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ABSTRACT
We examine computing alternag lutions to a problem in parallel to impmresponse time.

Problems with gploring multiple alternaties in parallel include (1) side-&fcts and (2) combinatoriakplosion in

the amount of state which must be presdrv Theseare soled by process management and an application of
“ copy-on-write” virtual memory managementhe side d&cts resulting from interprocess communication are han-
dled by a specialized message layer which interacts with process manag&heefect is to create’'Multiple
Worlds”, which are diferent due to the alternate solution methods,iternally self-consistent.

We ow how auch a ‘Multiple Worlds” scheme can be used fowvsgal applications.

1. Introduction

“They could be different. For instance,
the 1939 that exists ‘now’ back up the
timeline might not contain a Hitler at all.
When it arrives at its own 1945, World
War Il won't have happened, and it will
have evolved a history that doesn’t read
like ours at all. From there it will go on
into its own future, fully consistent with
its own part but different than ours”” [9]

A question which has intrigued mamesearchers is
how an increasing supply of computational resources,
in the form of multiple computers, can be utilized to
solve higger problems, to sodvproblems &ster and

to sohe problems more reliablyWe examine a spe-
cific computational problem here, that of pursuing
alternatves. Ourdesigns she what can be done in
order to g&ecute instances of this problem type, specu-
latively, in parallel.

We ae interested in what performanceairgs
can be achied. We measureperformance using the
metric of eecution time, which is the amount ofal/
clock time necessary to carry out a computation.
Thus, we may increase performance by this measure,
while decreasing performance by measures such as
throughput. Given this bias, we may risk asted vork

T This report appears in the Proceedings of the 1989 Interna-
tional Conference ondpallel ProcessingPlease cite thater-
sion.

in speculative computation, which throughput-
oriented performance measuresuld discourage.

We begn by describing the computations to be
analyzed. Thesare essentially a set of alternati
methods for causing a state change te fé&ce, with
the additional constraint that at most one of the -alter
native gate changes occurs.

In this paperwe review our problem setting;
shav a transformation which alles alternaties
execute concurrently while preserving sequential
semantics; analyze the performanceerocomplete
problem domains as opposed to a point measure.
Example application areas for our method are pre-
sented, and initial performance results on a numerical
problem are praded.

1.1. Sequential Model

Our sequential model is as faolls [20]. Several alter
native methods of computing a result areaidable.
Some of the alternattss may compute an acceptable
result, while others may nofThe essential problem is
the choice between successful altexssti or an indi-
cation of filure if there are no such altervas.

What we vant is for at most one of the altervati
methods to be applied to our problem, or for whate
conditions constitute aflure to be indicated.Each
method, 1,..,n, has associated with it guard con-
dition, which it must satisfy in order to be considered
successful. Eachmethod is called aralternative.
When the alternates ae composed into a block, the



meaning is that one of the alternva$i (including fail-
ure) are selected non-deterministically; this selection
is the result of the blockThe non-determinism in
selection is necessary for highggrformance comput-
ing; see [21] for a more complete discussion on
exploiting randomness with parallelismThe selec-
tion is non-deterministic andnfair, in that the selec-
tion of alternatres is not equiprobable, and should not
be; it's dear that the alternat d failure should be
given as low a pobability of success as is possible,
noting that when all the alternas fail its conditional
probability must be 1.

2. Parallel Execution

“This picture implied some parallel
branching structure of universes in which
every point along a timeline became a
branch-point into a possibly infinite num-
ber of other timelines, with the branches
forking unidirectionally like those of a
tree” [9]

2.1. System Model

A process (P) is an independently schedulable stream
of instructions. In implementations, it is often associ-
ated with some unit of state, e.g., an address space,
and a set of operations prded by akernel to man-

age thafstate. Interprocess communication is accom-
plished solely through passingessages. Thus, ames-

sage is the only means by which:

* Py can mak P; awae of a change ifP,'s
state.

* Py, can cause a changefy’s date.

