Name Relation

SI max. number of schedulable | ST = %
intervals arma

TS aggregate processing time of all | T4 =3, €7 + P csfz
RTAP tasks per stream ¢ (one
sample)

Tj(z) aggregate processing time of RTAP Tj(z) =>. e’::(l)
tasks per sending stream 3

7E® aggregate processing time of RTAP | T2 — > e

A geregate p g A r€a

tasks per receiving stream 3

le" w1 allocated time of all RTAP tasks to le""’i_l = 22;11 ij'
process previous 1, ...,2 — 1 streams
in period mind(i)(PZ(z))

Tk time of set of RTNP tasks per con- | Tk = 3" & e%k +> . cs’j(,k
nection (packet) k

T;,’""k_l allocated time of all RTNP tasks to T;,’""k_l = ]1:1::11 Tkk
process 1, ..., k— 1 previous connec-
tions in period mind(i)(PX(z)) '

WFF | wait for feedback time (i — ¢/) | WFF = 2 x HHD + (5, THF) 4 7Ry 4

(e Tn™ ) + 159

Table 4: Abbreviated Naming and Relations for Admission Services

at the right time (requested EED), not sooner or later (although sooner is still better than
later). The ring buffers are pinned into real memory, hence Test #(4) holds in our system.
The size 2 X Mil is then locked in the memory. The 32 MBytes is an upper bound which can

be allocated as a pinned region for user processes in the AIX 3.1 system.

3.3.2 Admission Service in the Transport Subsystem

The admission service at the transport subsystem level performs tests on network resources such
as a throughput test, rate control test, network EED test, and system resources such as CPU
schedulability test for RTAP/RTNP. Table 6 summarizes the admission tests in the transport

subsystem.

e The throughput test controls the assignment of bandwidth to individual connections. The

upper bound of available aggregate throughput at the end-point is determined by the network

host interface and its device driver. For example, in our system the ATM host interface
(hardware) provides a transmission rate of 155 Mbps, however, the ATM transport subsystem,
after overhead, provides 135 Mbps [ST93]. Hence, any throughput requested for the sending
or receiving connections is checked against the 135 Mbps limit bound (Test #(6)).

14




Admitted Resources Admission Tests Test #
CPU for i (T """ + T < ming(Py) (1)
Deadline for ¢ Ty < Py (2)
EED for ¢ at buyer side Ty, <CY (3)
EED for i at seller side T 4+ RO (v, 5, T3 L HHDY)Y < ¢y | (3)
Buffer for 4 2 X M} < 32M Bytes (4)
Table 5: Admission Tests in the Application Subsystem for Stream i
Admitted Resources Admission Tests Test #
Bandwidth S BY < 135Mbps (6)
Rate Control ik R%k) <1000 (7)
CPU for k' Ty + Ty + Tk < min;(PY) (8)
Deadline for k* Tk < Pk (9)
CPU for ki if (TH — | 730 4 pBO) 4 PS8 L pBE) | yypp < P (10)
Sz’
") |
Ty + Ty * '+ WFF 4 Tk < min;(P}) (10%)
EED for k at buyer side Tk < Ck (11)
EED for k at seller side > T]'f,(k) +HHD < C% (117)

Table 6: Admission Tests in Transport Subsystem

e The rate control test checks the packet rate Ry for each connection k in sending and receiving
directions against a certain bound (in our implementation, 1000). This bound results from
the OS cost (due to overhead) of moving data between the user and kernel space (Test #(7)).

e The end-to-end delay test checks the duration of network tasks at the end-points against the
required end-to-end delay bound. The same approach as in the application subsystem with
respect to buyer #(11) and seller sides #(11’) must be considered here.

e The schedulability test checks the schedulability of all tasks (application and network tasks).
The scheduling at the transport subsystem level, where we test schedulability of tasks (ap-
plication and network tasks) sharing a single processor, must consider the following time
dependencies:

1. Time dependencies between application and network tasks

We cannot use the modified RM scheduling and priority assignment according to rates
at the transport subsystem as discussed in Section 3.3.1. The application and network
tasks share a single processor and are time dependent on each other, and network tasks
may not be strongly periodic, as is the case for application tasks which must be consid-
ered in the schedulability tests and priority assignments (see the computation of ITy
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in Section 3.2.2). The dependency (precedence — [NS94]) relation is, for example,
read_sample(i) — send_packet(k*). A further implicit precedence between application
and network tasks is receive_packet(k')) — write_sample(3).

