
-- --

Exploring ‘‘Multiple Worlds’’ in Parallel

Jonathan M. Smith

Gerald Q. Maguire, Jr.

Technical Report CUCS-436-89†

Computer Science Department, Columbia University, New York, NY 10027

ABSTRACT
We examine computing alternative solutions to a problem in parallel to improve response time.

Problems with exploring multiple alternatives in parallel include (1) side-effects and (2) combinatorial explosion in
the amount of state which must be preserved. Theseare solved by process management and an application of
‘‘ copy-on-write’’ v irtual memory management.The side effects resulting from interprocess communication are han-
dled by a specialized message layer which interacts with process management.The effect is to create ‘‘Multiple
Worlds’’, which are different due to the alternate solution methods, but internally self-consistent.

We show how such a ‘‘Multiple Worlds’’ scheme can be used for several applications.

1. Introduction

‘‘They could be different. For instance,
the 1939 that exists ‘now’ back up the
timeline might not contain a Hitler at all.
When it arrives at its own 1945, World
War II won’t have happened, and it will
have evolved a history that doesn’t read
like ours at all. From there it will go on
into its own future, fully consistent with
its own part but different than ours.’’ [9]

A question which has intrigued many researchers is
how an increasing supply of computational resources,
in the form of multiple computers, can be utilized to
solve bigger problems, to solve problems faster, and
to solve problems more reliably. We examine a spe-
cific computational problem here, that of pursuing
alternatives. Ourdesigns show what can be done in
order to execute instances of this problem type, specu-
latively, in parallel.

We are interested in what performance gains
can be achieved. We measureperformance using the
metric of execution time, which is the amount of wall
clock time necessary to carry out a computation.
Thus, we may increase performance by this measure,
while decreasing performance by measures such as
throughput. Given this bias, we may risk wasted work

† This report appears in the Proceedings of the 1989 Interna-
tional Conference on Parallel Processing.Please cite that ver-
sion.

in speculative computation, which throughput-
oriented performance measures would discourage.

We begin by describing the computations to be
analyzed. Theseare essentially a set of alternative
methods for causing a state change to take place, with
the additional constraint that at most one of the alter-
native state changes occurs.

In this paper, we review our problem setting;
show a transformation which allows alternatives to
execute concurrently while preserving sequential
semantics; analyze the performance over complete
problem domains as opposed to a point measure.
Example application areas for our method are pre-
sented, and initial performance results on a numerical
problem are provided.

1.1. Sequential Model

Our sequential model is as follows [20]. Several alter-
native methods of computing a result are available.
Some of the alternatives may compute an acceptable
result, while others may not.The essential problem is
the choice between successful alternatives, or an indi-
cation of failure if there are no such alternatives.

What we want is for at most one of the alternative
methods to be applied to our problem, or for whatever
conditions constitute failure to be indicated.Each
method, 1,. . . ,n, has associated with it aguard con-
dition, which it must satisfy in order to be considered
successful. Eachmethod is called analternative.
When the alternatives are composed into a block, the

-- --

- 2 -

meaning is that one of the alternatives (including fail-
ure) are selected non-deterministically; this selection
is the result of the block.The non-determinism in
selection is necessary for higher-performance comput-
ing; see [21] for a more complete discussion on
exploiting randomness with parallelism.The selec-
tion is non-deterministic andunfair, in that the selec-
tion of alternatives is not equiprobable, and should not
be; it’s clear that the alternative of failure should be
given as low a probability of success as is possible,
noting that when all the alternatives fail its conditional
probability must be 1.

2. Parallel Execution

‘‘This picture implied some parallel
branching structure of universes in which
every point along a timeline became a
branch-point into a possibly infinite num-
ber of other timelines, with the branches
forking unidirectionally like those of a
tree.’ ’ [9]

2.1. System Model

A process (P) is an independently schedulable stream
of instructions.In implementations, it is often associ-
ated with some unit of state, e.g., an address space,
and a set of operations provided by akernel to man-
age thatstate. Interprocess communication is accom-
plished solely through passingmessages. Thus, ames-
sage is the only means by which:

• Pm can make P j aw are of a change inPm ’s
state.

• Pm can cause a change inP j ’s state.

Interprocess communication (IPC) is assumed to
behave reliably (no lost or duplicated messages) and
FIFO (no out of order messages).

Systemstate is divided into two types,sink and
source. The division is made on the basis of idempo-
tence; operations onsink devices can be retried with-
out observable effects, while operations onsources
cannot be retried.For concreteness, consider a page
of backing store and a teletype device, respectively.
Side effects which affect sink state can be hidden; this
is a common technique in the implementation of such
abstract operations astransactions; the idea is that the
transaction has the property ofatomicity, meaning
that either none or all of the transactions component
actions occur, and that intermediate states are not
observable outside the transaction.Complex transac-
tions may involve reads, which can occur unhindered,
or writes, which must be done to a temporary copy
until the transactioncommits, or in other words,

makes its changes permanent.Reads intended for the
recently written copy are satisfied by that copy so that
the transaction is internally consistent, i.e., it can read
what was written.

