
-- --

Effects of copy-on-write memory management on the
response time of UNIX fork operations

Jonathan M. Smith

Gerald Q. Maguire, Jr.

Computer Science Department, Columbia University, New York, NY 10027

ABSTRACT

We present techniques for analyzing the effect of ‘‘copy-on-write’’ page management strategies on the
performance of UNIX

Ò fork() operations. The analysis techniques are applied on two workstations, the AT&T
3B2/310TM and the Hewlett-Packard HP9000/350TM in order to determine the relationships between the amount
of memory in the parent’s data segment, the fraction of this memory which is written by the child, and the
improvement in execution time due to ‘‘copy-on-write’’. Since the implementation of ‘‘copy-on-write’’ is
straightforward with modern MMUs, our results for these workstations are readily generalized to other worksta-
tions.

The results show that the size of the parent’s allocated memory has little direct effect on performance,
due to the fact that only page table entries are copied during the fork() operations. The execution time is most
influenced by the amount of memory that must be copied, which can be determined from the product of
memory allocated and the fraction of memory written. Thus, the worst case occurs when large address space
programs update much of their memory.

In order to observe what occurs in practice, we measured two programs that have what are currently con-
sidered large address spaces. These programs, which we believe to be representative of the sorts of programs
which use large amounts of system resources, updated less than half of the memory in their data segments.

-- --

Effects of copy-on-write memory management on the
response time of UNIX fork operations

Jonathan M. Smith

Gerald Q. Maguire, Jr.

Computer Science Department, Columbia University, New York, NY 10027

1. Introduction

‘‘...the sole test of the validity of any idea is
experiment.’’[6]

The UNIX
Ò fork() operation creates a copy of the calling pro-

cess which is differentiated from its creator by the return value
of fork(). The two processes have separate address spaces.
Traditionally, UNIX systems actually copied the contents of
the caller’s address space to create the new process. Since the
portion of the address space containing executable code was
read-only, copying was not needed and an incremented refer-
ence count and text table entry sufficed.[10] Clearly, the
fork() operation can be expensive in system resources. Thus,
some attempts were made to take advantage of special cases.
An example is the 4.2BSD[7] vfork() call, which does not
make a copy of the address space for the new process but
instead allows it to share the address space with its creator.
The creator is not runnable until the new process has replaced
its image via an exec() operation. The exec() operation
replaces the caller’s image with an image derived from the
contents of the named executable file. It is common for the
operation which immediately follows a fork() operation (after
some descriptor manipulation) to be an exec() operation. In
particular, this happens very frequently in the shell,[4] which
is the main user interface to UNIX. Thus, vfork(), in not copy-
ing, avoids unneeded work. However, the shared, rather than
copied, address spaces force the programmer to be very aware
of the differences between fork() and vfork().

1.1. Copy-on-write

Another approach is to transparently alter the imple-
mentation of fork() to take advantage of favorable cir-
cumstances such as the shell’s usage. This is done with a so-
called ‘‘copy-on-write’’ fork(), where portions of addressable
memory are shared until such time as they are changed. Simi-
lar memory management is done in TENEX[3] and more
�����������������������������������

† This work was supported in part by equipment grants from AT&T
and the Hewlett-Packard Corporation, and in part by NSF grant CDR-
84-21402.

recently, Mach.[16] Each process has a page table which maps
its virtual addresses to physical addresses; when the fork()
operation is performed, the new process has a new page table
created in which each entry is marked with a ‘‘copy-on-
write’’ flag; this is also done for the caller’s address space.
When the contents of memory are to be updated, the flag is
checked. If it is set, a new page is allocated, the data from the
old page copied, the update is made on the new page, and the
‘‘copy-on-write’’ flag is cleared for the new page. Thus,
unexpected changes to shared state do not occur, as indepen-
dent copies are created ‘‘on demand’’. This is very effective
in the special case of the shell, where almost no copying has to
be done before an exec() replaces the address space. A
thorough description of the mechanism as implemented in
UNIX is given by Bach.[1]

1.2. Motivation

In another paper[13] we discuss an implementation of a
mechanism to fork() a process on a remote workstation; the
major cost in execution time is incurred by data copying.
Thus, we were interested in reducing the amount of copying,
especially that which takes place over a communications
channel. One strategy which we devised (assuming either
homogeneous software configurations on the workstations or
NFS-available[12] binaries) was to have program images
available on the remote system and send only the changes[9]
which have been made to the address space, i.e., those which
would be copied by a ‘‘copy-on-write’’ scheme. In order to
understand the engineering tradeoffs, we examined the local
case in some detail.

