Striping within the Network Subsystem

C. Brendan S. Traw Jonathan M. Smith

Abstract

Striping is a general architectural technique for the transparent aggregation of multiple,
functionally similar, resources to obtain higher performance.

This paper establishes a precise terminology for discussing striping and striping techniques,
differentiates striping from the more general architectural technique of multiplexing, and outlines
the major uses and trade-offs associated with the technique within the network subsystem.

Opportunities for applying striping to high performance network subsystems are explored
through a systematic case study. The case study uses a network subsystem consisting of TCP/IP
operating over an ATM/SONET infrastructure. Four striping points are analyzed in detail: TCP
striping by the application, [P packet striping by the TCP layer, ATM cell striping by the ATM
adaptation layer, and byte striping by the ATM layer. Two of these points are further evaluated
using a simulation driven by a trace of a World Wide Web session.

A principal result of the exploration is a set of engineering trade-offs among the striping
points within this high performance network stack. These trade-offs are a significant aid in
choosing the appropriate striping point for use within the network subsystem.

1 Introduction

Within high performance network subsystems, the optimization of a single datapath between an
application running on a host to the network is typically the most straightforward approach to
obtaining increased performance. Examples of this type of optimization include minimizing data
copies and other effects of layering [2], and efficient utilization of I/O resources. At some point,
further optimization of this single path may be either impossible or impractical. In either case, the
aggregation of multiple, parallel datapaths can be a solution for obtaining further improvements in
overall system performance. Striping is a technique developed for use within the disk subsystem and
is a key aspect of Redundant Arrays of Inexpensive Disks (RAID) architectures [11]. It is also the
solution for augmenting the performance of network subsystems through the aggregating of multiple
datapaths which is explored in this paper.

This paper is structured as follows: The next section establishes a precise terminology for de-
scribing striping and its relationship to multiplexing. Section 3 motivates the use of striping within
the network subsystem. Section 4 is a discussion of other work in the area. Section 5 presents
a set of criteria for evaluating network striping and a case study of striping within a typical high
performance network stack consisting of TCP/IP over ATM/SONET. Section 6 concludes the body
of the paper and presents a set of “rules of thumb” for the inclusion of striping within the network
subsystem. An appendix is included which describes the trace driven simulation used to support
the case study.

2 What is Striping?

Striping is a term which has been widely used to describe instances where physical resources have
been aggregated together to obtain higher performance. As the application of this term has spread
from its origin within the disk subsystem to the networking subsystem and beyond, the range
and details of resource aggregations which have been labeled as striping has greatly expanded the
applicability of the term. This is partially a result of the lack of a clear definition for the term.
The following discussion develops one. The definition is broad enough to include most instances of

Multiplexing Unit

~ Control Algorithm

Multiplexing Paths

Figure 1: Characteristics of a (De)Multiplexing Point

resource aggregation which have already been labeled striping, but narrow enough to differentiate
it from the more general term multiplezing. Striping can be distinguished from other architectural
techniques which exploit parallelism, such as pipelining, because all of the parallel resources must
be interchangeable.

2.1 Multiplexing

To understand the properties of striping, it is useful to first examine a more general architectural
technique, multiplexing. The most general definition of multiplexing is as a means of combining
multiple data inputs into a single output in such a manner that the data on the inputs can be
recovered through the process of demultiplexing. Demultiplezing (or inverse multiplexing) is the
inverse operation of multiplexing — taking a single input and spreading that input across multiple
outputs. A system using both multiplexing and demultiplexing is a multiplezed system.

Multiplexing can be divided into two major categories, physical and logical [6]. Types of physical
multiplexing include frequency/wavelength (FDM/WDM), time (TDM), and space (SDM). Logical
multiplexing within the network subsystem involves the mapping of multiple layer n (where n > 1)
streams into a single stream in layer n — 1 which share the same physical resource !

Any logical or physical location in an architecture where multiplexing or demultiplexing takes
places is called a multiplexing (or demultiplexing) point. A given (de)multiplexing point may
perform both physical and logical (de)multiplexing. There are three primary characteristics of a
(de)multiplexing point which are illustrated in Figure 1 and enumerated below.

1. Control Algorithm
The control algorithm for a multiplexing point determines the path of a multiplexing unit
through the multiplexing point.

2. Number of paths being multiplexed

This parameter for WDM, SDM, and TDM is the number of wavelengths, instances, or time
slots which are available to be multiplexed. Borrowing from the terminology developed in
the memory subsystem, a multiplexing situation where there are n paths is called an n-way
multiplexed system.

3. Multiplexing unit

The multiplexing unit is the unit of data which the multiplexing algorithm operates upon.