Sink state is manipulated as fixed-sizepages.
All sink state can be represented in this fashion; this is
clear from implementations of a single-level store, as
in MULTICS [14]. Thus we bury the entire memory
hierarchy under the page abstraction; files are named
sets of pages, and thus mechanisms which are used to
transparently access files over networks
(e.g.,‘‘Network File Systems’’) can be utilized to hide
the network through the page management abstrac-
tion; an example is the Apollo DOMAIN Architecture
[13].

2.2. Process Management

Tw o primitives are used for process management.
Process management creates, schedules, and termi-
nates the mutually exclusive (and oblivious) alterna-
tives. To spawn the alternatives, the parent uses
alt_spawn(n), which returns numbers from 1
to n in the alternatives and 0 to the parent.Thus a lan-
guage preprocessor applied to a program with mutu-
ally exclusive alternatives would generate (in pseudo-
C):

switch(alt_spawn(n))
{

case 0: /* parent */
alt_wait(TIMEOUT);
fail(); /* if returned */

case 1: /* First alternative */
.
.

.

.
case n: /* n-th alternative */

alt_wait(0);
}

The functions ofalt_wait() are manifold; the pur-
pose is synchronizing in order to establish a single
path through the tree of possible computations.The
taken path is reflected in the execution history of the
running process.Alt_wait() takes a TIMEOUT
value as an argument. Itis typically non-zero in the
parent, as TIMEOUT represents the time the parent is
willing to wait for a successful child call to
alt_wait(). TIMEOUT’s value should be chosen
so that after TIMEOUT time units have elapsed, it is
unlikely that any of the alternatives hav e succeeded.
While choosing such a value is very hard, most com-
putations have an execution time which is clearly
unacceptable to the application; this value can then be
used.

When a spawned alternative calls

-- --

- 3 -

alt_wait() at the termination of its computation, a
rendezvous between thealt_wait()ing parent and
the child is effected. Theparent is waiting, because if
it was executing, it could cause state changes which
would make its state inconsistent after the synchro-
nization discussed in the next section.The behavior is
much like that of the UNIX exec() system call,
which overwrites the calling process and begins
execution of the called process.In the case of the par-
ent’s call to alt_wait(), the parent process
absorbs the state changes made by its child by atomi-
cally replacing its page pointer with that of the child
(some copying might be needed for efficiency in the
distributed case).Thus, the flow of control through
the child appears to have been seamless, up to and
including maintenance of the process id.

Use of these primitives is shown by concurrent
execution of alternative methods shown in figure 1:

Sequential
Program

Start
Block

method1 method2 . . . methodN failure

Synchro-
nization

Sequential
Program

Figure 1: Concurrent Execution of Alternatives

Assuming that all theGUARD conditions have been
satisfied, a process which completes its program seg-
ment attempts to synchronize.If any of the conditions
required by theGUARD were not satisfied, the process
aborts without synchronizing.Note that theGUARDs
can be executed serially before spawning the alterna-
tives (thus improving throughput at the expense of
response time); in the child process; at the synchro-
nization point; or at any combination of these places,
for redundancy.

2.2.1. Synchronization

The synchronization point is where the first alterna-
tive child invokes alt_wait(). Alt_wait() is
an ‘‘at most once’’ operation for any group of child
processes created by the samealt_spawn(). In
order to minimize the effect on throughput, when an
alternative is selected, its ‘‘siblings’’ are eliminated.
This is done by informing the scheduler that the pro-
cesses are to be terminated.The deletion can be
accomplished synchronously (where the other alterna-
tives are deleted before execution resumes in the par-
ent) or asynchronously (where the deletion occurs at
some time after thealt_wait() resumes in the par-
ent, but exactly when is not specified); experiments
(mentioned at the end of section 3) indicate that asyn-
chronous elimination gives better execution-time per-
formance, once again at the expense of throughput.