The arguments presented for ‘‘copy-on-write’’ have so
far been qualitative; we felt that detailed quantitative data
were necessary. The methodology and process of gathering
these data are discussed in Section 2. Section 3 provides an
analysis of the data. Section 4 examines the memory-update
characteristics of some programs having desirable properties
as described in Section 3, and Section 5 concludes with a dis-
cussion of our results.

-- --

- 2 -

2. Data Acquisition

There are two parameters of interest, i.e., the size of the
storage to be ‘‘copied’’ in the new process and the fraction
(between 0.0 and 1.0) of memory references which are writes.
The number of times each parameter was exercised was also
made variable, in order to remove various small-sample
artifacts that can occur. Such artifacts are illustrated by the
plots in figures 4 and 5. The desired data were gathered with
the C program presented as an appendix, do_fork.c. A script
was written in order to drive the do_fork() program with vari-
ous values; the values used for the measurements described in
this report were gathered with this shell script:
if [! -f do_fork]
then

echo "Making do_fork."
make do_fork

fi
if [! -f do_fork]
then

echo "No do_fork. Exiting."
exit 1

fi
echo "size do_fork:"
size do_fork
for forks in 0 1 3 10 32 100 316 1000
do

for heap_size in 0 1000 3162 10000 31622 100000 316228
do

for write_frac in 0.0 0.1 0.3 0.5 0.7 0.9 1.0
do

echo "time do_fork $forks $heap_size $write_frac"
time do_fork $forks $heap_size $write_frac

done
done

done

The script first ensures that an executable do_fork binary is
available, attempting to make one if not. Once do_fork is
available, it is invoked in the innermost of three nested loops,
which vary its parameters controlling the number of fork()
operations to be executed, the size of the heap to allocate, and
the fraction of the allocated heap which is to be written to.
Prior to each invocation, a message is written with echo, stat-
ing what the invocation parameters of do_fork are.

Data sets for analysis by S[2] are then created using the
shell script, by, e.g. for the 3B2,
script 2>&1 |\

grep "ˆreal" |\
cut -f2 |\
awk ’{ i=index($0,m); m=substr($0,1,i-1);\
s=substr($0,i+1,length($0)-i-1); s=60*m+s;\
print s}’ > real.3B2

and reading the list of numbers into an S vector. The follow-
ing data sets were extracted from the script output:

number: The number of times an invocation of do_fork was
to create a child process. The values 0, 1, 3, 10, 32,
100, 316 and 1000 (0 plus powers of sqrt(10) were
selected in order to make both order of magnitude
induced effects (as we are changing by orders of
magnitude) and implementation artifacts (because
we start at small values, e.g., 0 and 1) visible.

mem: The number of bytes allocated to the process’s heap,
via malloc(). The values 0; 1,000; 3,162; 10,000;
31,622; 100,000 and 316,228 were chosen for both

artifact and order of magnitude visibility, as dis-
cussed previously; the extra factor of 1000 (over the
values of number) is to compensate for the page
size, since otherwise it would require (for a 2K
page1) 8 values before we accessed a page other
than the first one. Clearly, there is no practical
difference between 316,228 and 310K; it is merely
aesthetically appealing to use the correct digits.

frac: The fraction of memory which is to be written (actu-
ally, we write one byte per page in order that the
memory access loop not contribute to the response
time beyond causing faults). The interesting boun-
dary values of 0.0 and 1.0 were chosen, as well as
the values 0.1, 0.3, 0.5, 0.7, and 0.9, which were
chosen for their coverage of the input domain.

real: The real time, in seconds, printed by an invocation
of ‘‘time do_fork’’ with the parameters as set
in the other vectors.

user: Likewise for user time.

sys: Likewise for system time.

