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ABSTRACT

Network fabrics with Gigabit per second (Gbps) bandwidths are available today, but these
bandwidths are not yet available to applications. The difficulties lie in the hardware and software
architecture through which application data travels between the network and host memory. The
hardware portion of the architecture is often called a host interface and the remainder of the pro-
tocol stack is implemented in host software.

In this paper, we outline a variety of approaches to the architecture of such systems, exam-
ine several design points, and study one example in detail. The detailed example, an ATM Host
Interface and Operating System support built at the University of Pennsylvania, illustrates design
tradeoffs for hardware and software, and some of the implications of these tradeoffs on applica-
tions performance.

1. Introduction

The past several years have seen a profusion of efforts to design and implement very-high speed networks which
deliver this speed ‘‘end-to-end’’. A good example is the AURORA Gigabit Testbed [6], one of several such testbeds
[2]. In AURORA, much of the focus has been on the development of technologies needed to deliver this performance
to workstation-class machines, rather than supercomputers. We believe these machines will be the majority of end-
points in future Gbps networks.

The difficulty posed by the choice of workstations is the mismatch between the performance of the machines
and the bandwidth provided by the network infrastructure such as switches and transmission lines. Specifically, the
network bandwidths are within an order of magnitude of the memory bandwidths of most workstations, and the bur-
den on a host’s memory architecture must be minimized for maximum performance, which as pointed out by Clark
and Tennenhouse [5], forces careful design of protocol processing architectures.

Efficiency can be achieved through many design features, but the main options [29] are: optimizing the pro-
cessing functions in the protocol architecture, optimizing the operating system support for data transport, and careful
placement of the hardware required for network attachment. In this paper, we will focus on operating system and
architectural issues, as we feel that high-performance protocol architecture features such as ordering, errors, dupli-
cates, coordination, and format conversion have been well-covered by others; see for example Feldmeier [16].

The remainder of Section 1 outlines approaches to host interface hardware and supporting software. Section
2 describes the design choices made in an implementation of an ATM host interface for the IBM RISC System/6000
workstation [27]. Section 3 analyzes the performance implications of the design choices for applications, and Sec-
tion 4 concludes the paper.

1.1. Host Interfaces

The design and implementation of host interfaces has been of interest since the earliest network implementations†.
Each succeeding generation has dealt with different types of hosts, networks, protocol architectures and networked
�����������������������������������
† Detailed information on some of these interfaces and supporting software is available in a Special Issue of the IEEE Journal on Selected Areas
in Communications [23].
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applications. Goals have included low cost, high throughput and low delay. Implementations have been optimized
towards achieving one or more of these goals in their operational environments. Some of the key implementation
decisions have been: (1) the portion of protocol architecture functions performed by the interface; (2) signaling
between host and interface; and (3) the placement of the interface in the host computer’s architecture. Much of the
migration towards hardware is intended to obtain an implementation-specific performance advantage - as Watson
and Mamrak [29] point out, performance is often due as much to implementation techniques as to careful protocol
design. The key question may be the selection of functions to optimize by placement in hardware.

1.2. Host Interface Attachment
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Figure 1: General Host Interface Architecture

Figure 1 illustrates a general architecture for a host interface and will allow us to discuss several options for host
attachment. Davie [11, 13] and Ahlgren [15] have also discussed such options. We assess their performance poten-
tial for receiving data; sending data is similar.

1. The Host Interface is capable of Direct-Memory Access (DMA), which means that it can communicate with
the system memory directly, without processor intervention. The typical system (e.g., UNIX) uses the Host
Interface DMA capability to copy the data from the network into a buffer managed by the operating system.
The data is then copied by the CPU from the system buffer to a buffer owned by the application, which also
resides in the system memory. Thus, a given piece of data travels over the System Bus three times: Host
Interface to Memory, Memory to CPU, and CPU to Memory.

2. The Host Interface is capable of DMA, and the operating system is able to arrange for data to be transferred
directly to the application address space. A variant of this scheme would allow the host interface to directly
allocate and free host memory, in effect turning management of the host’s memory into a peer-peer model
rather than a master-slave model. Thus, a given piece of data travels over the System Bus once, from Host
Interface to Memory. One potential problem with this approach is that transport protocols may wish to defer
data transfer to applications until header processing is complete.

3. The Host Interface has a processor-addressable memory area, which the operating system manages. When
data arrives in the Host Interface’s buffers, the operating system copies this data into the user address space.
In this model, the data must travel the bus twice, once from Host Interface to CPU, and then from the CPU to
Memory.

