Interrupts

Jonathan M. Smith, Jeffrey D. Chung*and C. Brendan S. Traw!
Distributed Systems Laboratory, University of Pennsylvania

{jdchung,traw, jms}@dsl.cis.upenn.edu

1 Introduction

Interrupts are one solution to signaling asynchronous events to a host computer. This chapter begins
with a discussion of the problem which is being addressed, provides an analytic model to evaluate
the design space of event-signaling algorithms, and then illustrates some tradeoffs using experiments
performed with a 622 Mbps ATM adaptor for computer workstations. The chapter concludes with

a review of current work in event signaling.

2 Why interrupts?

Operating Systems are software systems which manage the hardware resources of a computer system
to provide services needed by applications. They evolved from I/O control systems (IOCSs) which
were loaded into early computer systems before an application began to run; this was typically done
with a deck of punch cards placed immediately ahead of the cards used for the application. It became
clear that there was a common set of functions needed by many applications, and this gave rise to
early operating systems, which were heavily focused on job service (to maximize the utilization of

the expensive machine) and device management.

*Jeff Chung is now at Silicon Graphics, Inc.

tBrendan Traw is now at the Intel Architecture Laboratory, Hillsboro, OR.



The main evolutions in operating systems arose from different paradigms for sharing the machine.
Early machines in many cases were dedicated to a single use. Later machines were multipurpose,
but the per-application IOCS scheme made for sequential execution of jobs, one after another.
When IOCS became shared and job management was used to increase utilization of the machine,
spooling was used to queue work for batch execution. A major advance came from the idea of
multiprogramming, which took advantage of the fact that the expensive processor was often wasted
(idle) as slow input/output devices (such as printers, card punches, and tape machines) were accessed
by an application.

Multiprogramming used the idle periods of the processor to perform other computational work
until the input/output was completed. A variety of multiprogramming techniques were developed,
with fixed and variable numbers of tasks, priorities, etc. Timesharing is a multiprogramming tech-
nique which allows interactive access to the multiprogrammed resources. Access is controlled under
a policy, such as “fairness”. Timesharing systems often periodically schedule job execution in a
“round-robin” fashion to preserve a fair allocation of processing resources between jobs. This cre-
ates a “virtual time” model where each job’s real processing time (wall-clock time) is dilated in
proportion to the amount of competition for processing resources. This scheduling model is typi-
cally preemptive and is accomplished via use of a hardware alarm timer which generates an interrupt;
the operating system’s interrupt service discipline for this timer event may involve choosing a new
job to occupy the processor; the steps of preserving the state of the previous job and loading the

saved state of the new job comprise a context switch.

3 Multiprocessing, Interrupts and Scheduling

The key resource management policy in a multiprocessing system is the scheduling policy, used to
decide which of the available processes will occupy the processor. Scheduling can be implemented in
two forms, namely non-preemptive and preemptive. In the first case, the operating system makes a
scheduling decision and the process occupies the processor until it is finished with its current work.

In the second case, the operating system may preempt the process, perhaps allocating the processor

2



to a different process in order to implement the scheduling policy. In either of these cases, there
is a significant amount of machine state which must be saved and restored for the processor to be
allocated to a process. While the machine state to be saved and restored varies with the operating

system, among the typical process state information which must be saved and restored are:

e A set of machine registers, including a program counter and a stack pointer

e A set of virtual memory mappings for the process’s address space

e A set of pointers and status information used by the operating system to describe the process,

such as a priority and an execution privilege

In addition, cache entries must be flushed so that there is no difficulty with future references to
memory.

One of the interesting tradeoffs which has arisen as a consequence of technology trends is the
heavy use of caching techniques and technology to reduce the cost of memory access for computa-
tionally intensive programs. Large register sets, characteristic of RISC technology, can be viewed
as a compiler-managed cache area. A result of this use of caches is that the process executes more
quickly once the cached data is available, but as the amount of preserved state per process rises, the
cost of a preemption does as well.

Modern operating systems are typically preemptive in design, as it is believed that the operating
system can do a better job of making decisions on a continuous basis than if it has decision points
chosen, in effect, by applications processes. When systems are organized so that applications can be
preempted, there is typically a hierarchy of scheduling priorities applied so that the highest priority
runnable process is always on the processor. The operating system will then be assigned a set of
priorities higher than application priorities so that its operations can complete before application
processes are allowed to occupy the machine. The assignment of priorities used for scheduling thus
reflects the policy of the operating system designers about which operations should take precedence
in the job mix. The preemption is implemented via a high-priority hardware “alarm clock”, which

generates an interrupt. The clock interrupt routine becomes the highest priority runnable process

3



at this point, and it operates the scheduling algorithm to determine the next process to occupy the

processor.