3. Data Analysis

Given the data discussed in the previous section, we
wish to analyze the data in order that we can qualitatively dis-
cuss the effects of ‘‘copy-on-write’’ page management on
response time. One of the difficulties is that by our experi-
mental design, the measured response time is a function of not
one, but three quantities, number, mem, and frac. There are
two obvious hypotheses which we can use our analysis to
refute or verify. First, that the response time increases as the
size of the data segment increases, for a fixed fraction of write
references. Second, that the response time increases as the
fraction of write references increases, for a fixed data segment
size.

�����������������������������������

1 HP-UX on our HP9000/350s uses a 4K pagesize, but given the instru-
mentation (e.g., do_fork.c) the difference is rarely relevant; in fact, only
when the offset of a particular byte in the last page accessed causes an
extra 2K bytes of memory to be paged in.

-- --

- 3 -

**

**
**
**
*

*
*
*
*
*
*
*

*

*

*

*

*

*

*

0 50000 100000 150000 200000 250000 300000 350000

0

100

200

300

400

500

600

frac=0.1

frac=0.5

frac=0.9

memory (bytes)

time
(secs)

Figure 1: Effect of fraction of memory written

Figure 1 shows mem plotted on the x axis against real
on the y axis for an AT&T 3B2/310 with 2 megabytes of
memory (of which 1.2 megabytes are available to user
processes), a 30 megabyte hard disk, and running UNIX Sys-
tem V, Release 3.0, Version 2. All times are given in units of
seconds. We have fixed the value of number to be 1000 to
remove artifacts. The dependent variable, plotted vertically, is
the real time, in seconds. The independent variable, the size
of the data memory in bytes, is on the horizontal axis. Regres-
sion lines are drawn through the plotted points corresponding
to frac values of 0.1, 0.5, and 0.9. These regression lines have
equations y=1.709e-4*x+31.4, y=7.670e-4*x+30.5, and
y=1.349e-3*x+30.7 for the respective frac values. Thus, with
these equations, we could estimate that a process with a 1
megabyte data segment which writes into half of that segment
would take about 800 (797.5=7.67e-4*1.0e6+30.5) seconds of
real time to perform 1000 fork() operations. It is obvious that
the lines fit the plotted points quite well, indicating that the
relationship is quite close to linear.

The same data are plotted for a Hewlett-Packard
HP9000/350 with 8 megabytes of main memory and a 70
megabyte hard disk, running HP-UXTM 6.0 (same units, res-
trictions, and axis markings) in Figure 2.

**

**
*
**
**

*
*
*

*
*

**

*

*

*

*

*

*
*

0 50000 100000 150000 200000 250000 300000 350000

10

20

30

40

50

60

70

80

90

frac=0.1

frac=0.5

frac=0.9

memory (bytes)

time
(secs)

Figure 2: Effect of write fraction (HP-UX)

The equations for the lines with frac set to 0.1, 0.5, and 0.9
are y=2.952e-5*x+12.7, y=1.264e-4*x+12.4, and y=2.124e-
4*x+12.2, respectively. The effect of the faster processor in
the HP9000/350 is clear from the extent of the y axis in this
figure versus that of the previous one. In fact, the important
parameter in comparing processor speeds under this workload
is memory-copying speed. In order to measure this, we wrote
a short C program which took the number of bytes to copy as
an argument, the relevant fragment of which is:
p = malloc(size);
pre_page(p);
clock = times(&tb1);
memcpy(p, p, size);
clock = times(&tb2) - clock;

For size set to 316,228 and a page size of 2K bytes (4K on the
HP9000) we measured 0.40 seconds of real time, 0.39 seconds
of user time, and 0.00 seconds of system time on the 3B2/310.
The values were 0.06 seconds of real time, 0.06 seconds of
user time, and 0.00 seconds of system time on the
HP9000/350. These values held true through several trials,
and show that for memory-copying the HP is about (to the
limited accuracy of the measurements) 6.7 times faster than
the 3B2. They also provide an upper bound on the memory
copy rate which can be used to evaluate overhead incurred by
page management operations. For the HP, we get 5M
(5,270,467=316,228/0.06) bytes per second, or about 1,300
(1,286=5,270,467/4,096) 4K2 pages per second. For the 3B2,
we get 0.8M (810,841=316,228/0.39) bytes per second or
about 400 (396=810,841/2,048) 2K pages per second.