The priority is assigned by the application subsystem to the application tasks (according
to the rate) and the network tasks must inherit these priorities in order to enforce joint
scheduling.

The schedulability tests in the transport subsystem for this type of dependency are
#(8) and #(9). To illustrate the tests (8) and (9), consider two streams 1 and 2 to be
admitted. Figure 8 shows the flow of admission.

ADMISSION IN APPLICATION SUBSYSTEM

Admit Admit

App QoS and RTAP Tasks »| APP QoS and RTAP Tasks
for Stream 1 for Stream 2

Admit Admit

Net QoS and RTNP Tasks Net QoS and RTNP Tasks
of Connection 1 of Connection 2

for Stream 1 for Stream 2

GLOBAL ADMISSION IN TRANSPORT SUBSYSTEM

Figure 8: Global Admission Flow (Ezample for test # (8))

The network tasks T]’\“,, added to le""’i in test #(8), might violate the schedulability
test, hence, some task might be rescheduled to the next interval(s), if #(9) is valid. In
the case of sending tasks, sending network tasks are rescheduled to the next interval(s),
if they satisfy the network EED test #(11,11°)2. In the case of receiving tasks, the
application tasks might be rescheduled (see Figure 11). Again, the EED tests # (11,11’)
need to be checked.

2. Time dependencies between input/output streams
When testing for schedulability of tasks at the end-points, other types of time depen-
dencies might occur and must be considered.
For example, Figure 9 shows sensory data dependency relations in our telerobotics appli-
cation, where the operator sends position data - sample [ in stream %, the slave receives
the data and returns the force feedback data f(7;). The application needs f(7;) so that
the computation of the next sample in stream 4;4; can be based on f(4;).
If this kind of dependency occurs, a wait for feedback (WFF) time interval must be
included into the schedulability test because the input and output stream information
are interdependent.
The schedulability tests for these types of dependencies at an end-point (e.g., the opera-
tor side in the telerobotics) are #(10,10°). The knowledge of WFF time can be utilized
for scheduling of another task which serves a different stream. At the slave side the
schedulability test #(8) can be used.

2The number of possible intervals to schedule a task is ST (Table 4).
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Figure 9: Distributed Scheduling - Precedence Graph (Ezample)

The QoS Broker gets the application precedence relations from the user (through application
QoS parameters) and together with the implicit application/network precedence relations it
creates a precedence graph (see Section 3.5.3). According to the precedence graph, negotiation
and admission services provide the distribution and acceptance of the system QoS parameters
(tasks). The broker suggests a joint schedule based on time slicing [NS94]. The joint schedule
consists of an ordered set of RTAP/RTNP tasks where each task includes an assignment of a
feasible time slice. Given a precedence relation among tasks, a feasible time slicing is defined
as one which assigns to each task a <start time, end time>> interval preserving precedence
ordering.

e The buffer allocation test is needed if the network tasks queue the incoming/outgoing packets.
Our current system queues packets (ATM cells) in the network host interface (ATM layer)
and application PDUs at the application subsystem level, but not in the transport subsystem.

3.4 Negotiation/Renegotiation

The QoS parameters are exchanged between brokers (buyer and seller) through peer-to-peer nego-
tiation as well as between layers using layer-to-layer negotiation.

o Peer-to-peer Negotiation

The peer-to-peer negotiation is separated into two levels: application QoS negotiation and
network QoS negotiation. This approach allows the application to negotiate application spe-
cific goals without reserving/allocating/holding shared network resources (which might be
expensive).