Interprocess communication (IPC) is assumed to
behae rliably (no lost or duplicated messages) and
FIFO (no out of order messages).

Systemstate is divided into tw types,sink and
source. The dvision is made on the basis of idempo-
tence; operations osink devices can be retried with-
out obserable efects, while operations omources
cannot be retriedFor concreteness, consider a page
of backing store and a teletypevie, respectiely.
Side efects which dkectsink state can be hidden; this
is a common technigue in the implementation of such
abstract operations &r@ansactions; the idea is that the
transaction has the property afomicity, meaning
that either none or all of the transactions component
actions occyrand that intermediate states are not
obsenable outside the transactio@omplex transac-
tions may inolve reads, which can occur unhindered,
or writes, which must be done to a temporaryycop
until the transactioncommits, or in other verds,

malkes its changes permanemeads intended for the
recently written coyp are satisied by that cop so that

the transaction is internally consistent, i.e., it can read
what was written.

Snk state is manipulated asxéd-sizepages.
All sink state can be represented in tlaisHion; this is
clear from implementations of a singlexdkstore, as
in MULTICS [14]. Thus we biry the entire memory
hierarcly under the page abstractioflp§é are named
sets of pages, and thus mechanisms which are used to
transparently  access iles  over  networks
(e.g.,'Network File Systemg can be utilized to hide
the network through the page management abstrac-
tion; an &ample is the Apollo DOMAIN Architecture
[13].

2.2. Process Management

Two primitives ae used for process management.
Process management creates, schedules, and termi-
nates the mutuallyxelusive @nd oblvious) alterna-
tives. To sawvn the alternaties, the parent uses
alt_spawn( n ), which returns numbers from 1
to n in the alternates and O to the parentThus a lan-
guage preprocessor applied to a program with mutu-
ally exclusive dternatives would generate (in pseudo-
C):
switch( alt_spawn( n ) )

case 0: /* parent */

alt_wait( TIMEQUT );
fail(); /* if returned */

case 1: /* First alternative */

case n: /* n-th alternative */
alt_wait( 0);
}

The functions ol t _wai t () are manifold; the pur
pose is synchronizing in order to establish a single
path through the tree of possible computatiofke
taken path is reflected in thexeeution history of the
running process.Al t _wait () takes a TIMEOUT
value as an gument. ltis typically non-zero in the
parent, as TIMEOUT represents the time the parent is
willing to wait for a successful child call to
alt_wait(). TIMEOUT's value should be chosen
so that after TIMEOUT time units ha dapsed, it is
unlikely that ay of the alternaties have succeeded.
While choosing such aalue is very hard, most com-
putations hee an execution time which is clearly
unacceptable to the application; thaue can then be
used.

When a spaned alternatie  alls
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alt _wait () atthe termination of its computation, a
rendezwous between thal t _wai t () ing parent and
the child is éfiected. Theparent is waiting, because if

it was eecuting, it could cause state changes which
would male its state inconsistent after the synchro-
nization discussed in the xtesection. The behsior is
much like that of the Wix exec() system call,
which overwrites the calling process and dies
execution of the called proces#sn the case of the par
ent's all to alt_wait(), the parent process
absorbs the state changes made by its child by atomi-
cally replacing its page pointer with that of the child
(some coping might be needed for fedieng in the
distributed case).Thus, the flav of control through
the child appears to t@ been seamless, up to and
including maintenance of the process id.

Use of these primites is shown by concurrent
execution of alternatie methods shan in figure 1:

Sequential
Program

Start
Block

methody failure

N

Synchro-
nization

methody methody

Sequential
Program

Figure1: Concurrent Egcution of Alternaties

Assuming that all the3UARD conditions hae been
satisfed, a process which completes its program se
ment attempts to synchroniz#.any of the conditions
required by the3UARD were not sati$d, the process
aborts without synchronizingNote that theGUARDs

can be recuted serially before spaing the alterna-
tives (thus impreing throughput at thexpense of
response time); in the child process; at the synchro-
nization point; or at ancombination of these places,
for redundang