3.1 Clocks, preemption and priorities

As any multiprocessing system can be looked at as a time-division multiplexing (TDM) scheme for
processors, timesharing systems such as UNIX and its derivatives can viewed as statistical TDM
schemes. The multiplexing is provided by means of a system clock, which is set to periodically
“Iinterrupt” the processor at a known rate. The period of this clock is known as a clock “tick”. The

events that occur at each tick are roughly:

e An interrupt vector is used to execute a hard clock interrupt routine, resulting in the currently
executing process having its state saved and control passing to the clock service code. The
clock service code may update some internal operating system state, such as the number of

clock ticks the current process has accumulated, before other work proceeds.

e The operating system examines a queue of activities tied to a clock event - the elements of this
queue are used, for example, to periodically examine teletype devices for activity. The queue
is typically organized as a sorted list so that the elements can be examined in order of their
timer expiry. Elements later in the queue have their timer expiries stored as a time offset from
the previous element, so that all queue element timers are updated when the head of the list

i1s updated.

e The head of the list’s timer expiry is decremented by one tick. Any queue elements which have
a timer expiry of zero are executed, and the first queue element with a non-zero timer expiry

becomes the new head of the list.

e The operating system selects the next runnable process using its policy — for example, that the
highest priority runnable process should always be running — and restores the saved state of that
process to restart execution. It is worth noting that this may well be a different process than

was executing when the clock tick occurred. For example, if the previously running process

4



has accumulated a clock tick, its priority may have decreased to the point where another
process will be selected for execution. With proper design of the algorithm for choosing the
next process to execute (e.g., round-robin within priority bands) effective timesharing can take

place.

3.2 Unscheduled preemption - device interrupts

Multiprocessing systems are designed under the assumption that there is always an oversupply of
useful work to do. Device management policy reflect this assumption by way of event-signaling
schemes. What event-signaling means is that the device performs some operation, say to transfer a
packet from user memory to a cellified representation on an ATM network, and this operation must
be noted in the control algorithm for the device. This control algorithm may want to signal the
device to begin a transfer, or pass information to the device for later use, such as a pool of buffer

addresses.

3.3 Interrupts in UNIX Multiprocessing

As illustrated in Figure 1, there are events called interrupts which might result in the preemption
of the process. These events are caused by devices which signal that they need service. The service
routines are called device drivers and consist of (logically) a top half and a bottom half. The bottom
half services are accessed when a device interrupts. The device interrupts by asserting a signal on
a control line, and this causes control of the processor to pass to a routine located at an interrupt
service vector, which is a small integer used to demultiplex the different devices that might require
service. In the lowest levels of UNIX, in fact at the lowest addresses in the system (and often in
assembly language, e.g., “locore.s”), reside the mappings between the small integers and addresses
of routines to service the interrupts, per-device.

Among the usual properties of an interrupt handler is its priority level. When the interrupt
handler needs atomic execution, it sets the processor priority level above its own execution level.

This has the desirable property that any other devices of its type, which may share data structures



in a critical section, will not execute. While clever programming can minimize the duration of
these “locks” on data structures, they do represent a difficulty for parallel processors, as the locking

strategy does not work unless all 1/O is done through a single processor.

4 Analyzing interrupt performance

Consider a system with an interrupt service overhead of C' seconds, and k active channels, each with
events arriving at an average rate of A events per second. Independent of interrupt service, each
event costs a seconds to service, e.g., to transfer the data from the device. The offered traffic is
Ax k, and in a system based on an interrupt-per-event, the total overhead will be A x k x (C' + «).
Since the maximum number of events serviced per second will be 1/C + «, the relationship between
parameters is that 1 > A%k * (C' + «). Assuming that C' and « are for the most part fixed, we can
increase the number of active channels and reduce the arrival rate on each, or we can increase the
arrival rate and decrease the number of active channels.

For devices with large data transfers such as disk devices, the data transfer per interrupt event
is large and thus the interrupt service overhead is negligible. On the other hand, devices with small
units of data transfer can be severely limited by interrupt processing overhead. An example of this
situation is a computer used for receiving character data (e.g., one which supports a modem pool)
from a large number of devices. One of the authors studied such a system in the early 1980s which
was used for receiving netnews via the UNIX uucp data transfer mechanism; the system was all
but unusable for interactive work and traces showed that more than 90% of its time was spent in

interrupt service.