The network negotiation of QoS exchanges negotiation messages about the traffic quality on
different connections. The sender reports connection/network QoS values mappings. The
remote side checks its own capabilities to provide the receiving traffic quality and reports the
result to the sending subsystem. The network QoS parameters can be also changed by the
network management. Hence, this negotiation is actually a three party negotiation because
the network management at the switches can modify the QoS. The response is either ‘accept’,
‘modify’ or ‘reject’. For ‘accept’/‘modify’, the response is sent to the broker buyer with the
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possible network QoS, which means that resources are allocated. In case of ‘reject’ deeper
analysis must occur as to what media, which connections, and what quality were rejected. For
example, if robotics data and their quality is rejected, the multimedia call makes no sense, so
the application has to terminate. A possible application negotiation in our implementation
is described in Section 4.2.3.

o Layer-to-layer Negotiation

If the negotiation at the application subsystem level succeeded, the QoS Broker initiates
application-to-transport negotiation. From the view of the application it is a negotiation be-
cause application QoS parameters are forwarded (through the QoS Translator) to the trans-
port subsystem, and the transport subsystem negotiates the QoS values within the subsystem
and may change them. The translated application QoS values come to the buyer (initiator)
application subsystem. An important part of the negotiation process is the bidirectional
translation of QoS parameters done by the QoS Translator as described in 3.2.2.

The flow of negotiation is shown in Figure 10.

_______________ [ S & &

v Negotjate App QoS
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\
= Recv Net Q0S
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Figure 10: Flow of Negotiation

Renegotiation is performed during the transmission phase. The joint schedule includes a task
‘renegotiation’ which is scheduled periodically to read a shared variable. The user/application or
network can store their request for renegotiation and one possible parameter to change®. If a request
for change is specified, the QoS Broker is invoked (now in renegotiation state) and it changes the
contract.

3 Currently, in our implementation we allow the change of only one parameter - video frame rate. Further, we allow
only the relaxation of the bound because we want to do renegotiation in real-time. If a tighter bound is specified than
negotiated, the renegotiation can’t be made in real-time because a new schedulability analysis must be performed.
In this case, the QoS parameters must be negotiated from the beginning, i.e., the medium call/connection has to be
torn down and a new connection must be established.
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3.5 Schedulable Protocol Stack

The RTAP/RTNP protocol functions (tasks) are scheduled according to the joint schedule which
the broker creates using QoS requirements. The broker puts this schedule in the system QoS profile.
The joint schedule represents the contract of the broker and it is a precedence graph of protocol
functions with respect to explicit precedence relations (specified in application QoS) between pro-
tocol functions within a protocol layer and implicit precedence relations (given by the protocol
stack structure) between the protocol layers to provide global guarantees. The implementation is
detailed in [Nah95]. We will show on an example (Figure 11) how the algorithm for computation
of the precedence graph works.

video
receive
3

sensory data| feedback sensory data
sen receive

1

Register streams

Application
Precedence T S(sen) T R(f-sen) T R(V)
Graph A A A

Globale

Precedence

Graph

B I i

=

S S
1 2 S3

Figure 11: Precedence Graph Creation and Mapping to Time Slicing

We consider at the buyer side registration of (1) one sensory stream sen in direction (s)end
(application task period - 20 time units; one-to-one translation), (2) one sensory stream f-sen in
direction (R)ecv (application task period - 20 time units; one-to-one translation) and (3) one video
stream v in direction (R)ecv (application task period - 60 time units; one-to-one translation). The
lcm is 60 time units, and the number of intervals, scheduled differently, is SI = 3 (see Table 4
for computation of SI). The intervals are labeled as s;, s2, s3. The tasks are labeled according to
Tables 3 and 4.

The algorithm for computation of precedence graphs works as follows: First, the user regis-

ters (specifies application QoS) sending sensory stream with equivalent application task Tj(sen),

receiving sensory stream with Tf(f_se"), and receiving video stream with Tf(v).
Second, we check if resources for application subsystem tasks are available. It means, in the
application subsystem admission phase Tj(sen),Tf(f_sen)ande(v) are checked for schedulability,