2.3. Predicates

Ideally, we would like an alternative to carry on with
its computation as much as it can before either block-
ing or synchronizing.In order to effect this, we add
‘‘ predicates’’ to the messages.The predicates are lists
of process identifiers, some of which the sending pro-
cess depends on completing successfully and others
on which the sending process depends on tonot com-
plete successfully. Thus, these are even simpler and
easier to manage than the predicates described by
Eswaran,et al.[7] The advantage of this representa-
tion over predication of data objects is that we can
update the value of these elements as processes
change status (e.g., running, blocked), with the idea
that processes change status much less frequently than
they make memory references to objects.These lists
are constructed in two ways. First,the predicates of a
‘‘ child’’ process consist of those of the ‘‘parent’’; this
allows for nesting and potentially complex dependen-
cies. Second,when the ‘‘parent’’ spawns each of its
alternative ‘‘children’’, each of the children addition-
ally assumes that it will complete successfully, and
that its siblings will not; thus ‘‘sibling rivalry’ ’ i s
taken to its extreme in this design!The failure alter-
native assumes that none of the siblings will complete.
The state management strategy is ‘‘copy-on-write’’ [3]
with page map inheritance from the parent, thus it is
easily implemented within the context of a system
which provides such features, e.g., CMU’s MACH,
and benefits from existing hardware support, e.g., for
the WE® 32101 MMU [2]. The software-
implemented predicates are used in the process con-
trol and message transmission activities to maximize
sharing. Updatedand newly-written pages are

-- --

- 4 -

predicated by virtue of their residence in a per-process
descriptor table, as illustrated in Figure 2.

per
process

data

pgs

pred

PAGE PAGE

2.4. Interprocess Communication

2.4.1. Messages

A message from Pm to P j has the following three part
structure:

1. A sending predicate, encapsulating the assump-
tions under which thesender, say Pm sends the
message.

2. Thedata comprising the message contents.

3. Somecontrol information, e.g., sender id, destina-
tion id, etc.

Eachprocess in a multiprocessing (e.g., timesharing,
multiprocessor, or distributed) system has aunique
identifier, used to identify the process both within the
system (e.g., for scheduling and resource allocation),
and further, for interaction with other processes.

2.4.2. Multiple Worlds

An idea from science fiction, inspired by Dewitt’s [6]
multiple worlds notion, is appropriate here.The prob-
lem with interprocess communication stems from the
fact that a given alternative may or may not be suc-
cessful. Inthe case where it is successful, its execu-
tion results are available to the calling process.Where
it is not successful, its results and any side-effects it
may have generated must not be observable. These
include side-effects due to interprocess communica-
tion.

The message system, the virtual addressing
mechanism, and the process management mechanism
are linked in the following way. When a receiving
process accepts a message, its predicates (R) are
checked against those attached to the message (S). If
the assumptions that the receiver makes about the
‘‘ state of the world’’, as encapsulated in the

predicates, agree with those of the sender (e.g.,S⊆R
), the message is immediately accepted.If the
receiver’s predicates conflict (p∈S and ¬p∈R), the
message is ignored, and if the receiver must make fur-
ther assumptions to accept the message (p∈S and
p∈/ R), two copies of the receiver are created.Define
complete(P) to beTRUE when processP success-
fully synchronizes with its parent process,FALSE
whenP has assumed ¬complete(Q) for some pro-
cessQ for which complete() has becomeTRUE,
and otherwise indeterminate.One of the two copies is
created with the predicates set to the previous values
in conjunction withcomplete(S) (thus implying
all the sender’s predicates) the other is set up with its
predicates as before, except thatcomplete(S) is
negated, thus implying rejection of the sender’s predi-
cates without creating a logical impossibility. Assum-
ing the negation of all of S’s predicates might imply
that two mutually exclusive processes must complete!
This is shown in a revision of a previous figure:

Sequential
Program

Start
Block

method1 method2 . . . methodN failure

Synchro-
nization

Sequential
Program

complete(N) ¬complete(N)

fork()

message

Figure 2: Use of predicates

This is easy given the representation as two lists (i.e.,
‘‘ must complete’’ and ‘‘can’t complete’’) of process
identifiers. Whenthe sending process succeeds or
fails, one of the two receivers must be eliminated in
order to maintain a consistent ‘‘state of the world’’; at
this point the additional assumptions which receipt of
the message caused will becomeTRUE, and they can
be eliminated from the lists.While a process has
predicates which are unsatisfied, it is restricted from
causing observable side-effects, and thus cannot inter-
face withsources.

-- --

- 5 -

3. Performance Analysis

The possibility of a performance increase stems from
the fact that we can select the fastest alternative by
means of the synchronization protocol.The cost we
must pay for obtaining execution time proportional to
the time for the fastest alternative is use of available
hardware.

The effects of various overheads and system parame-
ters are analyzed in the next section.

3.1. Overhead

In order to understand the overhead implied by the
method, we can compare it to the best-case sequential
execution of the fastest alternative. The penalties we
are paying for parallel execution of all alternatives
versus sequential execution of a selected alternative
are

1. MemoryCopying. In the distributed case we must
actually copy state for a remote child so that the
child can read or write locally. In the shared
memory multiprocessor case, the copying over-
head (in execution time) is reduced as the inter-
processor bandwidth is much higher, and the
latency is much lower. Even if the interprocessor
bandwidth increases, latency will still restrain dis-
tributed performance.There is more copying to
be performed during synchronization, as the
changed state is updated in the parent’s storage.
The parent is constrained to remain blocked while
the children are executing.