2.2.1. Synchronization

The synchronization point is where thestf alterna-
tive dild invokes alt_wait(). Alt_wait() is

an ‘at most onceé’operation for ayp group of child
processes created by the saaled _spawn(). In
order to minimize the &fct on throughput, when an
alternatve is slected, its ‘siblings” are eliminated.
This is done by informing the scheduler that the pro-
cesses are to be terminate@he deletion can be
accomplished synchronously (where the other alterna-
tives ae deleted beforexecution resumes in the par
ent) or asynchronously (where the deletion occurs at
some time after thal t _wai t () resumes in the par
ent, lut exactly when is not sped#fd); experiments
(mentioned at the end of section 3) indicate that asyn-
chronous elimination ges better execution-time per
formance, once a&in at the gpense of throughput.

2.3. Predicates

Ideally, we would like an dternative  carry on with

its computation as much as it can before either block-
ing or synchronizing.In order to eflect this, we add

“ predicates’'to the messagesThe predicates are lists

of process identiérs, some of which the sending pro-
cess depends on completing successfully and others
on which the sending process depends amta@om-
plete successfully Thus, these areven smpler and
easier to manage than the predicates described by
Eswaran, et al.[7] The adantage of this representa-
tion over predication of data objects is that we can
update the alue of these elements as processes
change status (e.g., running, bledk with the idea
that processes change status much less frequently than
they make memory references to object3hese lists

are constructed in twways. Firstthe predicates of a

“ child” process consist of those of thgarent’; this
allows for nesting and potentially comgldependen-
cies. Secondwhen the ‘parent’ spavns each of its
alternatve “children”, each of the children addition-
ally assumes that it will complete successfuligd

that its siblings will not; thus‘sibling rivalry’’ is
taken to its &reme in this designThe failure alter
native asumes that none of the siblings will complete.
The state management states “copy-on-write” [ 3]

with page map inheritance from the parent, thus it is
easily implemented within the comteof a system
which provides such features, e.g., CMUMACH,

and beneéfs from &isting hardvare support, e.g., for
the W 32101 MMU [2]. The softvare-
implemented predicates are used in the process con-
trol and message transmission dtigs to maximize
sharing. Updatedand nevly-written pages are



predicated by virtue of their residence in apercess
descriptor table, as illustrated in Figure 2.
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2.4. Interprocess Communication

2.4.1. Messages

A message from P, to P; has the follaving three part
structure:

1. A sending predicate, encapsulating the assump-
tions under which theender, say P, sends the
message.

2. Thedata comprising the message contents.

3. Somecontrol information, e.g., sender id, destina-
tion id, etc.

Eachprocess in a multiprocessing (e.g., timesharing,
multiprocessar or distributed) system has anique
identifier, used to identify the process both within the
system (e.g., for scheduling and resource allocation),
and furtherfor interaction with other processes.

2.4.2. Multiple Worlds

An idea from sciencedtion, inspired by Deitt’s [6]
multiple worlds notion, is appropriate her&he prob-
lem with interprocess communication stems from the
fact that a gren dternatve may or may not be suc-
cessful. Inthe case where it is successful, xecel-
tion results arewailable to the calling proces&Vhere

it is not successful, its results andyade-efects it
may hae generated must not be obsale. These
include side-d&cts due to interprocess communica-
tion.

The message system, the virtual addressing

predicates, agree with those of the sender (8l0R
), the message is immediately acceptdd. the
recever's predicates conflict §00S and p0OR), the
message is ignored, and if the reeeimust male fur-
ther assumptions to accept the messagel1$ and
p[R), two copies of the receér are created.Define
conpl et e( P) to beTRUE when proces® success-
fully synchronizes with its parent procedsALSE
whenP has assumedconpl et e( Q for some pro-
cessQ for which conpl et e() has becom@RUE,
and otherwise indeterminat@ne of the tw copies is
created with the predicates set to thevimes \alues
in conjunction withconpl et e(S) (thus implying

all the sendes predicates) the other is set up with its

predicates as beforexaept thatconpl et e(S) is
negaed, thus implying rejection of the sendep'edi-
cates without creating a logical impossibilitkssum-

ing the ngaion of all of Ss predicates might imply

that two mutually exclusive processes must complete!