EED and buffer requirements (tests in Table 5). When these tests are satisfied for the application
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tasks, the broker forms the tasks into a application precedence graph.
Third, in the transport subsystem, the resources for application and network tasks are checked
together for availability as follows: The broker-buyer at the application layer gets the corresponding

task Tj(sen), checks the schedulability and end-to-end delay and if they are satisfied, it appends
it to the scheduler list in interval s; (as “reserved”). Going through the brokerage process at the
transport level, the broker gets the corresponding network task Ty, does tests on both tasks Tj(sen)
and Ty (tests #(8,9)). If the tests are satisfied, it appends the network task to the task queue in s;.
After getting accept from the broker-seller, the broker-buyer changes the state for the scheduling
task to “allocate”. In the next step, the broker-buyer takes the receiving sensory stream, and
computes gem from period of both sensory streams (the already accepted S(sen) and the one to
be admitted R(f — sen)). Next, the broker obtains the corresponding application task Tf(f_se")
and according to the precedence relation it orders the task in the task queue with respect to the
previous application tasks. At the transport level, the network task T% including the application
precedence relation (force feedback data should be received before the next position is sent out) are
tested together with the corresponding application task Tf(f_se") and all previously accepted tasks
(tests #(10,10%)). If the tests are positive, the tasks are appended according to their precedence
relations to the global scheduler. The ordering of the tasks is (Tj(sen), Ty, WFF,T%, Tf(f_sen)).
(v)

In the next step, the corresponding application task Tf for video is taken and checked against

©) is appended to the interval s;. In the following step,

we consider the network tasks T]?\’,(vl), TI?\’,(UZ) which transport video fragments. They preempt Tf(v)
from s; to s3 because of the implicit precedence relation between transport and application tasks
in receiving direction and violation of test #(8). All equivalent video application/transport tasks
are appended to the global precedence graphs accordingly. Note that when video stream starts
to be included the number of intervals increases to 3. Hence, copying of previous tasks must be
done before appending corresponding video tasks. The reason is that the copied tasks are already
accepted.

tests in Table 6. If tests are positive, Tf

4 Validation of OMEGA Architecture

We validated the OMEGA architecture using a telerobotics application an Asynchronous Transfer
Mode (ATM) LAN. The telerobotics/teleoperation application is nontrivial and has challenges
distinct from teleconferencing.

1. Telerobotics includes end-points (robots) without a human user as well as end-point with a
human operator. A system configuration for a possible telerobotics environment* is shown in
Figure 15. Here, the setup of the remote (slave) side must occur remotely without help of a
human operator. This setup process must be done in a robust manner.

2. The media used in our environment are sensory data, video and audio. The sensory data
specify the positions of the robot arm and are transmitted to the slave. The slave sends force
feedback sensory data indicating the forces of the robot arm. Audio/Visual feedback® gives

*This telerobotics system configuration was used for our measurements.
5The implementation currently uses only video.

20



the operator control over the working space of the remote robot, and allows proper decisions
in case of a robot failure.

Based on the feedback information the operator decides® on the next move of the master arm
which then translates into position coordinates, transmitted to the slave. A closed loop exists
between the master arm and the slave arm.

3. The telerobotics requirements on the sensor data transmission are: (1) very high reliability,
i.e., loss of one position in 1 minute is allowed, and no two consecutive positions can be
lost; (2) the position is encoded as a vector of 12 floating point values; (3) the end-to-end
delay of position information must be guaranteed and the upper bound is 10 ms; (4) the
positions (samples) should arrive with approximately the same interarrival time (20 ms), i.e.,
the sample rate of the positions is 50 samples/s; (5) sensory data are transmitted in both
directions with the same quality, and (6) the precedence relation between sensory streams at
the operator side is write(f(mg)) — read(mpy1).

4. The requirements on video data transmission are: (1) loss of one frame per second, (2) end-
to-end delay is less than 200 ms, and (3) the frame rate is 5 frames/s.