2. Sibling elimination. This is can be done asyn-
chronously with respect to continuation of the
selected alternative, and is naturally parallel, but
the instructions to terminate the alternatives must
still be issued, and they increase with the number
of alternatives.

3.2. Analytic Description

We hav eprovided a more detailed description of the
setting for our performance analysis in Smith [20];
here we present an abbreviated version. Assumethat
we have N alternative methods of performing acom-
putation, C1, . . . ,CN . We hav e also a measure of
clock time, � , for Ci(

→x), � (Ci,
→x) is the time required

for Ci to compute a result given input →x. How can we
use the availability of these alternatives to lessen our
execution time? If we know, through analysis or
empirically, that one of the methods is always faster
than a second, we discard the second from considera-
tion. If the relationship between the performances is
less predictable, there are other possibilities:

A. Statistical data can be applied, e.g.,quicksort is
‘‘ almost always’’ O(n log n). Thus,we’ll rarely
go wrong to use it.

B. An algorithm can be selected at random from
amongst theCi when given →x.

C. The Ci can be applied to→x concurrently; the
fi rst Ci which produces an acceptable output is
selected. TheotherCi are irrelevant and can be
terminated.

SchemeA relies on information which may not be
available. SchemeB, when run repeatedly on some
input →x, will perform at the arithmetic means of the

computations’ performance, i.e.,

N

i=1
Σ � (Ci,

→x)

N
. It is

interesting to note, as well, that failures or infinite
loops will frustrate SchemeB. For notational con-
venience, we define an artificial algorithmCmean such
that

� (Cmean, →x) =

N

i=1
Σ � (Ci,

→x)

N .

SchemeC offers some opportunity for achieving the
best performance on each input→x.

3.3. Parallel Speedup

Our analysis must begin with semantics, as otherwise
we are subject to criticism of the ‘‘apples and
oranges’’ type. Suchcriticism stems from the obser-
vation that changing the problem in order to apply a
program transformation makes performance results
incomparable; we are comparing unlike programs.

To an observer, the concurrent execution of the
Ci must look like SchemeB (as discussed above); that
is, that we have followed a single thread of computa-
tion, chosen arbitrarily from amongstC1, . . . ,CN .
Since the C1, . . . ,CN may update shared state
described by→x, we solve the problem by copying state
when needed and by selecting someCi by virtue of its
state changes.

By executing the Ci concurrently, we will
expect the cost of execution to be

� (Cbest ,
→x) + � (overhead)

where
� (Cbest ,

→x) ≤ . . . ≤ � (Cworst ,
→x)

andoverhead consists of operations performed to sup-
port concurrent execution which would not be neces-
sary in the nondeterministic sequential case.It con-
sists of (1) setting up the ‘‘Multiple Worlds’’, one per

-- --

- 6 -

alternative; (2) run-time overheads such as copying
state which is updated; and (3) completion costs, such
as committing the state changes made by the success-
ful alternative and deleting its slower siblings. Paral-
lel execution winsiff

� (Cbest ,
→x) + � (overhead) < � (Cmean, →x).

Thus, we can calculate the performance improvement
(PI) as:

PI =
� (Cmean, →x)

� (Cbest ,
→x) + � (overhead)

essentially a ratio of execution times.

We can manipulate the simple relationships
describingPI into forms which genuinely ease analy-
sis.

In fact, we can analyze precisely the domains in
which there is a performance improvement (PI > 1).

Letting R � =
� (Cmean, →x)

� (Cbest ,
→x)

and Ro =
� (overhead)

� (Cbest ,
→x)

, we

can calculatePI as:

PI = 


1

1 + Ro




⋅ R �

This re-expression isolates the effect of the dispersion,
encapsulated inR � , from the effect of the overhead,
encapsulated inRo. Holding one ofR � or Ro fixed
allows us to estimate the effects onPI caused by the
other. The behaviors are illustrated in figures 3 and

*

*

*

*

*

R�

PI

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 3: PI as a function ofR� (R
o
=0.5)

4. The relationship illustrated by the first figure is
with Ro set to the constant value 0.5 (in [18] we
observed awrite fraction, which describes the fraction
of memory copied by ‘‘copy-on-write’’ mechanisms,
to be between 0.2 and 0.5.Thus 0.5 is reasonable,

since the major overhead we observed was copying).
R � is varied between 0 and 5, and the values can eas-
ily be scaled.The curve is not very interesting, as it’s
a direct proportion for fixed Ro; Ro determines the
slope of the line, withRo = 0 the best case giving a
slope of 1. This tells us that the performance
improvement we can expect will be proportional to
the variance of� (Ci,

→x), damped by whatever effect
� (overhead) exhibits. Holding R � fixed and varying
the overhead is somewhat more interesting, as figure 4
illustrates. They axis hasPI scaled proportional to
R � = exp(1. 0), and the scales are log-log in order to
view a wide range of values.