1In this definition, layer n refers to a layer of the OSI model where Layer 1 is the physical layer.

2

Striping Point Inverse Striping Point

Input Output
(el [e] [a] ™. /B el [e] [a]

Stripes

Figure 2: A Striped Communications System

Network Connection Bandwidth

S o 5 o

>+ o —
\
\
\

Application Bandwidth

Time

Figure 3: Network Standards and Application Bandwidths

2.2 Relationship between Striping and Multiplexing

Striping and multiplexing may appear to be synonyms. They are not.

Striping is a subset of the design space encompassed by the technique of multiplexing. Striping
is physical multiplexing where the operation of the multiplexing algorithm is transparent to higher
level functions except for the increased performance realized. Ensuring this transparency can be
difficult if properties such as the preservation of order must be maintained across the stripes. The
more general technique of multiplexing does not make any such transparency guarantees?.

A striping point is at minimum a physical demultiplexing point which conforms to the restric-
tions imposed above. A striping point must include a physical demultiplexing point since striping
requires that multiple physical resources be aggregated together. Logical (de)multiplexing may also
be performed. An inverse striping point is a location where the inverse activities are performed to
recover the data units which entered the striping point. A stripe is an instance of the resource which
is connected to one of the outputs of a striping point and one of the inputs of an inverse striping
point. Figure 2 shows an abstract striped communications system where order must be preserved
to maintain transparency.

When a striped system that must preserve ordering is operating correctly, it is said to be synchro-
nized. Upon startup, or following the loss of data, such a striped system is said to be unsynchronized.
To regain synchronization, the striping and inverse striping points must have a procedure to restore
the ordered property of data being carried by the striped system.

Host Int?@&%‘ !
Bridg(fh&psef 1
CPU

Memory !

] !
Bridge Chipset ———1IOBus ‘

Host Ir%:&@—é‘ |

Figure 4: Striping for Bottleneck Avoidance

3 Applications of Striping in the Network Subsystem

Striping, a general purpose technique for aggregating resources, can be applied to a variety of
situations within the network subsystem.

3.1 Network/Application Bandwidth Mismatch

The maximum bandwidth which can be supported by a single physical network connection is driven
by standards and the infrastructure which has been deployed. As such, it tends to improve in a stair-
step manner. The collection of applications running on network endpoints, due to their number and
diversity, do not increase their need for bandwidth in such a rigid manner. Network striping provides
the flexibility necessary to match network bandwidth to that which is needed by the applications
running over the network. Figure 3 illustrates this pattern. The shaded areas are domains where
the use of network striping could be beneficial.

3.2 Bottleneck avoidance

Striping can also be used to circumvent architectural and implementational bottlenecks. For in-
stance, in a network I/O subsystem, if a single network interface, I/O bus, or any other hardware
component in the system is incapable of supporting the desired bandwidth, then multiple instances
of that component might, in aggregate, support it. Figure 4 shows how striping could be applied to
resolve a bottleneck in a processor/memory bus to I/O bus bridge chipset such as that reported in
[15] when multiple copies of the bottleneck resource are available.

3.3 Driving Function for New Network Technologies

A final observation is that striping is an effective approach for motivating technological improvements
in commercially available network services. A step up in deployed technology takes place when the
technology is sufficiently mature and when it can be shown that there are applications which will
be able to use it — thereby generating income for the provider. It is often difficult to demonstrate
that applications can take advantage of a new service rate before it is actually available because the
applications have not been developed since there is nothing to run them on.

Network striping can break this cycle by permitting applications to obtain the network services
they require by aggregating the capabilities of multiple, currently existing links, thus demonstrating
the need to deploy the next service increment.

2The authors appreciate the input of Bruce Davie, David Feldmeier, and David Sincoskie in the formulation of
this definition.

Effort Link Rate | Number | Multiplexing Unit Algorithm
Bellcore (Nectar) | 155 Mbps 16 HIPPI Packet FCFS

LANL 155 Mbps | 7 + parity Byte RR

IBM 155 Mbps 4 PTM Packet FCFS
Bellcore (Aurora) | 155 Mbps 4 ATM Cell Trunk Group

Table 1: Other Network Striping Work

4 Other Network Striping Work

Disk striping [12] and network striping have the same goal of aggregating multiple resources to
improve performance, but unfortunately much of the experience developed within the disk subsystem
is not directly applicable for networks. This is primarily due to the difficulty in ensuring that the
transparency requirement is met as there is the potential for extreme variability in quality of service
between stripes in a network environment.

There has been some work in the area of network striping reported in the literature. In each case,
striping at only a single layer in the a protocol stack has been examined. No systematic evaluation
of the design space has been performed. Table 1 shows the primary attributes of four efforts which
have resulted in experimental evaluations of gigabit per second striping.