4.1 Experimental Setup

An OMEGA prototype is currently running on IBM RISC System /6000 workstations under the
AIX OS. The master side uses an IBM RISC System/6000 Model 530, the slave side uses an
IBM RISC System/6000 Model 360. The robot control software and hardware resides on two other
machines: the JIFFE real-time processor (supplied to the General Robotics and Sensory Perception
Lab at Penn by AT&T Bell Laboratories) at the master side and a SUN 4 workstation with real-
time OS support for UNIX. The two RISC System /6000 workstations are connected through ATM
host interfaces|TS93], using HP G-LINK/UTP5 transmission systems operating at 155 Mbps. The
RISC System/6000 workstations are connected to the individual robot control stations via BIT3
S-Bus-to-MCA adapter cards. OMEGA treats access to a robot control bus as a multimedia device
access. The RISC System /6000 Model 360 is equipped with an IBM Ultimedia video card, which
can produce images at the rate of 30 frames/second.

4.2 Software Structure

OMEGA is implemented in software and operates in unprivileged user space, as shown in Figure
12.

The QoS Brokeris implemented as a central process with which media streams are registered. A
user interface provides visualization of application QoS using the tuning service. All RTAP/RTNP
functions per application are integrated in one process which respects the contract (joint schedule,
Application QoS, Network QoS in Figure 12) negotiated by the broker. The completion times of
the X-window manager are taken into account implicitly through the processing time value of the
RTAP task responsible for display of a video frame.

®Feedback can also be used to run a simulator/planner at the operator side. The simulator determines the next
move of the master arm and hence the slave arm. The operator serves as an observer to cope with failure/disaster
cases.
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Figure 12: Software Structure at the Master Side

We now address implementation issues of the services and functions of Section 3 for the teler-
obotics application.

4.2.1 Translation

o Video Translation

First, even a small video frame (e.g., M4 = 38400 bytes) needs to be fragmented due to TPDU
size limitations of the transport subsystem (e.g., My = 8 KB). The number of fragments
([Ma/Mp1]) is computed where My = (My - header) in bytes. Each video fragment has its
own header, hence the size of the video fragment in Mpy is altered and throughput required
from the network subsystem is larger than the actual M4 X R4 from the perspective of the
application subsystem : By = My X [Ma/Mp] X Ra.

Second, the loss rate of video frames, requested to be less than one frame/second, requires
the transport subsystem to detect possible lost video fragments with a window of one second.
If a fragment is lost, the associated frame is presumed to be lost, and if fragments from more
than one frame are lost, an exception is signaled.

Third, we may use multiple ATM virtual circuits to send the fragments over the ATM network.
This makes sense when different qualities are attached to different fragments of the video
frame.

e Sensor Data Translation

Sensory data consists of four components N, O, A, P represented as a transformation matrix
of floating point values. The components have different relative importance ratings for the
robotics application. The P component, meaning position coordinates of the robot hand,
is the most important. Robotics data are separated in transport PDUs according to their
importance.

The zp,yp, zp values and robotics header form one PDU and can be packed into one ATM
cell. This PDU gets connection assignment ( VCI;) and is transported with no ATM Adap-
tation Layer (AAL) support. This connection gets the highest priority in scheduling of the
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connections in OMEGA. The throughput for VC1I is cell size * sensor data rate + redundant
information from FEC. FEC is used for VCI; due to the data’s high reliability requirement.

The other data are split into three PDUs and sent over connections VC'Iy, VClI3, and VCI,
with a lower priority. There is no FEC performed for these PDUs. Each PDU fits into an
ATM cell, hence the throughput of data over each VCI5, VCI3, VCI, is cell size * sensory
data rate. For these PDUs at the receiver (slave side) the application subsystem buffers a
previous copy in case of error detection/report from the transport subsystem, and the copy
can be forwarded to the application. Because of the reliability requirement from the robotics
application (1 robotics packet per minute), this translates to 1 dropped PDU per VCI per
minute.

4.2.2 Admission

The admission service has access to shared requirements profiles (databases described in Section
3). When all resources are allocated, the contract for each group of resources is stored in these
profiles.

The system profile at system startup includes a prior: precomputed task durations (RTAP/RTNP
tasks) for each medium/connection supported in the real-time networked multimedia application.
This is required for schedulability decisions. The result of the schedulability tests is a suggested
feasible schedule (precedence graph) of all tasks participating in that particular application. This
schedule is stored in the system profile as the contract for CPU scheduling. These precedence
graphs can be used to test possible interleavings of tasks in the system.