4. The Host Interface has a processor-addressable memory area, where the application buffers are located. This
means that data never traverses the system memory bus, or rather, traversal is deferred until it is referenced by
the processor. This makes the host interface ‘‘look like’’ a piece of system memory allocated to the applica-
tion.

5. The Host Interface can be connected directly to the CPU [6], as in augmenting the processing unit with a co-
processor. As in Scheme 4, there is no memory bus traversal, and further, the connection is to a system
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component which typically operates at speeds higher than memory bandwidths.

Each of these schemes is affected by a number of other considerations.

First, most modern architectures include a cache, which decreases the access latency of frequently used data,
but must be kept in a state consistent with system memory. The cache is typically architecturally ‘‘close’’ to the pro-
cessing unit, so it either must be kept consistent or flushed when new data arrive. Maintaining consistency is con-
siderably easier when the data passes through the processor - Scheme 2 must flush the cache for areas affected by
the DMA, and Scheme 4 must flush the cache, either under control of the CPU or the Host Interface. This problem
can be avoided by putting the data in non-cached memory, but this may have other negative performance conse-
quences. Schemes 1 and 3 should be able to obtain up-to-date cache copies when the data is copied into the user
address space.

Second, host interfaces may also be used to support applications which require specialized peripherals, such
as video conferencing. Thus it is important to keep a good balance between I/O and memory accessibility. The
DMA based schemes do this, but the memory-on-interface schemes (Schemes 3 and 4) might present difficulties in
I/O operations to and from other devices.

Finally, Schemes 1 and 3 involve the processor in copying data across address-space boundaries. Thus, the
processor must reduce its processing capacity by the amount of time spent copying data. Scheme 5’s co-processor
approach likewise shares processing-unit capacity between computational load and network traffic.

Any evaluation of a host attachment strategy is subject to the specifics of the host, I/O bus, interface technolo-
gies and software, as well as the target applications. For these specifics, there are other constraints such as econom-
ics, portability, etc. Thus, there is no ‘‘best’’ approach - they can only be ranked relative to these constraints.

1.3. Interaction with Software

Operating system software plays a key role in the achievement of high end-to-end networking performance. The
abstraction provided by the host interface is that of a device which can transfer data between a network and the
computing system’s memory. The software builds an application communications model over this abstraction. A
significant constraint on such software is its embedding in the framework of an operating system which satisfies
other (possibly conflicting) requirements. Particular application needs include the transfer of data into application-
private address spaces, connection management, high throughput, low latency, and the ability to support a variety of
traffic types. Traffic types include traditional bursty data communications traffic (such as transaction-style traffic),
bulk data transfer, and the sustained bandwidth requirements of applications supporting continuous media. We
believe that approaches optimized towards a particular traffic type, such as low-latency transactional traffic [24],
will suffer if the traffic mix varies considerably.

The software operating on the host is usually partitioned functionally into a series of layers defined by protec-
tion boundaries. Typically, each software layer contains several protocol layers. The user’s applications are typi-
cally executable programs, or groups of such programs cooperating on a task. Applications which require network
access obtain it via abstract service primitives such as read(), write(), and sendto(). These service primitives pro-
vide access to an implementation of some layers of the network protocol, as in the UNIX system’s access to TCP/IP
through the socket abstraction. The protocol is often designed to mask the behavior of the network and the hardware
connecting the computer to the network. Its implementation can usually be split into device-independent and
device-dependent portions.

Significant portions of protocol implementations may be embedded in the operating system of the host, where
the service primitives are system entry points. The device-dependent portion is implemented as a ‘‘device driver.’’
This is not strictly necessary as demonstrated in Mach 3.0, which moves both protocols and much of the device
driver code out of the kernel. Device drivers have a rigidly specified programmer interface, mainly so that the
device-independent portions of system software can form a reasonable abstraction of their behavior. Placement of
the protocol functions within the operating system is dictated by two factors, policies and performance. The key
policies which an operating system can enforce through its scheduling are fairness (e.g., in multiplexing packet
streams) and the prevention of starvation. High performance may require the ability to control timing and task
scheduling, the ability to manipulate virtual memory directly, the ability to fully control peripheral devices, and the
ability to communicate efficiently (e.g., with a shared address space). All of these requirements can be met by
embedding the protocol functions in the host operating system. In practice, the main freedoms for the host interface
software designer lie in the design of the device driver, since it forms the boundary between the host’s device
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independent software and the functions performed by the device.