Bellcore has developed, for the Nectar Gigabit Testbed [3], the HIPPI-ATM-SONET (HAS)
adapter [10]. The HAS stripes HIPPI packets across the 16, 155 Mbps STS-3¢ connections consti-
tuting a SONET OC-48 using a first come, first served (FCFS) control algorithm.

Los Alamos National Labs (LANL) has explored a different striping point to provide a similar
service [13] within the CASA Gigabit Testbed [3]. The major difference between their work and that
performed at Bellcore is that they are striping HIPPI packets across seven STS-3cs (six for data and
one for error correction) in a round robin (RR) manner at the byte level. In this case the SONET
frame is used to provide alignment between stripes to ensure that byte ordering is maintained.

IBM has explored another point in the network striping design space. They are striping PTM
packets across four STS-3cs using a control algorithm similar to the HAS [14].

The final instance of high performance network striping is another Bellcore effort for the Aurora
Gigabit Testbed [3]. To obtain the equivalent bandwidth of an STS-12¢, the bandwidth of four
STS-3cs is aggregated together into a trunk group [8]. ATM cells are striped across the link in
an order determined by the trunk group control algorithm. This algorithm, by the placement of
idle and active cells, allows the receiver to determine the order in which the cells were placed into
the trunk group. Unfortunately, this mechanism requires that there be less than one cell time
of skew among the STS-3cs. In the course of evaluating the OSIRIS network interface [4] it was
determined that within the Aurora testbed, the commercial NEC and Northern Telecom OC-12 to
0OC-48 multiplexors introduced more skew than was acceptable for the correct operation of the trunk
grouping mechanism. The trunk grouping algorithm has since been replaced by other algorithms
which explore the use of sequence numbering and higher level framing to compensate for the skew
between the stripes which can result in a misordering of ATM cells [5].

One effort toward standardizing a particular application of network striping is proposed by
Fredette [7]. He calls network striping Inverse Multiplezing when it is performed at the physical
layer. The goal of the BONDING standard for narrow band ISDN (N-ISDN) is the aggregation of
multiple N-ISDN channels to provide applications with optimum bandwidth at the lowest cost. To
overcome skew among the aggregated channels, “training signals” are used to determine the skew
among the various channels at the destination. Once this skew is calculated, delays are added at the
source to align the data such that it will be received in the correct order at the destination. This
scheme assumes that the skew does not change for the duration of the connection.

5 Evaluation of Striping within the Network Subsystem

This section provides an initial, systematic exploration of the network striping options which are pos-
sible in a typical broadband protocol stack. These options are evaluated in a comparative manner to
expose the characteristics of striping at several layers. These characteristics provide an understand-
ing of the engineering tradeoffs that exist within the network subsystem when selecting a protocol
layer in which to embed a striping point.

5.1 Evaluation Criteria

For network traffic, bandwidth and latency are the primary characteristics of a striping point. Other
characteristics which are important from a system point of view include the scalability and complex-
ity of implementing the control algorithm, buffering requirements, and ability to tolerate network
induced skew between the stripes.

5.1.1 Latency and Buffering

Buffering and latency are separate, but typically closely related characteristics of a striping point.
If traffic arriving at a striping point is bursty and the aggregate bandwidth of the striping point is
not equal to the peak bandwidth of the burst, then buffering is required to prevent the loss of data.
Latency is a measurement of the time required for data to transit the striping point from the input to
the output stripes. There are two components to latency. The first is the time spent waiting in the
input queue; the second is the time required to actually transmit the data. The second component
is dependent on the striping technique used as well as the bandwidth supported by the stripes.

5.1.2 Tolerance of Skew

For the striped systems where ordering must be maintained to preserve transparency, skew among
the stripes can be a complication. There are two types of skew. Static skew is skew between the
stripes that is fixed for the duration of the operation of the striping point. Dynamic skew is the
component of skew between the stripes which changes over time. A possible cause of this type of
skew is congestion or rerouting of a stripe.

5.1.3 Scalability and Complexity

Scalability in the striping context is a characteristic which describes the extent to which it is possible
to extend the number of stripes used in the striped system to an arbitrary degree. Some striping
algorithms may scale well while others may only work well for relatively small numbers of stripes.
For striping systems implemented in hardware, interconnection density, timing, and buffering may
limit scalability while in software the scalability of the system may be limited by the computational
requirements of the striping algorithm.

The complexity of implementation is a measurement of how difficult it is to implement the
striping algorithm and data paths. This factor is typically closely related to the scalability since
more complex algorithms frequently do not scale as well as less complex ones.