5 An alternative event-signaling scheme: clocked interrupts

Event-signaling within the network subsystem between the hardware network interface device and the
software device driver is typically accomplished via polling or device-generated interrupts. In an im-

plementation of an OC-3¢ ATM host interface for the IBM RS/6000 family of workstations[Traw 93,



Smith 93], the traditional forms of this crucial function were replaced with “clocked interrupts.”
Clocked interrupts, like polling, examine the state of the network interface to observe events which
require host operations to be performed. Unlike polling, which requires a thread of execution to
continually examine the network interface’s state, clocked interrupts perform this examination pe-
riodically upon the expiration of a fine-granularity timer. In comparison to interrupts, clocked
interrupts are generated indirectly by the timer and not directly by the state change event.

Clocked interrupts may negatively affect the latency of the networking subsystem, but they can
improve the bandwidth which can be handled under a variety of traffic types, as multiple changes
of state can be detected by a single clocked interrupt. An analytical model for clocked interrupt
performance has been developed[Smith 93].

Using the parameters of Section 4, for clocked interrupts delivered at a rate § per second, the
capacity imitis 1 > f*x C' + A x k * a. Since « is very small for small units such as characters, and
C' 1s very large, it makes sense to use clocked interrupts, especially when a reasonable value of g
can be employed. In the case of modern workstations, C' is about a millisecond. Note that as the
traffic level rises, more work is done on each clock “tick,” so that the data transfer rate A x k % «
asymptotically bounds the system performance, rather than the interrupt service rate. We note that
traditional interrupt service schemes can be improved, e.g., by aggregating traffic into larger packets
(this reduces A significantly, while typically causing a slight increase in «), by using an interrupt on
one channel to prompt scanning of other channels, or masking interrupts and polling some traffic
intensity threshold.

For application workloads characterized by high throughput, heavy multiplexing, and/or “real-
time” traffic, clocked interrupts should be more effective than either traditional polling or interrupts.
For these intensive workloads, our analysis predicted that clocked interrupts should generate fewer
context switches than traditional interrupts and require fewer CPU cycles than polling without sig-
nificantly increasing the latency observed by the applications. We note that for traditional interrupts
with interrupt service routines which detect additional packets enqueued on the adapter, many of the

same benefits may accrue. Ramakrishnan[Ramakrishnan 93] has noted a problematic performance



overload phenomenon known as receive livelock which clocked interrupts can help alleviate.

6 Evaluating Interrupts: The HP Afterburner and UPenn

ATM Link Adapter

The OC-12c¢ rate ATM Link Adapter for the HP Bristol Labs “Afterburner” was built to test scalabil-
ity of an ATM host interface architecture[Traw 93, Smith 93] developed as part of the ATM/SONET
infrastructure of the AURORA Gigabit Testbed [Clark 93].

The hardware infrastructure for this evaluation consists of HP 9000/700 series workstations
equipped with Afterburner generic interface cards and ATM Link Adapters. Figure 2 shows an
Afterburner and ATM Link Adapter. The remainder of this section briefly describes the architecture

and implementation of the Afterburner and ATM Link Adapter.

6.1 Afterburner

The Afterburner [Dalton 93, Banks 93], developed by HP Laboratories in Bristol, England, is based
on Van Jacobson’s WITLESS architecture. It provides a high speed generic packet interface which
attaches to the SGC bus of the HP9000/700 workstations. A large pool of triple ported Video RAM
(VRAM) is provided by Afterburner. The random access port of the VRAM is visible on the SGC
bus allowing the VRAM to be mapped into the virtual address space of the workstation. The two
serial ports are used to provide a bidirectional FIFOed interface to a network specific Link Adapter.

Several additional FIFOs are provided to assist in the management of VRAM buffer tags.

6.2 ATM Link Adapter

A Link Adapter provides an interface between the general purpose Afterburner and a specific network
technology. The UPenn SAR architecture [Traw 93] is the basis for the ATM Link Adapter. This
architecture performs all per-cell SAR and ATM layer function in a heavily pipelined manner which

can be implemented in a range of hardware technologies. For the ATM Link Adapter the base SAR



architecture has been extended to support a larger SAR buffer (up to 2 MB), AAL 5 including
CRC32 generation and checking, and demultiplexing based on the full VPI, VCI, and MID. The
performance of the implementation has been improved to 640 Mbps by using more advanced EPLD

technology. Figure 3 shows the host/Afterburner/ATM Link Adapter configuration.