This is shavn in a revision of a preious figure:

Sequential
Program
Start
Block
-
method, method, methody failure
N
N
N
N
message
Synchro- AN
nization AN
Sequential | |
Program conpl et e(N) -conpl et e( N)
Figure 2: Use of predicates
This is easy gen the representation as dvists (i.e.,
“must complete’and “can’t complete”) of process
identifiers. Whenthe sending process succeeds or

fails, one of the tw recevers must be eliminated in

order to maintain a consistergtate of the world”; at

this point the additional assumptions which receipt of

the message caused will becofffRUE, and the/ can

mechanism, and the process management mechanism P€ €liminated from the listswWhile a process has
predicates which are unsatéf, it is restricted from

causing obseable side-décts, and thus cannot inter

are linked in the folloving way. When a receing
process accepts a message, its predicais) @re
checled aginst those attached to the message¢. (If
the assumptions that the reegi makes about the
“state of the wrld’, as encapsulated in the

face withsources.




3. Performance Analysis

The possibility of a performance increase stems from
the fact that we can select thastest alternate by
means of the synchronization protocdlhe cost we
must pay for obtainingxecution time proportional to
the time for the dstest alternate is use of aailable
hardware.

The efects of \arious werheads and system parame-
ters are analyzed in thextesection.

3.1. Overhead

In order to understand thevawhead implied by the

method, we can compare it to the best-case sequential

execution of the &stest alternate. The penalties we
are paying for parallel xecution of all alternaties

versus sequentialxecution of a selected altermadi

are

1. MemoryCopying. Inthe distriluted case we must
actually coy state for a remote child so that the
child can read or write locallyln the shared
memory multiprocessor case, the gog over-
head (in gecution time) is reduced as the inter
processor bandwidth is much higheand the
lateng is much lover. Even if the interprocessor
bandwidth increases, latgnwill still restrain dis-
tributed performanceThere is more copng to
be performed during synchronization, as the
changed state is updated in the pasedbtrage.
The parent is constrained to remain bledtkvhile
the children arex@cuting.

2. Sibling elimination. Thisis can be done asyn-
chronously with respect to continuation of the
selected alternate, and is naturally parallel, Wi
the instructions to terminate the altermedi must
still be issued, and tlggncrease with the number
of alternatves.

3.2. Analytic Description

We haveprovided a more detailed description of the
setting for our performance analysis in Smith [20];
here we present an abbiaed \ersion. Assumehat
we have N alternatve methods of performing aom-
putation, C4,...,Cy. We have also a measure of
clock time,z, for C;(X), z(C;, X) is the time required
for C; to compute a resultggn input x. How can we
use the wailability of these alternates to lessen our
execution time? If we knaw, through analysis or
empirically, that one of the methods isnalys faster

than a second, we discard the second from considera-

tion. If the relationship between the performances is
less predictable, there are other possibilities:

A. Statistical data can be applied, equicksort is
“almost alvays” O(nlogn). Thus,we’ll rarely
go wrong to use it.

B. An algorithm can be selected at random from
amongst th&; when gven X.

C. TheC; can be applied tot concurrently; the
first C; which produces an acceptable output is
selected. ThetherC; are irreleant and can be
terminated.

SchemeA relies on information which may not be
awailable. Schemd, when run repeatedly on some

input X, will perform at the arithmetic means of the
N

2 7(Ci,%)
computations’ performance, i.e!,‘lT It is
interesting to note, as well, thatilfires or ininite
loops will frustrate Schem&. For notational con-
venience, we défie an artiicial algorithmCi,,, such

that

7(Crnean, X) =

SchemeC offers some opportunity for ackiag the
best performance on each input

3.3. Parallel Speedup

Our analysis must lgin with semantics, as otherwise
we are subject to criticism of theapples and
oranges’type. Suchcriticism stems from the obser
vation that changing the problem in order to apply a
program transformation mak performance results
incomparable; we are comparing uelirograms.