5.1.4 Bandwidth

Finally, the maximum bandwidth which the striping system can support is dependent on two factors,
the bandwidth of each stripe and the number of stripes available. The maximum aggregate bandwidth
which can be supported by a striped system is defined to be sum of the bandwidth of all of the stripes.

5.2 Case Study

A typical broadband networking protocol stack consisting of TCP/IP over ATM/SONET is used
for the case study. The striping points (Figure 5) which will be studied are T'CP striping by the

Application Application Application Application Application
| TIRN | | |
TCP TCP TCP TCP TCP TCP
| | | LN | |
IP IP IP IP IP IP IP
ATM ATM ATM ATM ATM ATM ATM
Adaptation Adaptation Adaptation Adaptation Adaptation Adaptation Adaptation
LN)
ATM ATM ATM ATM ATM ATM ATM ATM
SONET SONET SONET SONET SONET SONET SONET SONET SONET
No Striping TCP Striping IP Packet Striping ATM Cell Striping Byte Striping
by Application by TCP layer by ATM Adaptation layer by ATM layer

Figure 5: Multiplexing Points to be Evaluated for Striping

SONET Stripes

First byte of next cell would be here
when l%/yte padding is used T

ATM Cells

Byte 53 Bytel Byte53

1

First byte of next cell would be here
when no byte padding is used

Figure 6: Byte Striping at the ATM Layer

application, IP packet striping by the TCP layer, ATM cell striping by the ATM adaptation layer,
and byte striping by the ATM layer.

5.2.1 Byte Striping at the ATM Layer

ATM layer striping involves the striping of ATM cells across multiple SONET physical layer [1]
instances on a byte by byte basis. Byte striping must preserve byte ordering.

An initial issue which must be resolved is how to map ATM cells across multiple SONET payloads.
Unless the number of stripes is a multiple of 53 (the number of bytes in an ATM cell) the first byte of
each cell will rotate across the available stripes as cells are transmitted. This situation is illustrated
in Figure 6.

This rotation can increase the complexity of the striping and inverse striping point since they
must keep track of which stripe the first byte of the next cell will arrive on. Two techniques can be
used to assist in identifying the first byte of an ATM cell:

e Alter the physical layer framing to support striping.

The SONET (or other physical layer) frame structure could be modified to provides a pointer
to the beginning of the first complete ATM cell carried on a particular physical stripe. Since

7

ATM Cell Stripes

With ATM Cell padding
first cell on next IP Packet
would be here

O> 7

IP Packet in CS-PDU
Without ATM Cell padding .: .:

first cell on next IP Packet
would be here

Figure 7: ATM Cell Striping at the AAL

the first byte of an ATM cell could be located on any of the stripes, the striping algorithm
must be able to insert pointer values into and monitor the physical layer overhead on each
stripe.

e Padding can be added to the end of each cell to ensure that the beginning of the next cell will
always be on the same stripe.

This technique is also illustrated in Figure 6.

The second technique reduces the complexity of the striping algorithm and can be used with
unmodified physical layers. Its disadvantage, however, is that it requires additional overhead in
the form of padding bytes. Neither of these techniques address the issue of establishing the initial
striping system synchronization or resynchronizing the system in the event of data loss or physical
layer frame corruption. Two possible ways of handling this function are:

e Synchronize on physical layer framing [13].

In the case of SONET, as long as the maximum skew between stripes is less than the length
of a SONET frame, frame structure can be used to align the stripes.

e Synchronize based on a parity stripe.

If the maximum skew between the stripes is small, then reserving one of the stripes to contain
parity information may provide another synchronization mechanism. To establish synchro-
nization, the alignment of the stripes could be adjusted within this the range of potential skew
until there is parity match.

The parity stripe is useful even if the SONET frame is used for synchronization. It would allow
for the prompt detection of improper stripe synchronization and provide a mechanism to detect
when synchronization has been restored.

Ultimately, particularly in environments where there is a large amount of dynamic skew, striping
at the ATM layer may be impossible. Sequence numbering, a technique which is typically used to
ensure ordering, is impractical on objects as small as bytes.

Although byte striping has some limitations, it can be easy to implement in hardware and has
the potential to scale quite well. Gbps byte striping implementations are not currently possible in
software due to the extremely high rate at which the striping algorithm would have to operate.

5.2.2 ATM Cell Striping at the ATM Adaptation Layer

ATM cell striping at the ATM adaptation Layer takes AAL CS-PDUs as input to the striping
point and then distributes whole cells across the stripes (Figure 7). Because the data unit being
transferred across the stripes is the same as would be sent in a non-striped system, no modifications

8

I P Packet Stripes

I P Packets

Figure 8: IP Packet Striping at the TCP Layer

to the physical layer framing are required. ATM cell ordering must be preserved across the striped
system to ensure that the striping is transparent to higher layer function.