7 Implementation of the Clocked Interrupt Scheme on the

Afterburner ATM Link Adapter

The ATM Link Adapter device driver operates in conjunction with HP Bristol “Single-Copy”
TCP/TP[Edwards 94]. The kernel was modified to support a fine-granularity timer, as the stan-
dard 100 Hz soft clock rate was inadequate. The operating system was modified to increase the
hardware clock interrupt rate, and changing the interrupt service vector to point to a specialized
clock service routine rather than the usual hardclock interrupt service routine. Clock division is
performed inside the software which calls the hardclock interrupt service code at the proper rate.
At each vector clock tick, occurring at the clocked interrupt clock rate, the link adapter is examined
for packet arrivals. If packets are discovered the Interrupt Service Routine (ISR) for the ATM link
adapter is invoked; this ISR provides the packet to the single-copy TCP/IP stack.

Polling requires a continuous thread of execution to examine the state of the 1/O device. Because
the version of HP-UX used for this evaluation lacks preemptive kernel threads, polling was imple-
mented with a preemptable user process. To minimize the number of system calls, the device status
flag was appropriately memory mapped for access by a user process. This allowed a user process to
continually examine the state of the device in a preemptable thread of execution, albeit at some cost
in overhead. The user process invokes the ISR through an ioctl() call; for measurement purposes a
small helper daemon was devised which performed this function, rather than modifying the netperf
measurement tool, again at a cost in overhead. Preemptive kernel threads would remove both these
additional source of overhead.

Thus, the current implementation includes support for interrupt generation as well as the exam-



Socket Buffer Trad. Poll Clock | Clock | Clock | Clock

Size (Kbytes) intr. 500 Hz | 1 KHz | 2 KHz | 4 KHz

1 6.75 | 6.34 2.60 3.92 5.88 6.67

2 12.45 | 13.24 5.02 7.36 9.81 11.94

4| 20.82 | 22.43 9.28 13.40 18.17 | 21.57

8 | 30.80 | 37.27 16.20 | 22.96 | 26.58 | 35.35

16 | 51.73 | 50.03 21.72 | 42.03 | 45.64 | 50.35

32 | 66.83 | 64.02 37.95 | 52.26 | 61.72 | 64.27

64 | 76.25 | 76.78 9717 | 65.27 | 7091 | 73.22

128 | 124.97 | 81.57 95.00 | 110.03 | 117.24 | 121.09

256 | 144.05 | 82.62 | 143.76 | 144.10 | 143.59 | 143.81

Table 1: TCP/IP Throughput (Mbps), Afterburner ATM Link Adapter on HP 735s, 32KB messages

ination of the card via polling or clocked interrupts. With support for all three types of state change

notification, a comparative experimental evaluation of these mechanisms can be performed.

8 Performance

The hardware test configuration consists of two HP 9000 Series 700 workstations connected back-

to-back via their Afterburner ATM Link Adapter subsystems.

8.1 Measurements and analysis

The throughput of the resulting network stacks was measured using the netpert tool[IND 95].
The results are given in Tables 1, 2 and 3. Table 1 gives measured throughputs for 32KB
messages taken on HP 735s interconnected by adapters which were in turn interconnected by a 160
Mbps capable SONET like “null-modem”. Table 2 gives measured throughputs for 32KB messages
taken on HP 755s (a faster version of the HP 735) interconnected by adapters, which are in turn

connected by a 320 Mbps capable SONET “null-modem”. Table 3 repeats these measurements with

10



Socket Buffer Trad. Poll | Clock | Clock | Clock | Clock Clock

Size (KBytes) intr. 500Hz | 1KHz | 2KHz | 4KHz | 2.5KHz

1 13.17 | 13.76 3.16 5.88 7.95 | 11.73

oo
o0
(2}

2| 2340 | 24.25 6.82 | 10.59 | 14.99 | 19.46 16.90

41 38.07| 4292 | 11.96 | 16.29 | 26.33 | 38.44 34.39

8 | 57.04 | 64.61 | 2329 | 31.60 | 43.58 | 56.88 53.46

16| 96.02 | 91.32 | 3580 | 51.05| 71.05| 87.80 68.77

32| 118.15 | 105.12 | 59.47 | 86.43 | 101.12 | 111.03 | 100.28

64 | 133.52 | 107.02 | 77.89 | 103.14 | 119.93 | 126.96 | 123.40

128 | 196.51 | 126.12 | 123.50 | 167.28 | 187.69 | 196.39 | 191.63

256 | 210.66 | 136.77 | 210.53 | 214.77 | 214.87 | 213.46 | 215.15

Table 2: TCP/IP Throughput (Mbps), Afterburner ATM Link Adapter on HP 755s, 32KB messages