The software architect is presented with the following choices as to detailed implementation strategy:

1. Based on the capabilities of the interface (e.g., its provision for programmed I/O, DMA, or bus mastered
transfers†), what is the partitioning of functionality between the host software and the host interface
hardware? For example, use of DMA or bus-master transfers removes the need for a copying loop in the dev-
ice driver to process programmed I/O, but may require a variety of locks and scheduling mechanisms to sup-
port the concurrent activities of copying and processing. Poor partitioning of functions can force the host
software to implement a complex protocol for communicating with the interface, and thereby reduce perfor-
mance.

2. Should existing protocol implementations be supported? On the one hand, many applications are immediately
available when an existing implementation is supported, e.g., TCP/IP or XNS. On the other, performance for
some applications might be gained by customizing stacks [5] using a new programmer interface. Multiple pro-
tocol stacks could be supported, at some cost in effort; this allows both older applications and new applica-
tions with greater bandwidth requirements to coexist. Methods such as the x-Kernel [18, 21] may provide a
method for customized stacks to be built on top of operating system support such as we describe in this paper.

3. How are services provided to applications? One key example is the support for paced data delivery, used for
multimedia applications. As the host interface software is a component in timely end-to-end delivery, it must
support real-time data delivery. This implies provision for process control, timers, etc. in the driver software.

4. How do design choices affect the remainder of the system? The host interface software may be assigned a
high priority, causing delays or losses elsewhere in the system. Use of polling for real-time service may affect
other interrupt service latencies. The correct choices for tradeoffs here are entirely a function of the worksta-
tion user’s desire for, and use of, network services. While any tradeoffs should not preclude interaction with
other components of the system, e.g., storage devices or frame buffers, increasing demand for network ser-
vices may bias decisions towards delivering network subsystem performance.

Given the cost of interrupts and their effect on processor performance, strategies which reduce the number of inter-
rupts per data transfer can be employed [19]. An example would be using an interrupt to signal grosser events, such
as half-full queues in the interface.

1.4. Communicating State Changes between Host and Interface

One of the key issues in the design of operating system features which support interactions with external events
(such as arriving data) is the state exchange protocol. There are three common approaches used:

1. Pure ‘‘busy-waiting’’, where the external event can be detected by a change in, e.g., an addressable status
register. The processor continuously examines the stateword until the change occurs, and then resumes pro-
cessing with the newly-arrived data. ‘‘Busy-waiting’’ is rarely if ever used in multitasking systems, since it
effectively precludes use of the processor until the event arrives. It is more commonly used by dedicated con-
trollers. ‘‘Busy-waiting’’ can be used with priorities to enforce some degree of isolation among activities on
the processor.

2. Interrupts are an artifact of the desire to timeshare processors among activities. The basic idea is that the
event arrival (most likely detected by a low-level busy-waiting scheme in the external device) causes the pro-
cessor to be interrupted, that is, to cease its current flow of control and to begin a new flow of control dictated
by data arrival. Typically, this involves transferring the data to a processor storage location where the data can
be processed later, using a normal flow of control. When interrupt service is complete, the processor resumes
the interrupted flow of control. The two difficulties with interrupts are their asynchronous arrival and cost.
The asynchronous arrival forces concurrency control techniques to be employed, and the interrupt service
time improves much more slowly than microprocessor speeds.

3. Clocked interrupts try to achieve a somewhat different balance of goals. A periodic software timer is used to
interrupt the flow of control of the processor as with any other interrupt. Interrupt service then consists of
examining changed statewords, as in the ‘‘busy-waiting’’ scheme. The tradeoffs here are closely tied to the

�����������������������������������
† With programmed I/O, the CPU controls the transfer; with DMA a third party controls the transfer, and with bus mastered operation the peri-
pheral controls the transfer [9].
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implementation environment, but an illustrative example is given by the UNIX [25] callout table design, used
for operating system management of pools of teletypewriter lines. Clocked interrupts represent a dynamic
midpoint between polling and data-driven interrupts; appropriate clocking rates can make the scheme resem-
ble either of the other two.

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Using clocked interrupts is an engineering decision based on factors such as costs and traffic characteristics.
A simple calculation shows the tradeoff. Consider a system with an interrupt service overhead of C seconds, and k
active channels, each with events arriving at an average rate of λ events per second. Independent of interrupt ser-
vice, each event costs α seconds to service, e.g., to transfer the data from the device. The offered traffic is λ.k, and
in a system based on an interrupt-per-event, the total overhead will be λ.k .(C+α). Since the maximum number of
events serviced per second will be 1 / C+α, the relationship between parameters is that 1>λ.k .(C+α). Assuming
that C and α are for the most part fixed, we can increase the number of active channels and reduce the arrival rate
on each, or we can increase the arrival rate and decrease the number of active channels.