ATM Cell Striping is the lowest form of striping in the protocol stack being studied which can
robustly handle the full range of problems associated with skew and loss. The techniques presented
in the previous section for handling synchronization and padding at the byte level can also be ap-
plied to ATM cells. However, if the skew between stripes is greater than a SONET frame, sequence
numbering can be applied. ATM cells are the smallest data entity in this stack for which sequence
numbering is practical. Sequence numbers must be of sufficiently large to permit the reordering of
cells following static or dynamic skew between the stripes and the detection of cell loss. The number
of bits of sequence number must be greater than:

Skewnraz*#stripes
|—log2 Timecen —|

Unfortunately, adding sufficiently large sequence numbers to the ATM cells will require the use of a
non-standard header format or the creation of a customized adaptation layer to support striping.

Another approach which does not rely on sequence numbering is to embed additional ATM cells
at regular intervals on separate virtual channel into the cell streams of each of the stripes. At
the inverse striping point these cells can be used to synchronize the time relationship among the
stripes which permits the recovery of the original ordering of the ATM cells [9]. This technique is
particularly useful when data streams with different destinations go through a single striping point.

Skew among stripes has a negative impact on the latency and buffering required by the system.
The overall latency of the system can be increased by up to the maximum skew between the stripes
because of the ordering constraint imposed by ATM cell striping. ATM cells arriving on the unskewed
or less skewed stripes must be buffered until the cell on the most skewed stripe arrives, thus the
quantity of buffering required is proportional to the number of stripes and the range of skews between
the stripes.

ATM cell striping is relatively simple to implement in hardware or software provided that no
reordering is necessary. Processor based reordering at the inverse striping point is possible for
moderate physical layer rates and small numbers of stripes. The fixed quantity of instruction cycles
will limit the speed and scalability of these solutions. Hardware implementations of the striping and
inverse striping algorithms will provide better performance. The main limitations on the scalability of
hardware solutions are the I/O requirements of the elements performing the data stream multiplexing
and demultiplexing as well as the range of possible misordering to be corrected.

5.2.3 IP Packet Striping at the TCP Layer

Striping at the TCP layer involves striping the IP packets generated by the TCP layer across multiple
lower level stacks. Thus, each IP packet will traverse a single stripe (Figure 8). Skew between the

9

stripes can only introduce a misordering of IP packets. Due to the multipath properties of IP
networks, there is no need to ensure ordering across the striped system.

IP striping is ideal for software implementation since the data units are relatively large, partic-
ularly in comparison to bytes or ATM cells. Host software is typically the only means of imple-
mentation since the protocol stack from the AAL layer up is almost always implemented in host
software.

One problem present in lower level striping which IP striping can improve upon is head-of-line
blocking. Head-of-line blocking occurs when the data units being striped are of variable size and
small data units are forced to wait while a larger one is being transmitted. If smaller packets can
be moved forward in the striping queue, the delay experienced by these smaller packets is greatly
decreased while the delay experienced by the larger traffic is only slightly increased. Striping at
the TCP layer provides such a means. TCP layer striping provides multiple IP packet stripes each
capable of serving a separate IP packet. Because there are multiple stripes, service of a packet can
begin immediately unless all of the stripes are already busy. Increasing the number of stripes reduces
the effects of head-of-line blocking.

The major disadvantage of IP packet striping is that the aggregate bandwidth of the striping
point is not available to each TP packet being striped. If the average transmission time for a PDU
is shorter than the average inter-arrival time, then the system is effectively no longer striped. This
results in greater striping latency since the packets cannot take advantage of the larger aggregate
bandwidth of the striping point to reduce transmission latency. This is called reduced apparent
bandwidth.

The simulation study discussed in the Appendix illustrates both the head-of-line blocking as well
as the reduced apparent bandwidth issues in ATM cell striped and IP packet striped systems.

5.2.4 TCP striping at the Application Layer

Striping can also be performed at the application layer across multiple TCP stripes. Because TCP
is running over each stripe, the stripes provides a reliable transport mechanism for application layer
PDUs. Any loss or corruption experienced by the data during transit will be corrected before the data
reaches the inverse striping point. The primary impact of loss or corruption will be an increased skew
between the stripes since TCP corrects these conditions through retransmission. Thus, in systems
striped at this layer, the dynamic components of skew, resulting from loss or corruption induced
retransmission, will almost certainly be the dominant source of skew between the stripes.