* * * *
*

*

*

*

*

R
o

PI

0.01 0.05 0.10 0.50 1.00 5.00
0.4

0.5

0.6

0.7

0.8
0.9
1.0

2.0

3.0

Figure 4: PI as a function ofR
o

(R� =exp(1.0))

This tells us that varying the overhead has a signifi-
cant effect on the performance improvement we
achieve, when scaled against the variance in execution
times. Animportant fact which we can deduce from
this performance analysis is that with sufficient vari-
ance, and small enough overhead, N processors can
exhibit superlinear speedup by parallel execution of N
serial algorithms, as opposed to parallel execution of
one serial algorithm which has been ‘‘parallelized’’.

These analyses apply to the performance on a
single input; it is rather simple to extend the analysis
to the entire input domain, as the metrics and indepen-
dent variables in computing a performance
improvement index are quite similar. One important
idea which emerges when analyzing the overall per-
formance improvement is that the different algorithms
should perform well at different and unpredictable
points in the input; the best case is where at each input
where one or more algorithms perform badly, they
have at least counterpart which performs well.

-- --

- 7 -

3.4. Measured Overhead

It is informative to examine measured values of possi-
ble contributors to � (overhead). Elsewhere [18] we
provide a detailed set of measurements and perfor-
mance analysis of ‘‘copy-on-write’’ fork operations
under UNIX . Our measurements were made on two
workstations, the AT&T 3B2/310 and the Hewlett-
Packard HP9000/350.For the 3B2, afork() (with no
memory updates to a 320K address space) takes about
31 milliseconds; under the same conditions the HP
requires about 12 milliseconds.The measured service
rate of page copying was 326 2K pages/second for the
3B2, and 1034 4K pages/second for the HP. The frac-
tion of the pages in the address space which are writ-
ten is the important independent variable for a pro-
gram with a known address space size, using ‘‘copy-
on-write’’. Thesecosts should be representative of a
shared memory configuration of equivalent processor
technology.

There is somewhat more overhead associated
with the distributed case.In Smith and Ioannidis [19]
we discuss an implementation of a remotefork() pro-
cedure and the process migration scheme we imple-
mented using it.An rfork() of a 70K process requires
slightly less than a second, and network delays gav e
us an observed average execution time of about 1.3
seconds; we used a special-purpose remote-execution
protocol which uses a network file system to reduce
copying. The major cost (since we implemented
rfork() without operating system modification) was
creating acheckpoint of the process.The state of the
process was dumped into a file in such a way that the
fi le is executable; a bootstrapping routine restores the
registers and data segments and returns control to the
caller of the checkpoint routine when this file is
executed. A return value is used to distinguish
between return of control in the checkpoint and in the
calling process. More sophisticated migration
schemes, using ‘‘on-demand’’ state management tech-
niques have been constructed [23].In any case, most
programs exhibit locality of reference; in particular
symbolic computations which utilize large amounts of
system resources [18].Experiments we have done
with sibling elimination schemes suggest that this can
be accomplished very cheaply, e.g., on the machines
we report our measurements of ‘‘copy-on-write’’ f or,
the elimination of 16 subprocesses can be accom-
plished in about 40 milliseconds if waiting for their
termination, and 20 milliseconds if the elimination is
done asynchronously.

4. Applications

What properties must we have, other than minimal
implementation overhead, for the concurrent execu-
tion method we describe to be useful?We’v e identi-
fied the following as desirable properties:

1. Thereis some state shared between the alterna-
tives which each may update.If there’s no shared
state, there’s no point in applying ‘‘Multiple
Worlds’’ technique, with its overhead.

2. A large portion of the shared state is read-only.

3. Thereare expected to be performance differences
between the alternatives, due to data dependencies
or use of heuristic methods.

Application areas for our design are described in the
following sections.

4.1. Distributed Execution of Recovery Blocks

We hav ediscussed the distributed execution of recov-
ery blocks in an earlier paper [20], and will summa-
rize here. A recovery block is composed of several
alternative methods of computing a result; the goal is
to emulate the behavior of ‘‘standby-spares’’ to toler-
ate faults in software. Sinceeach alternative is guar-
anteed the same initial state, they can be executed
concurrently. Alternatives may attempt to update
shared state, e.g., database files or external variables.
Our ‘‘Multiple Worlds’’ mechanism for preventing
observation of a sibling’s actions is necessary, and the
‘‘ copy-on-write’’ memory management reduces the
amount of state which must be maintained.Special
modifications of ‘‘Multiple Worlds’’ may be neces-
sary for fault-tolerant applications.