However, for clocked interrupts delivered at a rate β per second, the capacity limit is 1>β.C+λ.k .α. Since α is
very small for small units such as characters, and C is very large, it makes sense to use clocked interrupts, especially
when a reasonable value of β can be employed. In the case of modern workstations, C is about 10−3 second. Note
that as the traffic level rises, more work is done on each clock ‘‘tick’’, so that the data transfer rate λ.k .α asymptoti-
cally bounds the system performance, rather than the interrupt service rate. To be fair, one should note that tradi-
tional interrupt service schemes can be improved, e.g., by aggregating traffic into larger packets (this reduces λ sig-
nificantly, while typically causing a slight increase in α), or by using an interrupt on one channel to prompt scanning
of other channels.�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Box 1: Clocked Interrupts

1.5. Example Host Interface Architectures

Table I summarizes some high-level design features for several host interface architectures presented in the litera-
ture.

�	�������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Table I: Signaling, Units, Intelligence and Attachment
Legend:
PDU - Protocol Data Unit, an object size dictated by the protocol
I - Interrupt
CI - Clocked Interrupt
* - Processor can signal arbitrary events, e.g., Cell, PDU, timeout, etc.

Several interfaces have attempted to accelerate transport protocol processing. The VMP Network Adapter Board
(NAB) [19] implementation accelerates processing of Cheriton’s Versatile Message Transaction Protocol (VMTP).
The goals were to reduce the latency required in ‘‘request-reply’’ communications, while delivering high
throughput for data-intensive applications. The NAB separated these two classes of traffic to optimize its perfor-
mance. The NAB included an on-board microcontroller.

The Nectar Communications Accelerator Board (CAB) [24] includes a microcontroller with a complete mul-
tithreaded operating system. The host-CAB interaction is via messages sent over a VME bus, synchronized using a
mailbox scheme. The programmability can be used by applications to customize protocol processing. Cooper, et al.
[8], report that TCP/IP and a number of Nectar-specific protocols have been implemented on the CAB.

It remains unclear whether the entire transport protocol processing function needs to migrate to the interface;
Clark, et al. [4] argue that in the case of TCP/IP the actual protocol processing is of low cost and requires very few
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instructions on a per-packet basis, and thus could be left in the host with minimal impact.

Table II lists additional features of some ATM network host interfaces. Connection multiplexing and demulti-
plexing refers to combining data from different connections into a cell stream when sending, and splitting connec-
tions from the cell stream when receiving.

� �������������������������������������������������������������������������������������������������������������������������������������������
Feature Bellcore Penn/HP Penn Cambridge Fore� �������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������
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Table II: ATM-oriented features
Legend:
HW - Hardware
HSW - Host Software
OSW - Outboard Software

Less protocol processing is performed by two ATM host interfaces developed at Bellcore and Penn. Bellcore’s [12]
ATM Host Interface implementation attaches to the TURBOChannel bus of the DECstation 5000 workstation. The
interface operates on cells, and communicates protocol data units (PDUs) to and from the host. Like the CAB, this
host interface relies on programmable processors, in this case, two Intel 80960 RISC microcontrollers, to perform
protocol processing and flow control. In this case, the programmability is targeted primarily at exploring various
segmentation-and-reassembly (SAR) algorithms. At this time [13], Bellcore’s interface provides the highest burst
performance reported for an ATM host interface.

Off-board processors can migrate many processing and data movement tasks away from the host CPU. How-
ever, it is not clear that a general purpose processor is the most efficient mechanism to support these services. At
Penn, we have developed a scalable host interface architecture for providing segmentation and reassembly functions
in dedicated logic [27]. The architecture can support link speeds from 160 Mbps to over a gigabit per second [26].
All per cell processing including ATM header and ATM Adaptation Layer (AAL) 3/4 processing as well as demul-
tiplexing are performed by the hardware. An initial implementation which can support link speeds of up to 160
Mbps attaches to the IBM RISC System/6000 workstation through its Micro Channel I/O bus.

A second implementation of our segmentation and reassembly architecture is currently in progress to further
explore the design space. The result will be an ATM Link Adapter [28] for use with the Hewlett-Packard
HP9000/700 series workstations equipped with Afterburner [20] cards. The Afterburner/ATM Link Adapter combi-
nation will provide the same basic functionality as the initial implementation with two exceptions. First, the AAL5
will be supported, and the CRC32 will be generated and checked as AAL5 PDUs are moved between the ATM Link
Adapter and the Afterburner. Second, the Afterburner will provide support for computing IP checksums in hardware
as well as a per-PDU processor interrupt.