Since stripe QOS may vary greatly, a simple RR style striping algorithm may result in very poor
performance as the overall striped system performance may be seriously degraded by a single poorly
performing stripe. More advanced striping algorithms may be able to take into account the differing
qualities of service between the stripes to optimize overall performance. Striping at the application
layer suffers from the same stripe utilization problems which were described in the preceding section.

Since the layer has the most knowledge about the characteristics of the data which are being
transferred across a network, application layer striping may be able to exploit this knowledge within
the striping algorithm. It may be possible to partition the stripes and classes of data being generated
by the application into groups and then provide an appropriate striping algorithms for each group.

6 Conclusion

This paper has established a framework for the comparison of striping at a range of layers in a typical
high performance protocol stack. A precise set of terminology has been presented for describing
striping and distinguishing it from other related architectural techniques. The evaluation of striping
provides a collection of insights for determining the most appropriate layer to perform network
striping for a given environment and workload.

e Striping at lower layers typically leads to greater striping point utilization since there is a
higher apparent bandwidth, as shown in the Appendix.

10

e Striping at higher layers typically leads to less head-of-line blocking, also shown in the Ap-
pendix.

e At Gbps rates with current technology, low level striping can only be implemented in hardware
since the granularity of the striping units is too fine for software to control.

e Higher level striping is typically implemented in software since it must be embedded within
an already existing software system.

In environments where ordering must be preserved to maintain transparency, the following ob-
servations apply.

e Static skew between stripes can be solved by transmission timing at the striping point or by
buffering at the inverse striping point.

e Dynamic skew can only be solved by sequence numbers in the general case.

e Sequence numbering is not a practical mechanism for ensuring ordering of byte striped systems.

11

Appendix: ATM Cell vs IP Packet Striping — A Simulation
Study

To illustrate the tradeoffs between striping at the ATM cell and IP packet level, a trace driven
simulation study has been performed [16]. This appendix is not intended to be an exhaustive study
of striping; rather, it is intended to illustrate the different properties of ATM cell and IP packet
striping.

Simulator

The simulator used for this study was written in the C programming language specifically to conduct
an analysis of various striping configurations. The simulation is capable of reading a trace file
containing a header which is used to configure the simulator for a particular striping scenario. The
following parameters are read from the trace file header:3

Cell Time =T %
Number of IP packet stripes = P

Number of ATM Cell stripes = C

The simulator then proceeds to read the trace file and perform the requested simulation at a
resolution of one ATM cell time. The following time stamps are recorded for each packet pro-
cessed: time queued, time striping service begins, and finally, the time striping service is completed.
Other statistics collected include: stripe utilization and average/peak buffer utilizations. Figure 9
illustrates the striping configuration. It is assumed that unlimited buffer space is available.

ATM Cell
Striping Point ATM Cells
IP Packet o
Striping Point . D] D] D]
PPk o C ATM Cell stripes
: L]
‘ ‘ D ‘ —= o P P packet stripes - I:U D] I:U

IP Packet Queue Striping Buffer

Total Buffering

Figure 9: Simulated Striping Configuration

The following parameters can be derived from the values read from the trace file header:

ATM stripe bandwidth = B = 8 * 53 * % bps
Aggregate bandwidth of striping point = A = P C % B bps

Four striping configurations of equal aggregate bandwidth are examined during each simulation.
These configurations are referred to by the value of P, the number of IP packet stripes. For all
four, P * C' = 8. Pure IP packet striping is performed when P = 8 while pure ATM cell striping
is performed when P = 1. When P = 2 or P = 4 a hybrid of ATM cell and IP packet striping is

performed.

3For the purpose of this simulation, it is assumed that all IP packets stripes are of equal bandwidth and that all
ATM Cell stripes are of equal bandwidth.

12

4500
A - - R . 34
4000 - 1
3500 [1
- 3000 | |
8
>
=)
£ 2500 |- 1
S < <o
g
g 2000 - 1
& 1500 |- g
1000 L © ° o ° i
<o <o
500 |- 1
0 QA O - <
0 2 4 6 14 16 18 20

8 10 12
Time (Seconds)
Figure 10: Traffic Trace

The effects of ATM cell padding are also examined. ATM cell padding is useful when performing
ATM cell striping since it ensures that the first cell of any data unit being striped will always be
located on the same stripe. This simplification can reduce the complexity of an ATM cell striping
mechanism since the stripe which will contain the first cell of a data unit does not have to be
calculated or tracked.

Packet Trace

This study used a trace of the network traffic generated by a typical World Wide Web (WWW)
session driven by the Mosaic WWW viewing application. Such a session involves the retrieval of nu-
merous large data, audio, video, and still images from remote, networked servers. This application is
characteristic of a class of emerging interactive applications which will have extremely large numbers
of simultaneous users who will each require access to substantial amounts of network resources.