To an dbsener, the concurrent>ecution of the
C; must look like SShemeB (as discussed abe); that
is, that we hae followed a single thread of computa-
tion, chosen arbitrarily from among€,,...,Cy.
Since the C4,...,Cy may update shared state
described by, we lve the problem by copng state
when needed and by selecting sdbndoy virtue of its
state changes.

By executing the C; concurrently we will
expect the cost ob@cution to be

7(Cpests X) + 7(0verhead)
where
7(Chests X) € - - £ 7(Corgts X)

andoverhead consists of operations performed to sup-
port concurrentaecution which vould not be neces-
sary in the nondeterministic sequential cakecon-
sists of (1) setting up th&Multiple Worlds’, one per



alternatve; (2) run-time @erheads such as cgipg
state which is updated; and (3) completion costs, such

since the majorwerhead we obseed was coping ).
R, is varied between 0 and 5, and theues can eas-

as committing the state changes made by the success-ily be scaled.The cure is rot very interesting, as &’

ful alternatve and deleting its shwer siblings. Paal-
lel execution winsiff

7(Cpests X) + 7(0verhead) < 7(Cpeans X)-

Thus, we can calculate the performance imgmeent
(PI) as:

Pl = 7(Crean» X)
" 7(Cpeg, X) + r(overhead)

essentially a ratio ofxecution times.

We @n manipulate the simple relationships
describingPI into forms which genuinely ease analy-
sis.

In fact, we can analyze precisely the domains in
which there is a performance impement @I > 1).

. 7(Crneans X) 7(overhead)
LettngR, = ————— and R, = ————=,
9 e Cos X) © " e (Coos X)
can calculat®l as:
=01 o
m+R,0 *

This re-expression isolates thefe€t of the dispersion,
encapsulated iR, , from the efiect of the werhead,
encapsulated ifR,. Holding one ofR, or R, fixed
allows us to estimate thefetts onPl caused by the
other The behsiors are illustrated indures 3 and

3.5
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Figure 3. PI as a function oRﬂ (R=0.5)

4. Therelationship illustrated by therét figure is

with R, set to the constantalue 0.5 (in [18] we
obsened awrite fraction, which describes the fraction
of memory copied by‘copy-on-write” mechanisms,
to be between 0.2 and 0.Fhus 0.5 is reasonable,

a drect proportion for iked R,; R, determines the
slope of the line, withR, =0 the best case gng a
slope of 1. This tells us that the performance
improvement we can xpect will be proportional to
the \ariance ofz(C;, X), damped by whater effect
r(overhead) exhibits. Holding R, fixed and varying
the averhead is somehat more interesting, agjfire 4
illustrates. They axis hasPl scaled proportional to
R, = exp(1.0), and the scales are log-log in order to
view a wide range of &lues.
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Figure4: Pl as a function oR} (Rﬂ:exp(l.O))

This tells us that arying the eerhead has a sigmif
cant efect on the performance impmment we
achieve, when scaled ainst the ariance in gecution
times. Animportant fict which we can deduce from
this performance analysis is that with fetient \ari-
ance, and small enouglveshead, N processors can
exhibit superlinear speedup by parallgeeution of N
serial algorithms, as opposed to paralbdcation of
one serial algorithm which has beégarallelized'.

These analyses apply to the performance on a
single input; it is rather simple totend the analysis
to the entire input domain, as the metrics and indepen-
dent ariables in computing a performance
improvement inde& are quite similar One important
idea which emegres when analyzing theverall per
formance impreement is that the dérent algorithms
should perform well at dérent and unpredictable
points in the input; the best case is where at each input
where one or more algorithms perform badhey
have & least counterpart which performs well.