Fore Systems, Inc. [7], and Cambridge University/Olivetti Research [17], have each explored an approach
which puts minimal functionality in interface hardware. This approach assigns almost all tasks to the workstation
host including ATM adaptation layer processing, e.g., computing checksums, checking segment numbers, etc.

Minimalist approaches can take advantage of aggressive workstation technology improvement, which might
outstrip that of host interface components. However, such an approach has two potential failings. First, RISC
workstations are optimized for data processing, not data movement, and hence the host must devote significant
resources to manage high-rate data movement. Second, the operating system overhead of such an approach can be
substantial without hardware assistance for object aggregation and event management.

2. The Penn ATM Interface

To illustrate some of the detailed design choices and their consequences, Section 2 examines an implementation in
considerable detail. The performance implications are studied later, in Section 3.
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2.1. A Programmer’s View of the Hardware

The Host Interface is implemented as a pair of cards, one card for transmission and the other for reception. The
transmission card segments variable-sized Protocol Data Units (PDUs) into fixed-size ATM cell bodies, generates
the ATM header and the AAL, and transmits the cell. The programmer must specify information for the header, the
location and size of the PDU to segment, check the status of the interface, and start the transfer.

The Reassembler card receives multiplexed streams of ATM cells, which it demultiplexes using fields in the
ATM cell header and AAL into a number of queues, one queue per virtual circuit or PDU. The queue numbers are
used as names by the host, which absorbs data by presenting a queue identifier, a location to place the data, and a
cell count, after which it initiates a transfer.

Thus, the programmer has a relatively simple model, consisting of some queue management facilities, status
and synchronization information, and a number of control operations. All data movement operations are carried out
by the hardware on the variable-sized PDUs stored in system memory. This support for variable-sized PDUs is used
to significant advantage by the host software support, discussed next.

2.2. Software Implementation Overview

UNIX and its derivatives are the development platform for almost all host software research, because they are the
dominant operating systems on workstations. These operating systems unfortunately impose a number of additional
constraints on the designer, in particular, the high cost of system calls. Calls are costly due to their generality, as
well as crossing of an application/kernel address space protection boundary. Pu, et al. [22] report that over 1000
instructions are executed by a read() call before any data are actually read. UNIX also embeds a number of policy
decisions about scheduling, which as indicated above, is event-driven and designed to support interactive computing
for large numbers of users. While several UNIX derivatives have been modified to support ‘‘real-time’’ behavior,
these are non-standard, making solutions dependent on them non-portable. A number of other evolutions in UNIX,
however, appear promising for high performance implementations and efficient application-kernel communication,
such as shared memory, memory-mapped files, and provision for concurrency control primitives such as sema-
phores.

The current host interface support software consists of an AIX character-special [25] device driver. The
software enables the host interface hardware to copy data directly from the application address space.

The interface is initialized when the device special file /dev/host{n} is first opened. Initialization consists of
probing the device at a distinguished address which causes it to be reset. Various data structures in the Reassembler
are initialized, and a sequence of set-up operations for the software such as initializing the AIX device switch table
are performed. The set-up operations also include pinning the software’s pages into real memory by removing them
as candidates for page replacement. After initialization, the device and software are ready for operation; routines
for all appropriate AIX calls (e.g., read(), write(), ioctl(), etc.) are provided. Figure 2 illustrates a simple program
to access the interface.

�������������������������������������������������������������������������������������������������������������������������
if ((fd = open("/dev/host_s0", O_WRONLY)) == -1){

perror("Couldn’t open");
exit(-1);

}

set_header( fd, vci, mid ); /* calls ioctl() */

if (write(fd, buf, count ) == -1)
perror("write failure");�������������������������������������������������������������������������������������������������������������������������
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Code fragment to exercise Segmenter

The software is accessed mainly through the ioctl(), read(), and write() system entry points. Ioctl() is employed for
such control tasks as specifying Virtual Circuit Identifiers (VCIs) and Multiplexing Identifiers (MIDs) for use by the
hardware when formatting ATM cells. The VCI and MID are currently specified to the driver on a per-file descrip-
tor basis for efficiency, since for a stream of PDUs they would typically not change. The VCI and MID are used,
e.g., to specify header data to the segmenter card so that it can format a series of ATM cells for transmission.
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Ioctl() is used for any behavioral customization of the software, such as bandwidth allocations, maximum delays,
and pacing strategies. Data transfer is done with read() and write(), providing a clean separation between transfer
and control interfaces.

2.3. Reduced Copying

As we have discussed above, it is desirable to reduce copying. The advantage of reducing copying has been
observed by others, e.g., Watson and Mamrak [29] and confirmed in other implementations [3]. The key issue is
coordinating the hardware and software in such a way that the copying cost can be reduced; we have done this by
copying data directly to and from user address spaces.