The traffic trace used for this study has been collected from a loop back interface located at the
base of the AIX Version 3.2.5 TCP/IP protocol stack running on IBM RS/6000 workstations. For
the generation of these traces, an IBM RS/6000 Model 580 has been used. The traces consist of
a sequence of {nanosecond time stamp, packetl length} pairs which are acquired as the packets are
passed to the loop back interface by the transmit side of the protocol stack.

For this trace, the average latency experienced by each IP packet and the maximum buffer
requirements of the striping point were recorded over a range of striping point utilizations. The
maximum buffer space required is the metric selected for buffer utilization since it is the amount
of buffering needed to ensure loss free operation. Striping point utilization is defined to be the
following:

Average bandwidth utilization over trace = a bps
Striping point utilization = U = £ %

Inverse striping was not examined in this study since a meaningful examination requires an
method of modeling the congestion, loss, and skew present in real networks.

Figure 10 shows the size distribution of packets versus time for the trace. This trace consists of
about 18 seconds of interactive use of the Mosaic application. During this period, 5 file transfers
totaling about 9 MB are performed. The bandwidth utilized averaged 4.3 Mbps. This trace clearly
shows the bimodal distribution of IP packet size which is generated by TCP. Approximately 2/3 of
the packets are at the M'TU limit of 4K while most of the remaining packets are acknowledgments.

13

450000 T T
50% Bandwidth Utilization ——
43.8% Bandwidth Utilizati —=
400000 e idth Utilization -2--- -
350000 B
g 300000 i
)
g
k7] 250000 i
&
2
= 200000 m
g
£
& |]
= 150000
100000 i
50000 [~ i
mTTIIAITIT ST I T El,,_,fff,’,'.ffff,',7.’,’:‘,7,’.”:?f,’_’:ff,’:’,fTf:’.j,‘i’:f:,_,iiff.‘:iji’.-:i
0 L L L I I I
1 2 3 4 5 6 7 8
of Stripes
Figure 11: Buffering Requirements (No Padding)
90 : -
Overal -
Packet size < 500" ~+--
80 Packet size >=500 -2
g
£
£
5
O
£
z
&
w®
i
10 m
,,,,,,,,,,,,,,,,,,,,,,, . 1
0 s Sl 1 1 ! 1 !
1 2 3 6 7 8

4 5
of Stripes

Figure 12: Latency 43.8% Utilization (No Padding)

No ATM Cell Padding

Figure 11 shows the impact of increasing the striping point utilization on the peak buffer size required
to ensure that no data is dropped. A 6% increase in the striping point utilization resulted in a 7 to
15 fold increase in the amount of buffer space required. Note that the higher apparent bandwidth
of the ATM cell striped configuration (P = 1) results in a significantly lower buffer utilization.

At 43.8% utilization, where input queuing is minimal, as the number of IP packet stripes in-
creases, the total latency experienced by small* packets remains consistently low. Unfortunately,
the decreasing stripe bandwidth greatly increases the transmission latency experienced by larger
packets. This effect is shown in Figure 12.

Figure 13 shows the striping point total latency when the bandwidth utilization is set at 50%.
Recall from Figure 11 that at 50% utilization, a significant amount of buffering was needed to queue
IP packets at the striping point input. The effect of this queue can clearly be seen in this graph
by the large latency experienced by both large and small IP packets. The reduction of head-of-line
blocking due to the increased number of IP packet stripes is apparent in this case, as the total
latency experienced by small packets does not grow as dramatically as that of large packets.

4Small packets are defined to be those whose size is less than 500 bytes.

14

550 T
__Overall o—
.. Packetsize<500 -+--
500 - Packet size >= =]
8 =
E
£
5]
O i
=
oy
5}
= |
g
150 . .
1 2 3 4 5 6 7 8
of Stripes
Figure 13: Latency 50% Utilization (No Padding)
600000 T T
50% Bandwidith Utilization ~—
43.8% Bandwidth Utilization -+--
37.5% Bandwidth Utilization -&---
500000 w
g 400000 | E
Q
[}
]
Nl
€ 300000 1
o
£
]
E
&8 L i
& 200000
100000 - e
,,,,,,,,,,,,,,,, T
o i i .
1 2 3 4 5 6 7 8
of Stripes

Figure 14: Buffering Requirements (Cell Padding)

ATM Cell Padding

The graph in Figure 14 demonstrates the additional bandwidth overhead contributed by ATM cell
padding. As the number of IP packet stripes increases, the amount of ATM cell padding overhead
decreases, resulting in the need for less buffer space.