3.4. Measured Overhead

It is informative b examine measuredalues of possi-
ble contrilutors toz(overhead). Elsavhere [18] we
provide a detailed set of measurements and perfor
mance analysis ofcopy-on-write” fork operations
under Wix. Our measurements were made oro tw
workstations, the A&T 3B2/310 and the Helett-
Packard HP9000/350For the 3B2, afork() (with no
memory updates to a 320K address spacestakout

31 milliseconds; under the same conditions the HP
requires about 12 millisecond$he measured service
rate of page copng was 326 2K pages/second for the
3B2, and 1034 4K pages/second for the HIRe frac-
tion of the pages in the address space which are writ-
ten is the important independerdriable for a pro-
gram with a knan address space size, usif@ppy-
on-write”. Thesecosts should be representatid a
shared memory coigfuration of equialent processor
technology

There is somghat more werhead associated
with the distriluted caseln Smith and loannidis [19]
we discuss an implementation of a remfordk() pro-
cedure and the process migration scheme we imple-
mented using itAn rfork() of a 70K process requires
slightly less than a second, and naetkvdelays gve
us an obseed arerage aecution time of about 1.3
seconds; we used a special-purpose remaesdon
protocol which uses a netrk file system to reduce
copying. The major cost (since we implemented
rfork() without operating system modtiétion) was
creating acheckpoint of the processThe state of the
process s dumped into dlé in such a \ay that the
file is executable; a bootstrapping routine restores the
registers and data gments and returns control to the
caller of the checkpoint routine when thide fis
executed. A return \alue is used to distinguish
between return of control in the checkpoint and in the
calling process. More sophisticated migration
schemes, usingon-demand’ state management tech-
nigues hae been constructed [23]ln ary case, most
programs ehibit locality of reference; in particular
symbolic computations which utilize g amounts of
system resources [18]Experiments we hee done
with sibling elimination schemes suggest that this can
be accomplishedery cheaplyeg., on the machines
we report our measurements t@opy-on-write” for,
the elimination of 16 subprocesses can be accom-
plished in about 40 milliseconds ifaiting for their
termination, and 20 milliseconds if the elimination is
done asynchronously

4. Applications

What properties must we v& other than minimal
implementation werhead, for the concurrenxecu-
tion method we describe to be usefuli've identi-
fied the follaving as desirable properties:

1. Thereis some state shared between the alterna-
tives which each may updatdf there's no shared
state, thers mo point in applying “Multiple
Worlds” technique, with itswerhead.

2. Alarge portion of the shared state is read-only

3. Thereare epected to be performance féifences
between the alternats, due to data dependencies
or use of heuristic methods.

Application areas for our design are described in the
following sections.

4.1. Disgtributed Execution of Recovery Blocks

We havediscussed the disttitted execution of receo-
ery blocks in an earlier paper [20], and will summa-
rize here. A recovery block is composed of geral
alternatve methods of computing a result; the goal is
to emulate the belir of “standby-sparesto toler-
ate fults in softvare. Sincesach alternate is guar
anteed the same initial state, yhean be &ecuted
concurrently Alternatves may attempt to update
shared state, e.g., databadesfor eternal \ariables.
Our “Multiple Worlds” mechanism for preenting
obsenation of a siblings actions is necessargnd the

“ copy-on-write” memory management reduces the
amount of state which must be maintainepecial
modifications of ‘Multiple Worlds” may be neces-
sary for ault-tolerant applications.

4.2. OR-parallelism in Prolog

The Prolog programming language is based on predi-
cate logic, using'Horn clauses’to describe data and
interrelationships. SincaProlog program consists of

a knowledge base combined with rules for using the
knowledge and a logical inference mechanism, solu-
tions can be modeled as an AND-OR tree of logical
deductions, based on the rules as sjgetiiy clauses.
The opportunities for parallelism arise because
branches of this tree can be pursued in parallel, AND-
parallelism where a list of clauses must all beasho
true, and OR-parallelism, where at least one of a list
of clauses must be sha true. OR-parallelism maps
closely to our problem of attempting altermesi in
parallel. Thealternatves ae specialized to clauses of
predicate logic. Crammond [5] preides a good
overview of the problems, and pvies some analysis
of mechanisms designed forfiefent reference of



shared data, in particular updates.