4.2. OR-parallelism in Prolog

The Prolog programming language is based on predi-
cate logic, using ‘‘Horn clauses’’ to describe data and
interrelationships. Sincea Prolog program consists of
a knowledge base combined with rules for using the
knowledge and a logical inference mechanism, solu-
tions can be modeled as an AND-OR tree of logical
deductions, based on the rules as specified by clauses.
The opportunities for parallelism arise because
branches of this tree can be pursued in parallel, AND-
parallelism where a list of clauses must all be shown
true, and OR-parallelism, where at least one of a list
of clauses must be shown true. OR-parallelism maps
closely to our problem of attempting alternatives in
parallel. Thealternatives are specialized to clauses of
predicate logic. Crammond [5] provides a good
overview of the problems, and provides some analysis
of mechanisms designed for efficient reference of

-- --

- 8 -

shared data, in particular updates.

Some of the solutions which have been pro-
posed are: (1) blocking the process which updates
shared state; (2) not allowing guards to update shared
state; (3) sharing pointers, and hence updates, to a
shared environment; (4) copying and merging. What
our method does is copy, and since we choose only
one alternative, no merging is necessary. (It has been
argued in theProlog community that sequentialPro-
log semantics be preserved, and that the major prob-
lem in OR-parallelism is multiple binding environ-
ments under this restriction.However, this argument
does not admit side-effects other than variable bind-
ing, which seems short-sighted in terms of real appli-
cations. Thesort of committed-choice nondetermin-
ism we advocate here is popular in another segment of
the Prolog community addressing OR-parallelism.)
Since there are no extra (beyond whatever is required
for sequential execution) pointer chains to traverse on
variable references, memory access is fast. Useof the
method requires changing theProlog interpreter to
detect and exploit OR-parallelism.How aggressively
available parallelism is exploited is a function of the
overhead associated with maintaining a process.
However, once this is known, the proper granularity
can be used as a factor in the decomposition process.

4.3. Numerical Applications

Polyalgorithms [15] have been suggested as a method
for encapsulating a numerical analyst’s knowledge
into a system for solving numerical problems.The
basic idea is that several methods are combined along
with information about the circumstances under which
a method is likely to be successful.As different meth-
ods are tried and fail, information about the problem
is built up until either there are no successful solu-
tions, or a solution method succeeds (for example,
discovering multiple zeros in a failing root-finder may
be useful to the next solution method).

‘‘ Multiple Worlds’’ could be used by creating
artificial ‘‘alternatives’’ w ith the available solution
methods. Each‘‘ alternative’’ t rys a different solution
method ‘‘f irst,’’ t o create alternative versions of the
polyalgorithm. ‘‘Fastest first’’ scheduling could
improve the response time properties of a system such
as NAPSS [16], especially since the performance of
the system was perceived to be a problem [17].

Another possibility is the exploitation of a degree of
freedom in a solution method, as in choosing several
values for an ostensibly random choice.Using polar
coordinates, the angle of the starting value is a ran-
dom choice in the complex version of the Jenkins-
Traub [11] polynomial zero finder. In practice,

several angles are tried, based on numerical experi-
ence. Aparallel version of this algorithm was created
[21] by making several choices for the staring value
and executing them in parallel.A two processor
Ardent Titan produced the results of Table I.

procs max min avg fails par

1 4.01 4.01 4.01 0 4.37
2 4.49 4.07 4.28 0 4.25
3 4.45 2.03 3.50 0 4.74
4 4.48 1.37 3.31 0 5.19
5 4.27 2.36 3.35 2 8.61
6 4.50 2.02 3.65 0 7.03

Table I: Parallel Rootfinder

All times are in seconds.The first column, labeled
procs, indicates the number of processes applied to
the problem. Ideally, there would be one processor
for each process, but only 2 processors were available.
Sequential execution on a single processor was used
to determine the worst, best, and average times used
by the algorithm.These values are shown in columns
max, min, and avg, respectively. These times are
CPU times, and do not show any delays or system
overhead; the accuracy is limited by the clock granu-
larity. Thefails column indicates the number of angle
choices for which the algorithm failed to find all of
the roots.Thepar column shows the time for parallel
execution measured using wall-clock execution time.
Thus, any overhead incurred by the execution scheme
will be reflected in this difference. Thedifferences
betweenmin and par can be used to estimate the
overhead; the execution time overhead of creating two
processes and running them concurrently can be com-
puted as 4.25-4.07 sec., or about 0.18 sec.But the
av erage time was 4.28 sec, so even with the additional
overhead, the parallel execution finished first. The
performance in the 4 process case would be much bet-
ter if there had been more than two processors avail-
able. Performanceon processors with higher degrees
of parallelism is under investigation.