4.2.3 Negotiation

Application QoS negotiation is application-specific. In telerobotics, it is initiated at the operator
(QoS Broker - buyer) side. It is performed out-of-band. The buyer specifies the application QoS ,
and additional information such as (image, position). The slave, receiving the negotiation message,
(1) checks the application QoS parameters, (2) grabs a video image of the robot arm, (3) gets the
initial position coordinates of the robot arm, and (4) sends a response negotiation message. The
negotiation message includes (1) a response to the operator’s sending QoS parameters (‘accept’,
‘modify’, or ‘reject’), and (2) the video image and initial position. The operator checks the accep-
tance response and if the answer is ‘reject’, the teleoperation between the operator and slave cannot
be performed. If the answer is ‘accept’/‘modify’, the operator allocates resources, and examines
the video image as well as the position of the robot arm. The robot arm should be in the ‘PARK’
position. It is crucial for the operator to view the working space of the robot arm in case there
are obstacles. If the working space (‘robot work envelope’) is free, the next negotiation message
includes a request for the slave to move the robot arm to a starting (‘READY’) position.

The slave moves to the specified position after receiving the second negotiation message and
responds with ‘prepared’ for further operations and positions.

4.2.4 Scheduling

The OMEGA implementation utilizes the AIX real-time (RT) extension support. This extension (1)
allows real-time applications to be executed within the user space; (2) provides lower context-switch
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time between user processes than in traditional UNIX due to preemptable kernel and efficient dis-
patcher data structures; (3) allows assignment of RT fixed priorities which are not altered according
to the traditional UNIX priority policy; (4) offers timer services of the same granularity for the
user as the kernel services have; (5) provides code and data pinning mechanisms accessible to the
user. The RT extension does not provide direct access to the AIX scheduler for the user, therefore
we split the scheduling. The networked application and network protocol tasks (RTAP/RTNP)
run as a separate process where the individual tasks are scheduled with the joint scheduler. The
single process uses fixed priority scheduling (Figure 13). We assign a priority higher than the AIX
scheduler (priority 16). This provides a crude guarantee that it is not preempted by the scheduler.

Other Tasks
RTAP/RTNP used by RTAP/ QoS Broker
RTNP
Protocol Other Tasks
Joint
Scheduling

[ Scheduler ]
|O| RT priorities | 16| RT priorities |40| Non-RT priorities
Fixed Priority Scheduling Priority-based Scheduling

Figure 13: Mapping of the Scheduling

4.2,5 Restrictions in our Implementation

There are some significant restrictions in our prototype implementation. First, we tested OMEGA
for one user per workstation and one multimedia application (telerobotics). This restriction allowed
us to put aside the non-deterministic behavior introduced by multiple users and multiple applica-
tions sharing one CPU and concentrate on providing QoS guarantees for multiple tasks (threads)
of a networked multimedia application first. We will extend the OMEGA concepts into OS and
then gradually study QoS guarantees for multiple applications/users.

Second, the QoS Broker functions for interaction with network management in the ATM network
are not completely implemented, as our dedicated ATM LAN does not support any signaling. The
use of a dedicated ATM LAN allows us to assume that network resources are always available, and
to concentrate on end-point issues.

4.3 Results

e QoS Broker Performance

The establishment of a resource contract for a unidirectional QoS call/connection, if one-to-
one translation (1-1 mapping) is performed, takes on average 60 milliseconds. Much of this
time is consumed in the analysis of schedule feasibility. If the QoS Translator splits the data
across VClIs (e.g., the 1-4 mapping for sensory data discussed above), the resource deal takes
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an average of 67 milliseconds. The extra 7 milliseconds is a consequence of the more complex
communications and QoS structure. Figure 14 shows the run-times of the QoS Broker during
the negotiation process. Clearly these times are too long, but we used extremely simple
algorithms with poor performance to speed up our implementation of the prototype. Unless
frequent renegotiation is required, even these times should not present a problem.
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Figure 14: Run-time of the QQoS Broker for Sensory Data