When the write() call is invoked on the device, the virtual addresses of user data are available to the driver
through a uio structure element. The uio structure element is used to mark the pages in the application virtual
address space as pinned, and to obtain a ‘‘cross-memory descriptor’’ which allows the application data pages to be
addressed by a device on the Micro Channel bus using real addresses, as illustrated in Figure 2. For the read() call,
the pages are pinned as well. Use of pinned storage may present difficulties for system memory allocation if many
channels with large PDU sizes are active concurrently.

When appropriate hardware-provided status flags indicate the device is inactive, a bus-master transfer is set
up. The software prepares for bus-mastered transfers by initializing a number of translation control words (TCWs)
[9] in the Micro Channel’s I/O Channel Controller (IOCC)†. In addition, page mappings are adjusted for pages in
the host memory; the RISC System/6000 uses a lookup table referred to as the Page Frame Table (PFT). The TCWs
and Page Frame Table entries allow both the device and the CPU to have apparently contiguous access to scattered
pages of real memory. The pointer tables are illustrated in Figure 2.

...

IBM RISC
System/6000

P.F.Table

REAL

MEM.

PAGES

.

.

.
...

IOCC TCW

Host
Interface

CPU

Figure 2: Illustration of TCW and PFT usage

After the TCWs and other state are set up, the device is presented with the data size and buffer address, which ini-
tiates the transfer.

The provision for TCWs in the IOCC allows large contiguous transfers directly to and from the address space
of an AIX user process. The IOCC’s translation table removes the burden of copying data across the protection
boundary from the software, imposing it on the hardware portion of the interface architecture. The major tradeoff
here is that the pages used must be pinned into real memory while these operations are taking place, thus removing
them from the pool normally available to applications.

2.4. Timer Implementation

We have chosen clocked interrupts as the signaling mechanism for our host interface because of the operating
environment. In particular, as pointed out in [14] multiplexing is a key issue, and in an end-to-end architecture, the
end-points are processes. While the host interface demultiplexes traffic into per-virtual circuit queues, these queues
must be transferred to the appropriate applications processes. In addition, Quality of Service guarantees, especially
allocated bandwidths, must be supported. Our view is that like other system managed resources, bandwidth sharing
can be split between policy and mechanism. The policy is largely a function of higher layers in a protocol hierarchy,
�����������������������������������
† In the IBM RISC System/6000 Model 580, a newer implementation called the XIO is used. It provides considerably higher performance.
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but schedulingis the operating system mechanism most suited to allocating bandwidth, as it is a form of time-
division.

A periodic timer interrupt is generated using the AIX timer services [10]. The timer interrupt service routine exam-
ines the control tables in order to decide which actions are to be taken next. All operations are of short duration
(e.g., examining the CAMs on the host interface card) so that several can be performed during the interrupt service
routine. In addition, the status of the device and its internal tables are determined, in order to drain active VCs and
receive reassembled CS-PDUs. Logical timers in the tables which have expired are updated and reset when service
is performed.

AIX on the IBM RISC System/6000 Models 520 and 320 can support timer frequencies of 1000 Hz [10]
before there is significant negative performance impact from timer processing. At a timer frequency of 60 Hz, less
than 2% of the processor cycles are used for clocked interrupt processing on a RISC System/6000 Model 580, as
measured by the sar command [1]. In one sixtieth of a second, about 6000 cells can arrive on an OC-3c at full
rate, and the Reassembler buffer can accommodate over 7000 Cells [28]. While less-frequent polling improves
throughput and host performance, it has some potentially negative consequences for latency; for example a 60 Hertz
timer would give a worst-case latency of over 16.7 milliseconds before data reached an application, far slower than
desired for many LAN applications [19]. We are currently studying the problem of setting the timer interval. As
discussed above, the timer interval should be a function of traffic characteristics, and at this time, real traffic con-
siderations for high-speed cell networks are not well-understood.

A key feature of using timers is provision for bandwidth allocation by limiting per-connection data transfers.
This turns out to be trivial with a clocked interrupt system, as PDUs can be delivered at a multiple of the base clock
rate, or the number of PDUs per clock interval can be controlled. Since read() and write() serve to synchronize the
process with data motion, a simple bandwidth allocation scheme is enabled. We control these allocations using
parameters passed via ioctl().

3. Performance

A key test of the various architectural hypotheses presented is their experimental evaluation; since many of these
claims are related to performance, our experiments are focused on timing and throughput measurements, and ana-
lyses of these measurements. Since application performance is the final validation, any experiments should be as
close to true end-to-end experiments as possible. In our case, data should pass from a user process (the application),
through the software and hardware subsystems, to the network.