5. Related Work

The IBM 360 Model 91 [1] approach was to prefetch
components of both possible branch paths until either
the results of the conditional execution are available
(in which case the correct stream can be chosen and
the other discarded) or an irreversible side effect (such
as instruction execution) would occur. Our manage-
ment of side effects lets us proceed further, as a great
deal of computation can occur before the observable
side effects at synchronization.

Our method uses simple predicates to detect

-- --

- 9 -

conflicts, but delays their resolution as long as is pos-
sible. Thus,it is optimistic in the sense that each
timeline assumes that it will succeed.At each point
where this success may come into question, it gener-
ates a predicate.Thus, there is as littlewaiting as
possible in the system, e.g., forlocks. In other set-
tings, such methods are calledoptimistic [12, 22]
because they assume that delay-causing or failure-
causing conditions happen infrequently. Thus, normal
operation is made cheap, at the expense of somewhat
more expensive handling when the assumption is
wrong. Inour setting, the operantoptimistic assump-
tion is that the executing alternative is the one which
will complete successfully. Thus, the predicates indi-
cate that a process assumes that it will complete suc-
cessfully; rather thanwaiting, it continues under that
assumption. This works in our case because some
alternative is already pursuing the recovery strategy;
thus, there is no execution time penalty paid for recov-
ery.

The notion of multiple alternatives is orthogo-
nal to the transaction concept; if we view an alterna-
tive ‘‘block’’ as effecting a transaction on the system
state, the specification is a description of how to
accomplish the transaction reliably. Alternately,
‘‘ Multiple Worlds’’ could be viewed as a set of ‘‘com-
peting’’ t ransactions, at most one of which will take
effect.

Distribution of computation across several
nodes offers attractive possibilities for both reliability
and performance.Cooper [4] discusses the use of
replicated distributed programs in order to take advan-
tage of this potential.Cooper’s CIRCUS system
transparently replicates computations across several
nodes in order to increase reliability. Goldberg [8]
has also discussed process replication, with a focus
more on performance than fault tolerance.Replica-
tion is somewhat different than the problem we have
examined, mainly because we cannot depend on all of
the concurrent alternatives exhibiting the same behav-
ior, e.g., reading and writing.For example, when
managing I/O for replicated computations, only one
read operation can be performed, and its results
buffered for subsequent readers of the same data.
Thus, idempotency of somesource state can be forced
through buffering, as was illustrated by Jefferson’s
[10] use of a specialized buffering process calledstd-
out. Transparent replication can easily be combined
with the use of parallel execution of several alterna-
tives for increases in performance, reliability, or both.

Wilson [24] proposes ‘‘A lternate Universes’’,
which he developed independently of our ‘‘Multiple
Worlds’’ scheme. Themajor difference we see is that
Wilson’s approach is value-based (and so might be

incorporated in a language in order to exploit fine-
grained parallelism) while our scheme is page-based
and hence suitable for larger-grained parallelism;
‘‘ Multiple Worlds’’ i nteraction with the memory man-
agement portion of an operating system trades a
higher startup cost against cheaper referencing from
that point on, at least on existing general purpose
computers.

6. Conclusions

When (1) alternatives require a significant amount of
computation time; (2) each alternative changes a small
amount of the state of the calling process, thus reduc-
ing the penalty of� (overhead); and (3) there is a sig-
nificant variance in the execution times of the alterna-
tives, ‘‘Multiple Worlds’’ can be applied.The new
performance analysis of section 3 discusses the rela-
tionship between the factors in a speedup, and applies
the analysis across a domain, rather than locally [20].

The ‘‘Multiple Worlds’’ scheme ensures that any per-
formance improvement is achieved in amanner which
is transparent to the application programmer. Sev eral
instances of application domains with appropriate
characteristics were discussed, and encouraging initial
results from a multiprocessor execution were pre-
sented.

7. Notes and Acknowledgments

Robert Strom, Calton Pu, Yechiam Yemini, Steve
Feiner, David Farber, Sal Stolfo, and Andy Lowry
have refined our ideas, through observations, sugges-
tions, and insightful criticism. Suggestions from
anonymous referees for the 1989 International Con-
ference on Parallel Processing led to several important
revisions.

UNIX and WE 32101 are registered trademarks, and
3B2 is a trademark of AT&T; HP-UX, HP9000, and
HP are trademarks of the Hewlett-Packard Corpora-
tion.

This work was supported in part by equipment grants
from the Hewlett-Packard Corporation and AT&T,
and NSF grant CDR-84-21402.

8. References

[1] D. W. Anderson, F. J. Sparacio, and R. M. Toma-
sulo, ‘‘The IBM System/360 Model 91: Machine
Philosophy and Instruction-Handling,’’ IBM Journal
of Research and Development, pp. 8-24 (January
1967).

[2] AT&T, WE 32101 Memory Management Unit
Information Manual, Call 1-800-432-6600; Select

-- --

- 10 -

Code 307-731, November 1986.