¢ RTAP/RTNP Performance

OMEGA was tested under various scenarios with different combinations of sensory and video
data. The RTAP/RTNP tasks performed well. The measured end-to-end delays of the sensory
data for our telerobotics application are 3 ms (average value) using an ATM LAN environment
[NS95], which is about a factor of 60 better than the application had previously achieved. The
application subsystem had been running in user space and used TCP/IP over a lightly loaded
Ethernet (180 ms!) on lightly loaded SUN(slave)/SGI(master) [Nah95] (the same restrictions
were used for OMEGA measurements). Figure 15 shows the configuration of our telerobotics
system with support of both systems. The performance difference is less due to Ethernet
and TCP/IP, and more to the decoupling of the application subsystem from TCP/IP, and
lack of real-time support (e.g., no fine granularity timers, and UNIX process scheduling).
For the telerobotics application, the problem with delay larger than 20 ms is that the slave
becomes unstable if the position information does not arrive on time and the slave does not
have any information to react on. An uncontrolled slave can cause severe damage. Since the
20 ms bounds could not be met in the more communitarian environment, the older robotics
system had used open-loop control with a time-delay. With OMEGA roboticists can begin
to model their master/slave communication in communitarian environments as closed-loop
control utilizing force feedback.

When video and sensory data were transmitted together, the performance of the sensory
data was poor due to late packets. We tested this scenario by disabling the admission control
because otherwise the broker admission rejected it. The violation of deadlines for sensory data
could be attributed to at least two bottlenecks: (1) head of line blocking (priority inversion
between video packet and sensory packets) in the ATM host interface architecture caused by
serial DMA of packet data for large packets; (2) display of the video frame using not-shared X
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Figure 15: Telerobotics System Configuration with OMEGA/ATM, resp. TCP/IP/Ethernet Sup-
port

windows. Figure 16 shows the results when 5 video frames are sent every second and sensory
data are sent every 20 ms. The error rate for the sensory data due to late packets is high.

Media Robotics Data Video Data
1 frame = 240x160pixels
QoS 1 sample=64 bytes 8 bits/pixel
(average values) (no fragmentation)
End-to-End Delay 3ms 149.5 ms
Protocol Processing Read/Send : 0.4 ms Read/Send: 3.7/3.2 ms
RTAP/RTNP Recv/Write: 1.1 ms Recv/Display: 59/38 ms
L ate Packets 70% 0.0001%
Transmission Interval 20 ms 200 ms

Figure 16: Sensory and Video Data Together

There are several approaches to this problem, among which are (1) introducing priority
scheduling and multiplexing into the ATM host interface, or (2) minimizing delay due to
serializing. Bottleneck (1) could be solved by sending very small video fragments. How-
ever, this approach means that the very small video fragments influence the quality of video
and the user ends up with frame rate of 1 frame/second or lower which might be useless in
applications such as telerobotics.

Bottleneck (2) could be solved by using shared X which decreases the display time below 20
ms per frame and is necessary when sensory data are multiplexed with the video traffic. Our
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platform did not support shared X.

5 Conclusion
The whole is more than the sum of the parts (Aristotle, Metaphysica)

Many distributed multimedia applications need system support for configurable and adaptive
behavior. Among the most important configuration support is that of application-to-application
real-time guarantees. Previous to the work presented here, Quality of Service (QoS) was often
believed to be purely a network phenomenon, deliverable via proper configuration of switches and
other network sharing mechanisms. When an application perspective is applied, many of the QoS
measures do not make sense — mainly because the network QoS is necessary, but is only part of the
picture.

The QoS Broker provides a method for coordinating the several layers of the system to provide
end-to-end service guarantees. We have used the model of striking a deal, as it reflects the notions of
negotiation and renegotiation of QoS central to adaptive applications. Where guarantees are made
in the deal struck, the broker ensures that the necessary resources are guaranteed to be available
at the relevant points in the end-to-end communications path. These guarantees are made possible
by a robust admission service, which ensures that a feasible schedule exists for allocated resources.
We noted that traditional schedulability tests were insufficient for our environment due to their
assumptions about task structure.