A simple program to gather timing measurements was written. The basic controls for the measurement pro-
gram include a repetition count, a buffer (PDU) size, and a bit pattern with which to populate the buffer.

A script which varied the PDU size and number of repetitions to achieve a constant total of bytes was written.
The parameters used ranged from a PDU size of 1KB and repetition count of 8K to a size of 64KB and a count of
128, yielding a total byte count of 8MB. The complete set of tests is plotted in Figure 3.
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Figure 3: Measured performance, Mb/s vs. PDU size (RISC/System 6000 Model 580)

On the IBM RISC System/6000 Model 320, the bottleneck is the I/O Channel Controller (IOCC) which limits the
performance to about 130 Mbps, while on the XIO-equipped IBM RISC/System 6000 Model 580, the physical layer
data rate is the bottleneck at 135 Mbps. We have measured sustained I/O bus to memory transfer rates of 270 Mbps
on the XIO architecture on the IBM RISC System/6000 Model 580.

Given the observed measurements summarized above, the software is not the system bottleneck. We can also
read data at these rates, thus there is no read vs. write asymmetry in performance. The throughput seen by an appli-
cation using a protocol suite such as TCP/IP may be less than shown here due to additional complexity. However,
these measurements reflect an upper bound on the throughput achievable with any implementation which copies
data to and from host memory.

3.1. Effect on unrelated applications

Since the ‘‘end-to-end’’ Gbps goal includes application processing, any solution must preserve the ability of the
workstation to run applications while interacting with the network fabric. In addition, whatever solution is chosen
must support classes of applications likely to exercise the system’s capabilities. The operating system must ensure
that the local portion of the application is able to gain sufficient processor resources to send or absorb traffic.

We performed a series of experiments to quantify the effect of the host interface and supporting software on
overall system performance. Our goal was estimating the remaining applications processing capacity when the net-
working subsystem was being exercised. We had two measures: the effect on the availability of CPU cycles, and the
effect on main memory bandwidth. We discuss each of these in the following two subsections.

3.1.1. CPU Impact

The measurement apparatus was an IBM RISC System/6000 running AIX 3.2. We used the sar command [1] to
observe the fractions of processing unit capacity devoted to user applications, system processing, waiting for I/O,
and the ‘‘idle’’ loop. The command was run using a monitoring interval of 1 second and the data logged to a file for
analysis. The overhead of operating the measurement apparatus and the other background activity on the system
was about five percent, and we subtracted this overhead from the measurements in order to focus on the effects of
the networking subsystem. The factors of interest were the workload, the use of the networking subsystem, and the
impact on both networking and applications performance. Workload was generated by concurrently running five
processes which repeatedly attempted to factor the prime 11,111,111,111,123. The processor is called Loaded when
this workload is being processed, and is otherwise Unloaded. A total of 4.8 million bytes were transferred using
three different PDU sizes, as shown in Table III.
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� �������������������������������������������������������������������������������������������������������������������������������������
PDU Size 48 bytes 4,800 bytes 48,000 bytes� �������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������
Transfer Time, Unloaded CPU 0.50 sec. 0.34 sec. 0.30 sec.� �������������������������������������������������������������������������������������������������������������������������������������
Transfer Time, Loaded CPU 5.4 sec. 0.75 sec. 0.46 sec.� �������������������������������������������������������������������������������������������������������������������������������������
CPU % Remaining for Application 50% 65% 70%  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
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Table III: CPU Availability versus networking

3.1.2. Memory Impact

Memory impact was studied on the same RISC System/6000 Model 580 using a program we designed which meas-
ures the performance of the main memory subsystem. It does this by striding across an area of memory larger than
the system’s cache, using cache-line sized steps. The stepping serves to minimize the number of instructions
required for the measurement, while the choice of the size of the memory area serves to ensure that caching is not
effective.

The program reads a system clock, and then repeatedly strides through the memory for a fixed number of
repetitions. After the memory strides are done, the system clock is re-read, and the memory bandwidth is computed.
This computed memory bandwidth is then output by the program. On the Model 580, the baseline memory
bandwidth was measured to be about 2.5 Gbps by this program. In comparison, on an IBM RISC System/6000
Model 320, the observed bandwidth was about 1Gbps; on a Model 530H, the observed bandwidth was about 1.8
Gbps.