We can use the regression lines we have presented for
further analysis. The y-intercept (about 31 seconds for the
�����������������������������������

2 For comparison purposes, this would be about 2,600
(2,573=5,270,467/2,048) 2K pages per second.

-- --

- 4 -

3B2/310 and 12 seconds for the HP9000/350) should represent
the time required for 1000 forks which allocate 0 bytes of
memory; examination of the script output confirms that this
figure is accurate. Since do_fork is written to be compact (no
standard I/O, etc.) this should in fact accurately indicate the
cost of performing a fork when divided by the number of
operations performed. Thus, using the computed intercepts
we have given for number set to 1000, the average 3B2/310
fork requires about 31 (=(31.4+30.5+30.7)/(3*1000)) mil-
liseconds of real time. For a fixed number of fork() operations
the y-intercept is not nearly as interesting as the slope of the
line. We should note that in reality, the function is not a line,
as the quantization of bytes into page size quantities forces a
staircase function. However, for purposes of analysis we can
assume that a linear function exists. The slope of the line for
some known value of frac gives the relationship between
changes in real caused by changes in mem. Hence, we can
use the slope of the regression line to estimate the rate at
which page faults are serviced. Mem.frac gives a fixed
amount of memory, with which we use the equation of the
regression line to compute a real time estimate. Then, the
observed page fault service rate can be computed with the

simple formula
real time
mem.frac
����������������� . In fact, the slope of the line can

be used to compute the service rate directly, for a known value

of frac and number; this rate is given by
slope

number.frac
� ��������������������� ,

which calculates a value in units of bytes per second. For the
3B2, these values are 585,138; 651,890; and 667,161 (286,
319, and 326 2K pages/second, respectively) for the three
values of frac plotted. The corresponding values for the
HP9000 are 3,387,534; 3,955,696; and 4,237,288 bytes per
second (827, 965, and 1,034 4K3 pages/second, respectively).
Using the best observed page fault service rates for each pro-
cessor, we calculate the ratio of the page fault service rate and
the time for memory-copying, which is 0.823
(=667,161/810,841) for the 3B2, and 0.804
(=4,237,288/5,270,466) for the HP. Values for the ratio can
range between 0 and 1; the best case is a value near 1, as this
indicates that the virtual memory management incurs very lit-
tle overhead. We can in fact estimate this overhead using the
information we have. Using τ() to measure time, we know
that

τ(fork) = τ(copy one page).frac.# pages +

τ(overhead for page table entry).# pages +

τ(overhead to create new process)

Now, τ(copy one page) is really a function of the hardware
components (e.g., bus, processor, memory) comprising a sys-
tem, and we’ve shown how it can be gathered with a small
auxiliary program. But from our numbers and analysis we can
�����������������������������������

3 For comparison, 1,655; 1,932; and 2,069 2K pages/second.

get τ(overhead for page table entry) and τ(overhead to create
new process). Thus, for any given fork operation, the time
required is completely parameterized by τ(copy one page),
τ(overhead for page table entry), τ(overhead to create new
process), frac, and mem (# pages). The key is that the first
three are determined by the system characteristics, and they
can thus be precomputed; the application-dependent influ-
ences are completely encapsulated in the latter two parame-
ters. Thus, an application can be characterized on a given sys-
tem by its size in pages and the fraction of those pages which
are written to.

3.1. Relationships

The shapes of the plots we generated are quite similar
for both processors, with the HP9000 plots time values scaled
because it’s significantly faster than the 3B2. We’ll use the
3B2 to illustrate the analysis in the remaining figures.