In this paper, we showed the value of splitting the system into layers based on the nature
of the QoS criteria specified in that layer. The layering provides two things. First, provided
that there is a good understanding of the application (which may be encapsulated in application
profiles), translation can be performed between specifications of QoS. Second, the layer structure
can be used to hide transparent adaptation, e.g., some of the automatic reconfiguration of the QoS
Broker.

To ensure that the transport subsystem was under scheduler control (and hence included in the
QoS Broker’s set of guaranteed services) we designed and implemented prototypes of a Real-Time
Application Protocol and Real-Time Network Protocol. While not full-featured, these new stacks
were necessary to implement a scheduled multiplexing policy, which we required for end-to-end
guarantees.

We have implemented a prototype of the OMEGA architecture on a dedicated 155 Mbps ATM
LAN. We tested the architecture with a demanding application, that of sensory-feedback teleop-
eration. Our application environment tested tactile data and video feedback in the control of a
Puma 560 robot arm. For a key parameter in system performance, the end-to-end delay bound
observed by the application, we showed a 3 millisecond versus 180 millisecond advantage over
application subsystem with TCP/IP operating on an Ethernet LAN. While some of this can be
attributed to throughput, the total advantage of about 60 to 1 argues that structuring systems with
resource guarantees can have significant advantages for applications. This was the first telerobotics
application tested over ATM, and our roboticist colleagues are enthused about these results.

The prototype OMEGA implementation has limitations, varying between the trivially remedied
and deep research questions. An example of the first is pacing required by the video service due
to some bugs in the ATM interface device driver. There are many limitations from the computing
and communication environment. In particular, there needs to be more control of scheduling for all
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elements of the computing system endpoint. This does not mean that all services must be allocated;
rather, it means that the design must allow allocated services to effectively interoperate with services
which can operate in a more dynamic environment. An example system containing support of
several scheduling policies such as rate-monotonic algorithm, earliest deadline first, time slicing,
mixed priority scheduling, etc. is the ARTS (A Distributed Real-Time System) kernel[TM89].
Among the deepest research questions is that of renegotiation paradigms with adaptive algorithms,
and mapping perceptual QoS to the kinds of algorithms and mechanisms we have discussed in this
paper; we have only touched on these topics.

There are several promising directions for future work stemming from our research.

First, we found that the programming of systems with time constraints was clumsy. To be more
precise, it required a mixture of application code and system code used to access timer services.
This indicates a need for better support for time in programming languages. Such support might
include finer divisions of Application QoS descriptions of media behavior rather than only strongly
versus weakly periodic behavior, as well as refinements of the API for timing constraints and QoS.
It would be desirable to specify more complex behaviors such as:

between (¢1 and t2)

send data with QoSi;
after {2

send data with QoSy;

Experimental language support should be designed and prototyped, combining language support
for QoS specification [FY94] and language support for time, as in Dannenberg’s[Dan84] Arctic
language or Lee’s CSR (Communicating Shared Resources) [LDG91].

Second, while automatic management of resources can be managed by the operating system
inferring application behavior, our observation is that current OS management policies do least well
with the most complex multimedia application — those that in some sense push the edge. In making
our observations above, we observed that there should be more scheduler control, as we found
this particularly problematic. More generally, though, the question of application participation in
resource management of all types needs examination by the operating systems community. One
example of a useful step in this direction was given by Druschel, et al.,[DPD94] who showed the
value of a different perspective on buffer management as well as direct access to device resources
through protected “Application Device Channels.”

Finally, and extending the previous point, we think that the rebalancing of the roles of appli-
cation, network and operating system should include the notion of negotiation and renegotiation.
Many new systems will require adaptive behavior and we think that research should be done to
identify a general kernel of functions which support this adaptation. We believe that both appli-
cation adaptation to system resource changes and system adaptation to application demands must
be supported.

Our OMEGA architecture provides a tested framework for flexible adaptive resource man-
agement. It provides automatic translation/admission/negotiation, dynamics and guarantees to
networked multimedia systems. The first successful experiments with telerobotics are encouraging,
and among our future trials will be the challenge of mobile systems based on wireless networks.
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