Some of the solutions which Ve keen pro-
posed are: (1) blocking the process which updates
shared state; (2) not alling guards to update shared
state; (3) sharing pointers, and hence updates, to a
shared evironment; (4) coping and meging. What
our method does is cgpand since we choose only
one alternatie, no merging is necessary(lt has been
argued in theProlog community that sequenti&ro-
log semantics be presaw, and that the major prob-
lem in OR-parallelism is multiple binding @ron-
ments under this restrictiorHowever, this agument
does not admit sidefects other thanariable bind-
ing, which seems short-sighted in terms of real appli-
cations. Thesort of committed-choice nondetermin-
ism we adwcate here is popular in anothegiseent of
the Prolog community addressing OR-parallelism.)
Since there are noea (besond whatger is required
for sequential xeecution) pointer chains to warse on
variable references, memory accessast.f Useof the
method requires changing th&olog interpreter to
detect and xploit OR-parallelism.How aggressiely
awailable parallelism is>loited is a function of the
overhead associated with maintaining a process.
However, once this is knan, the proper granularity
can be used as adtor in the decomposition process.

4.3. Numerical Applications

Polyalgorithms [15] hee been suggested as a method
for encapsulating a numerical analgsknowvledge
into a system for solving numerical problenihe
basic idea is that geral methods are combined along
with information about the circumstances under which
a method is lilely to be successfulAs different meth-
ods are tried andail, information about the problem
is huilt up until either there are no successful solu-
tions, or a solution method succeeds (faample,
discovering multiple zeros in agfling root-inder may

be useful to the ¢ solution method).

“ Multiple Worlds™ could be used by creating
artificial “alternatves” with the aailable solution
methods. Eachalternatve” trys a diferent solution
method first, to create alternate vasions of the
polyalgorithm. ‘Fastest ifst” scheduling could
improve the response time properties of a system such
as NAPSS [16], especially since the performance of
the system was perceied to be a poblem [17].

Another possibility is thexploitation of a dgree of
freedom in a solution method, as in choosingese
values for an ostensibly random choicdsing polar
coordinates, the angle of the startirgue is a ran-
dom choice in the compteversion of the Jenkins-
Traub [11] polynomial zero irider In practice,

several angles are tried, based on numerioglegi-

ence. Aparallel \ersion of this algorithm as created
[21] by making seeral choices for the staringaiue

and eecuting them in parallel. A two processor
Ardent Titan produced the results oéfle I.

procs | max| min a/g fails par
1 401 | 401| 4.01 O 4.37
2 449 | 407| 428/ O 4.25
3 445 | 2.03| 3500 O 474
4 448 | 1.37| 331 O 519
5 427 | 2.36| 3.35 2 861
6 450 | 2.02| 3.65 O 7.03

Table I: Parallel Rootinder

All times are in secondsThe frst column, labeled
procs, indicates the number of processes applied to
the problem. Ideally, there would be one processor
for each processubonly 2 processors wergadable.
Sequential xecution on a single processoms used
to determine the wrst, best, andvarage times used
by the algorithm.These alues are shwn in columns
max, min, and avg, respectrely. These times are
CPU times, and do not shloany delays or system
overhead; the accurgds limited by the clock granu-
larity. Thefails column indicates the number of angle
choices for which the algorithnaifed to fnd all of
the roots. Thepar column shas the time for parallel
execution measured usingall-clock execution time.
Thus, ay overhead incurred by thexecution scheme
will be reflected in this dference. Thedifferences
betweenmin and par can be used to estimate the
overhead; the xeecution time @erhead of creating ta
processes and running them concurrently can be com-
puted as 4.25-4.07 sec., or about 0.18 d#at the
avaage time was 4.28 sec, sven with the additional
overhead, the parallelxecution fnished frst. The
performance in the 4 process casmild be much bet-
ter if there had been more thanotwrocessors \ail-
able. Performancen processors with higher giees
of parallelism is under wrestigation.