Socket Buffer | Trad. Poll | Clock | Clock | Clock | Clock | Clock

Size (KBytes) | intr. 500Hz | 1KHz | 2KHz | 4KHz | 169Hz

1] 11.82 | 7.43 3.63 4.89 7.76 9.45 1.38

2| 21.16 | 13.37 6.35 9.17 | 14.40 | 17.20 2.76

413332 | 2353 | 13.78 | 25.22 | 26.03 | 24.09 5.53

8 | 47.49 | 3457 | 16.31 | 31.03 | 38.73 | 45.81 8.70

16 | 60.34 | 45.31 | 34.68 | 49.93 | 78.89 | 62.35 | 21.70

32| 7299 | 54.76 | 60.70 | 85.98 | 7T2.56 | 86.10 | 22.12

64 | 83.14 | 63.36 | 92.07 | 79.83 | 66.11 | 65.24 | 54.61

128 | 92.48 | 66.78 | 108.99 | 90.62 | 102.90 | 81.75 | 76.64

256 | 95.29 | 76.26 | 95.68 | 106.57 | 97.08 | 102.44 | 166.44

Table 3: TCP/IP Throughput (Mbps) , Afterburner ATM Link Adapter on CPU-loaded HP 755s,

32KB messages

11



a CPU intensive artificial workload running on the receiving CPU.

The major observation in comparing event-signaling is that polling does not keep up with the two
other schemes above about 32KB. All checksums were enabled for all tests; the measurements were
performed on dedicated processors, with no other activity except for necessary system background
processes. The tests were run with symmetric configurations; that is, both sender and receiver were
using the same signaling mechanism.

It is clear from the figures shown that at high polling rates, the clocked interrupt scheme is able
to keep up with the traditional interrupt scheme, which is almost everywhere the best performer,
with the exception of polling, which does best for small packet sizes. In a lightly-loaded environment,
interrupts would appear to be the best solution, except for some anomalous, but repeatable results

which show polling best for small socket buffer sizes.

8.2 Performance and workload

Since dedicated configurations are not characteristic of real environments, which are often loaded
with other work and other network traffic. We created an artificial workload by continuously ex-
ecuting a “factor 99121010311157” command. This has a significant effect on the behavior of
the three schemes, as can be seen by measuring the throughput with netperf with the artificial

workload running on the receiver.

8.3 Latency and event-signaling

A second important parameter for distributed applications is the round-trip latency induced by the
software supporting the adapter. Since the hardware was a constant, we could directly compare
the software overheads of the three schemes. This was done with the following test. An artificial
network load was created using netperf with a socket buffer size of 262144 bytes and operating
it continuously. Against this background load, ICMP ECHO packets of 4K bytes were sent to the
TCP/IP receiver, which was where the event-signaling performance differences would be evident.

Sixty tests were done to remove anomalies. Our results showed that traditional interrupts and

12



clocked interrupts at 500 Hz performed similarly, yielding minimum, average and worst case times
of 5/12/18 ms, and 4/11/25 ms, respectively. When the systems were not loaded, the performances
were 3/3/3 ms and 4/4/6 ms. This suggests that clocked interrupts performed slightly better under
heavy load, but slightly worse under unloaded conditions, confirming the analysis given earlier in

the chapter.

9 Summary and recent work

Work per event is the most important factor, by far, in maximizing observed throughput. Thus,
systems which employ interrupts should aggregate work, perhaps in the form of larger data objects.
An example of this is using interrupt-per-packet rather than interrupt-per-cell, in an ATM context.
Buffering is an effective aggregation mechanism, and has often been employed to support character-
oriented 1/O systems. Even newer schemes, such as Mukherjee’s [Mukherjee 98], use polling at one
level of the system (coherence enforcement) to reduce the overall cost. Mogul and Ramakrishnan
have developed a hybrid interrupt/polling technique[Mogul 96] which uses queue length to convert
from interrupt-driven signaling to polling; they report good performance with a simple policy.

The experiments described in this chapter showed the following. First, in the context of high-
performance network adapters, clocked interrupts can provide throughput equivalent to the best
throughput available from traditional interrupts; both methods provide better performance than
polling as implemented here. Second, clocked interrupts provide higher throughput when the pro-
cessor is loaded by a computationally-intensive process; this suggests that clocked interrupts may
be a viable mechanism for heavily loaded systems such as servers, which might also suffer from Ra-
makrishnan’s receive livelock. Third, clocked interrupts provide better round-trip delay performance
for heavily-loaded systems servicing large ICMP ECHO packets.