Experiments were done by repeatedly executing the bandwidth measurement program and writing its results
to a log file for later analysis. The networking subsystem was exercised, and its effects on the memory bandwidth
analyzed from the data in the log file. Both 48 byte and 48,000 byte PDU sizes were used to transfer data. In both
cases, the total impact on measured memory bandwidth (including the execution of the networking test application
program, the device driver, and the transfer of data between the application and host interface) was less than 50%. A
more careful analysis of the measurements shows that timesharing the processor between the networking application
and the bandwidth measurement program reduces the observed bandwidth considerably, since the bandwidth util-
ized when the program is not executing is zero. It is still able to obtain over 1.5Gbps of main memory bandwidth.
The implication is that there is a large fraction of memory bandwidth available for applications processing.

These CPU usage and memory bandwidth measurements suggest that less extremal applications may easily
operate concurrently with the networking subsystem. For example, informal benchmarking done while the network-
ing subsystem was operating on a lightly-loaded IBM RISC System/6000 Model 320 showed little or no observable
system performance degradation. A simplistic test which competes for I/O and processing resources, a multimega-
byte FTP copying data from a remote IBM PC/RT connected through an Ethernet, required about 5% more wall-
clock time.

3.2. Analysis of Results

With reference to Figure 3, for small PDU sizes, software is the limiting factor to system performance. Smaller
PDU sizes force the application to make frequent system calls, which force the AIX system to context-switch fre-
quently. Larger PDU sizes reduce the per-byte software overhead, since the system calls are amortized over a larger
data transfer. As this overhead becomes (relatively) smaller, the data transfer rate dominates the performance, and
since the software does not participate in actual transfer to and from the device, the hardware performance limits
bound the throughput. This can be seen by studying the relative performance gain for each doubling in PDU size.
The performance is increases greatly as PDU size is increased from 1KB to 2KB, but the increase from 32KB to
64KB gives only a slight gain.

3.3. Double-Buffered Shared Memory Interface

We are now exploring strategies which can give us better performance for smaller PDU sizes. One such idea is the
use of an area of shared memory to allow the kernel and applications to communicate without system calls, thus
eliminating their performance impact. This should have a particularly strong effect on the performance of the
software for small PDU sizes, as system call overhead was more significant for small PDUs, as illustrated in Figure
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4.

In this model, the O.S. Kernel and Application share address space, as illustrated in Figure 4. This imple-
mentation removes the per-PDU system call by using shared status flags for kernel/user communication and syn-
chronization. The use of buffer pairs allows the CPU and bus master card operate concurrently, and thus derive per-
formance improvements from ‘‘overlapped’’ transfers.

Status Block

...........

Buffer #1 Buffer #2

K U

O.S.

User

Figure 4: Shared Memory Buffer Model (Reading)

We have implemented this scheme for the reassembler device driver, and the measurements for an IBM RISC Sys-
tem/6000 Model 580 used in a loopback mode are promising; the reassembler shared-memory model software easily
keeps up with the maximum performance of the segmenter card and its system-call interface model software.

4. Conclusions

Operating Systems employed in high-speed networks must reduce copying to deliver maximal throughput to appli-
cations, and they must deliver this throughput while preserving the capability of the host to perform applications
processing. We believe that they must also provide efficient support for delay-sensitive traffic, as many proposed
high-bandwidth applications incorporate such traffic.

We have shown here one way to reduce copying by enabling data transfers directly to and from buffers
located in application-process address spaces. The method has been demonstrated experimentally and shown to
deliver high throughputs. Operating System support must also include scheduling, which allows bandwidth-
allocated traffic streams to be delivered. The implementation we described provides resource scheduling for net-
work users, and considerably reduces interrupt overhead.

Clocked interrupts have been tested over a range of values from 1Hz to 500Hz, and high throughput is
delivered to applications. Setting the base rate is an interesting (and unsolved) optimization problem which trades
higher throughput at low clock rates against lower delays at high clock rates. Until we have a real mix of applica-
tions traffic, it will be hard to intelligently set the value.

Finally, the use of a shared memory programming paradigm reduces the impact of system call overhead, and
allows overlapped operation of the processor and the host interface’s data transfer functions.

One important (and often overlooked) observation we would like to make about our interface is that it was
remarkably easy to program. This was not an accident; the hardware and software were developed together. The
result of a simple programming model, though, is simple software. The simplicity of the software allows it to run
efficiently, and eases later optimizations. One difficulty we have observed in practice with implementations employ-
ing on-board protocol processing is that communication with the interface requires a more complex protocol [24]
than might otherwise be needed.

All strategies are functions of their environment, and the economics of various tradeoffs within that environ-
ment. When memory-bandwidth is constrained relative to network bandwidth, applications have requirements for
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high-bandwidth continuous-media traffic, and interrupts are expensive, these ideas appear useful.
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