[3] D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and
R. S. Tomlinson, ‘‘TENEX, a Paged Time Sharing
System for the PDP-10,’’ Communications of the
ACM 15(3), pp. 135-143 (March 1972).

[4] Eric Charles Cooper, ‘‘Replicated Distributed
Programs,’’ Ph.D. Thesis, University of California,
Berkeley (1985).

[5] J. Crammond, ‘‘A Comparative Study of Unifica-
tion Algorithms for OR-Parallel Execution of Logic
Languages,’’ IEEE Transactions on Computers
C-34(10), pp. 911-917 (October 1985).

[6] Bryce DeWitt and R. Neill Graham,The Many
Worlds Interpretation of Quantum Mechanics,
Princeton University Press, 1973.

[7] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger, ‘‘The notions of consistency and predicate
locks in a database system,’’ Communications of the
ACM 19, pp. 624-633 (November 1976).

[8] Arthur P. Goldberg and David R. Jefferson,
‘‘ Transparent Process Cloning: A Tool for Load
Management of Distributed Programs,’’ i n Proceed-
ings, International Conference on Parallel Process-
ing (1987), pp. 728-734.

[9] JamesP. Hogan, Thrice upon a Time, Ballantine,
1980.

[10] D. Jefferson, B. Beckman, F. Wieland, L. Blume,
M. DiLoreto, P. Hontalas, P. Laroche, K. Sturdevant,
J. Tupman, V. Warren, J. Wedel, H. Younger, and S.
Bellenot, ‘‘Time Warp Operating System,’’ Proceed-
ings of the Eleventh ACM Symposium on Operating
Systems Principles, Austin, TX, pp.77-93, InACM
Operating Systems Review 21:5 (8-11 November
1987).

[11] M. A. Jenkins and J. F. Traub, ‘‘A lgorithm 419:
Zeros of a Complex Polynomial,’’ Communications
of the ACM 15, pp. 97-99 (February, 1972).

[12] H. T. Kung and John T. Robinson, ‘‘On Opti-
mistic Methods for Concurrency Control,’’ ACM
Tr ansactions on Database Systems 6(2), pp.213-226
(June, 1981).

[13] D.L. Nelson and P.J. Leach, ‘‘The Architecture
and Applications of the Apollo Domain,’’ IEEE
Computer Graphics, pp. 58-66 (April 1984).

[14] Elliott I. Organick, The Multics System, Mas-
sachusetts Institute of Technology Press (1972).

[15] J. R. Rice, ‘‘On the Construction of Polyalgo-
rithms for Automatic Numerical Analysis,’’ i n Inter-
active Systems for Experimental Applied Mathemat-
ics, ed. J. Reinfelds (1968), pp. 301-313.

[16] JohnR. Rice, ‘‘NAPSS-like systems: Problems
and Prospects,’’ i n Proceedings, National Computer
Conference (1973), pp. 43-47.

[17] John R. Rice, Private Communication on
NAPSS, October, 1988.

[18] JonathanM. Smith and Gerald Q. Maguire,Jr.,
‘‘ Effects of copy-on-write memory management on
the response time of UNIXfork operations,’’ Com-
puting Systems: The Journal of the USENIX Associa-
tion 1(3), pp.255-278, University of California Press
(1988).

[19] JonathanM. Smith and John Ioannidis, ‘‘Imple-
menting remote fork() with checkpoint/restart,’’
IEEE Technical Committee on Operating Systems
Newsletter, pp. 12-16 (February, 1989). Invited
Paper.

[20] JonathanM. Smith and Gerald Q. Maguire,Jr.,
‘‘ Transparent Concurrent Execution of Mutually
Exclusive Alternatives,’’ i n Proceedings, Ninth Inter-
national Conference on Distributed Computing Sys-
tems, Newport Beach, CA (June, 1989), pp. 44-52.

[21] JonathanM. Smith, ‘‘Concurrent Execution of
Mutually Exclusive Alternatives,’’ Ph.D. Thesis,
Columbia University Computer Science Department
(May, 1989). alsoavailable from UMI

[22] R. E. Strom and S. Yemini, ‘‘Synthesizing Dis-
tributed and Parallel Programs through Optimistic
Transformations,’’ i n Current Advances in Dis-
tributed Computing and Communications (1987).
Computer Science Press

[23] Marvin M. Theimer, Keith A. Lantz, and David
R. Cheriton, ‘‘Preemptable Remote Execution Facili-
ties for the V-System,’’ i n Proceedings, 10th ACM
Symposium on Operating Systems Principles (1985),
pp. 2-12.

[24] Paul R. Wilson, Two Comprehensive Virtual
Copy Mechanisms, University of Illinois at Chicago,
Electrical Engineering and Computer Science,
Chicago, Illinois (1988).M.S. Thesis

-- --