5. Related Work

The IBM 360 Model 91 [1] approachas to prefetch
components of both possible branch paths until either
the results of the conditionakeeution are wailable

(in which case the correct stream can be chosen and
the other discarded) or an iveesible side d&ct (such

as instruction xecution) would occur Our manage-
ment of side décts lets us proceed furthes a geat

deal of computation can occur before the oledaes
side efects at synchronization.

Our method uses simple predicates to detect
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conflicts, lut delays their resolution as long as is pos-
sible. Thus,it is optimistic in the sense that each
timeline assumes that it will succeeAt each point
where this success may come into question, it gener
ates a predicateThus, there is as littlevaiting as
possible in the system, e.g., flucks. In other set-
tings, such methods are callegtimistic [12, 22]
because the assume that delay-causing aailfire-
causing conditions happen infrequentihus, normal
operation is made cheap, at thgpense of sonwehat
more e&pensve handling when the assumption is
wrong. Inour setting, the operaoptimistic assump-
tion is that the xeecuting alternatie is the one which
will complete successfullyThus, the predicates indi-
cate that a process assumes that it will complete suc-
cessfully; rather thamaiting, it continues under that
assumption. This works in our case because some
alternatve is dready pursuing the revery stratgy;
thus, there is noxecution time penalty paid for rego

ery.

The notion of multiple alternats is athogo-
nal to the transaction concept; if we wien dterna-
tive “block” as dfecting a transaction on the system
state, the spedaifation is a description of ko to
accomplish the transaction reliablyAlternately
“ Multiple Worlds” could be viaved as a set ofcom-
peting’ transactions, at most one of which will ¢ak
effect.

Distribution of computation across &eal
nodes diers attractre possibilities for both reliability
and performance.Cooper [4] discusses the use of
replicated distribted programs in order to &kdvan-
tage of this potential. Coopers CIRCUS system
transparently replicates computations acrossrak
nodes in order to increase reliabilitysoldbeg [8]
has also discussed process replication, with a focus
more on performance thaauit tolerance.Replica-
tion is somerhat diferent than the problem we &
examined, mainly because we cannot depend on all of
the concurrent alternais exhibiting the same bekia
ior, eg., reading and writing.For example, when
managing /O for replicated computations, only one
read operation can be performed, and its results
buffered for subsequent readers of the same data.
Thus, idempotencof somesource state can be forced
through luffering, as vas illustrated by Jédrsons
[10] use of a specializeduffering process callegtd-
out. Transparent replication can easily be combined
with the use of parallelxecution of sgeral alterna-
tives for increases in performance, reliability both.

Wilson [24] proposes‘Alternate Unierses’,
which he deeloped independently of outMultiple
Worlds” scheme. Thenajor diference we see is that
Wilson’s gproach is alue-based (and so might be

incorporated in a language in order tpleit fine-
grained parallelism) while our scheme is page-based
and hence suitable for Gergrained parallelism;

“ Multiple Worlds™ i nteraction with the memory man-
agement portion of an operating system trades a
higher startup cost amst cheaper referencing from
that point on, at least onxisting general purpose
computers.

6. Conclusions

When (1) alternaties require a signi€ant amount of
computation time; (2) each alternatidhanges a small
amount of the state of the calling process, thus reduc-
ing the penalty ot (overhead); and (3) there is a sig-
nificant variance in thexecution times of the alterna-
tives, “Multiple Worlds” can be applied.The nev
performance analysis of section 3 discusses the rela-
tionship between theaétors in a speedup, and applies
the analysis across a domain, rather than locally [20].

The “Multiple Worlds™ scheme ensures thatyaper-
formance impreement is achieed in amanner which

is transparent to the application programm@sveal
instances of application domains with appropriate
characteristics were discussed, and encouraging initial
results from a multiprocessoxeeution were pre-
sented.
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