Taken as a whole, the data suggest that clocked interrupts may be an appropriate mechanism
for many of the high-performance applications now being proposed, such as Web proxies and other
network traffic-intensive servers. The system described here, using clocked interrupts, had the

highest reported TCP/IP/ATM performance in 1995, a record held for over one year.

13



10 Acknowledgments

Hewlett-Packard’s European Research Laboratories (Bristol, UK) collaborated on the Afterburner
ATM Link Adapter and provided the basic single-copy TCP stack. The AURORA research at Penn
was supported by the National Science Foundation and the Advanced Research Projects Agency un-
der Cooperative Agreement NCR-8919038 with the Corporation for National Research Initiatives, by
the NSF under agreement CDA-92-14924, by Bell Communications Research under Project DAWN,

by an IBM Faculty Development Award, and by the Hewlett-Packard Corporation.

References

[Banks 93] D. Banks and M. Prudence, “A High-Performance Network Architecture for a PA-RISC

Workstation,” ITEEE JSAC, 11(2), pp. 191-202 (Feb. 1993).

[Clark 93] David D. Clark, Bruce S. Davie, David J. Farber, Inder S. Gopal, Bharath K. Kadaba,
W. David Sincoskie, Jonathan M. Smith, and David L. Tennenhouse, “The AURORA Gigabit
Testbed,” Computer Networks and ISDN Systems 25(6), pp. 599-621, North-Holland (January

1993).

[Dalton 93] C. Dalton et al., “Afterburner: A network-independent card provides architectural sup-

port for high-performance protocols,” IEEE Network, pp. 36-43 (July 1993).

[Edwards 94] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Calamvokis and C. Dalton, “User-
space protocols deliver high performance to applications on a low-cost Gb/s LAN,” in Proceed-

ings, 1994 SIGCOMM Conference, London, UK, 1994.

[IND 95] Hewlett-Packard Information Networks Division, “Netperf: A Network Performance

Benchmark (Revision 2.0)”, February 15, 1995.

[Mogul 96] J. Mogul and K. Ramakrishnan, “Eliminating Receive Livelock in an Interrupt-Driven
Kernel,” Proceedings, USENIX Conference, San Diego, CA, January, 1996. (More data is avail-

able in a technical report version of the paper available from DEC WRL).
14



[Mukherjee 98] S. Mukherjee and M. D. Hill, “The Impact of Data Transfer and Buffering Alterna-

tives on Network Interface Design,” in 4th HPCA, Feb. 1998.

[Ramakrishnan 93] K. K. Ramakrishnan, “Performance Considerations in Designing Network Inter-

faces,” IEEE JSAC 11(2), pp. 203-219 (Feb. 1993).

[Smith 93] Jonathan M. Smith and C. Brendan S. Traw, “Giving Applications Access to Gb/s

Networking,” IEEE Network 7(4), pp. 44-52, (July 1993).

[Thompson 78] K. L. Thompson, “UNIX Implementation,” The Bell System Technical Journal, 6(2),

pp. 1931-1946, (July-August 1978).

[Traw 93] C. Brendan S. Traw and Jonathan M. Smith, “Hardware/Software Organization of a

High-Performance ATM Host Interface,” IEEE JSAC 11(2), pp. 240-253 (Feb. 1993).

[Traw 95] C. Brendan S. Traw, “Applying Architectural Parallelism in High Performance Network

Subsystems,” Ph.D. Thesis, CIS Department, University of Pennsylvania, January, 1995.

[Veen 93] J.T. van der Veen, C. Brendan S. Traw, Jonathan M. Smith, H.L Pasch, “Performance
Modeling of a High Performance ATM Link Adapter,” in Proceedings of the Second International

Conference on Computer Communications and Networks, San Diego, CA (June 1993).

15



User
Running

Return Pre-

Figure 1: UNIX processes: An abstract state diagram

Figure 2: Afterburner (left) and ATM Link Adapter (right)

16



HP 700
Series
Workstation

SGC Bus

%

Afterburner
Dual Ported
Packet Buffer

Link Adapter
Segmenter Mq:)Mb‘E
646)Mbps

Reassembler <

Figure 3: ATM Link Adapter

17

Physical
Layer
Interface

to network
==