When the striping point utilization is 43.8%, the effect of ATM cell padding is noticeable (Figure
15). For ATM cell striping, the total latency of both small and large packets is quite high due to the
queue of IP packets created by the ATM cell padding. As the number of stripes increases, the total
latency experienced by small traffic decreases continually since the multiple IP packet stripes reduce
the effect of head-of-line blocking. The total latency experienced by large packets initially decreases
as the effects of ATM cell padding are reduced, but then increases as the increased transmission
latency caused by the reduced stripe bandwidth dominates.

The final graph, shown in Figure 16, shows the queuing caused by the relatively high stripe
utilization of 50% and the overhead of ATM cell padding which dominates the total latency for both
small and large packets.

15

Latency in Cell Times

Latency in Cell Times

20

10

650

T T
Overall . ~+—
Packet size <-500 -+--
Packet size>=500 -&---

2 = s 5 6 7 s
of Stripes
Figure 15: Latency 43.8% Utilization (Cell Padding)
(‘)verall -

450

400

Packet size <500 -+--
Packet size>=500 -&---

4 5
of Stripes

Figure 16: Latency 50% Utilization (Cell Padding)

16

Summary of Simulation Results

This simulation of ATM cell and IP packet striping has been able to illustrate some of the tradeoffs
of striping at these levels in a typical broadband network striping stack. These tradeoffs are the
following:

e Buffering requirements and queue induced latency can vary greatly with the level of striping
point utilization.

e Cell padding can significantly impact both buffer requirements and latency when there are a
large number of ATM cell stripes.

e For low utilization IP packet striping, the reduced bandwidth of each IP packet stripe signifi-
cantly increase latency.

e Packet striping can be an effective mechanism for reducing the latency experienced by small
packets.

References

[1] Bellcore, “Synchronous Optical Network (SONET) Transport Systems: Common Generic Cri-
teria,” TR-NWT-000253, December, 1991, Issue 2.

[2] D. D. Clark and D. L. Tennenhouse, “Architectural Considerations for a New Generation of
Protocols,” in Proc. ACM SIGCOMM °90, Philadelphia, PA, September, 1990.

[3] Computer Staff, “Gigabit Network Testbeds,” IEEE Computer, pp. 77-80, September, 1990.

[4] Bruce S. Davie, “The Architecture and Implementation of a High-Speed Host Interface,” IEEE
Journal on Selected Areas in Communications, February, 1993.

[5] Peter Druschel, Larry Peterson, and Bruce Davie, “Experiences with a High-Speed Network
Adaptor: A Software Prospective,” in Proceedings, SIGCOMM ’94, London, England.

[6] David C. Feldmeier, “Multiplexing Issues in Communication System Design,” in Proceedings,

SIGCOMM ’90, Philadelphia, PA.

[7] Paul H. Fredette, “The Past, Present, and Future of Inverse Multiplexing,” IEEE Communica-
tions Magazine, pp. 42-46, April, 1994.

[8] J. Giacopelli, J. Hickey, W. Marcus, W. D. Sincoskie, and M. Littlewood, “Sunshine: A High-
Performance Self-Routing Broadband Packet Switch Architecture,” IEEE Journal on Selected
Areas in Communications, pp. 1289-1298, October, 1991.

[9] Mike Ismert, LCS, MIT, Personal Communications, 1994.
[10] Cesar Johnston, Presentation at CNRI Gigabit Testbed Workshop, June, 1993.

[11] Randy H. Katz, Garth A. Gibson, and David A. Patterson, “Disk System Architectures for
High Performance Computing,” in Proceedings of the IEEE, Vol 77, No.12, December, 1989.

[12] Kenneth Salem and Hector Garcia-Molina, “Disk Striping,” Proceedings, IEEE Data Engineer-
ing Conference, Los Angles, CA, February, 1986.

[13] Wally St. John and David DuBois, “HIPPI-SONET Gateway,” CASA Gigabit Testbed Annual
Report, pp. 47-52, 1993.

[14] Vasilios Theoharakis and Roch Guerin, “SONET OC-12 Interface for Variable Length Packets”
in Proceedings, Second International Conference on Computer Communications and Networks,

San Diego, CA, June 28-30, 1993.
17

[15] C. Brendan S. Traw and Jonathan M. Smith, “Hardware/Software Organization of a High-
Performance ATM Host Interface,” IEEE Journal on Selected Areas in Communications, Febru-
ary, 1993.

[16] C. Brendan S. Traw, “Applying Architectural Parallelism in High Performance Network Sub-
systems,” Doctoral Dissertation, Computer and Information Science Department, University of
Pennsylvania, 1995.

18