One of the failings of the x-y plots is that there are two
independent variables. The perspective plot shows that the
real time increases as a product of mem and frac; the max-
imum value is 505.82 seconds, for number at 1,000; mem at
316,228; and frac at 1.0. Figure 3 shows a 3-D perspective
plot of real (z-axis), mem (x-axis), and frac (y-axis). The
point (316,228;1.0;505.82) is the furthest, highest point on the
graph. Thus mem is increasing from our left to our right (it’s
exponential as the data values are chosen to increase exponen-
tially), and frac is increasing from our right to our left, mov-
ing away from us. Figure 1 would be then be overlaid cross-
sections taken from the perspective plot by intersecting a
series of y-planes with it. Of course, not all the data of figure
1 are available due to hidden line elimination.

frac
mem

real

Figure 3: Perspective plot, mem vs. frac vs. real

We’ve limited the data shown in Figure 3 to that gathered with
number set to 1000. This was done after analysis of the raw

-- --

- 5 -

data showed two things which limited the value of the data
gathered for a small number of fork operations. First, there
was very little opportunity for the data to become evident
against the overhead of executing the parent program. This
could, of course, have been removed by calling times() from
inside do_fork, but given our strong preference for the shell as
a measurement apparatus, this was not done. Second, the tim-
ing data were apparently overwhelmed by other sampling
noise, such as that caused by various background processes
and network daemons (although the processors were other-
wise idle). These were not shut down due to the deleterious
effect on our working environment.

If we plot a 3-D perspective plot with parameters as
before, except that number is 1, we get Figure 4, which
demonstrates what sort of artifacts, or ‘‘noise’’ can arise due
to inadequate sample size.

frac
mem

real

Figure 4: Perspective plot, mem vs. frac vs. real

In fact, the question might be raised as to why real time is
used, rather than sys. Philosophically, the real time is what is
most relevant to an observer. Scientifically, analysis shows
that for number large, real is less than 20 percent greater than
sys, and that they are closely correlated. This is illustrated in
figure 5, where the x axis has values of number, and the y

axis is the value
sys

real−sys
	
	�	�	�	�	�	�	 .

*

**

**
*

*

*

*
*

**
*
*

*

*

*

*

*

*
*

**
*

*

*
****** ******* *******

0 200 400 600 800 1000

0

5

10

15

20

number

sys
real−sys
� �
�
�
�
�
�
�

Figure 5: Relation between real and sys

The plot shows that the relationship between real and sys is
not very good for small values of number; they differ by
almost a factor of 20. However, things improve as number
gets larger; a detailed graph is provided in figure 6 by restrict-
ing number to values of 100 or more. It’s clear from this
illustration that for number at 1000, sys and real are reason-
ably good approximations of each other.

*

*

*

*

*

*

* *

*

**

*

*

0 200 400 600 800 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number

sys
real−sys
� �
�
�
�
�
�
�

Figure 6: Relation between real and sys

Incidentally, we should note that for small values of number
(e.g., 1), sys is subject to the same noise problem that real
suffers from; this is easily observed with a perspective plot,
which we will not present for space considerations.

-- --

- 6 -

4. Write Fraction for Real Programs

In the last section, we saw that the factors mem and
frac influenced the real time requirements of our test program.
The biggest savings for the ‘‘copy-on-write’’ scheme would
come from programs with large address spaces which updated
a small fraction of their data before exiting or exec()ing a new
binary. As discussed before, this works well for the shell, but
the shell typically uses very little of its data segment. While it
may expand the address space as necessary to store new vari-
ables or metacharacter expansions, this does not account for
many pages. We thus sought programs with large address
spaces, in order to see what effect the ‘‘copy-on-write’’
scheme would have.

As they had the largest address spaces (of programs in
common use in our department), we set out to take some
measurements of the memory utilization of two symbolic
interpreters. We chose 4.2BSD’s[5] Franz Lisp (Opus 38.92),
as it is widely available. Another less detailed set of measure-
ments was taken using the GNU Emacs[14] LISP interpreter,
which is also widely available. These measurements were
taken on a DECTM VAX-11/750, because both pieces of
software were available there (Franz Lisp is not available on
our HPs and 3B2s, although GNU Emacs is). Since we are
measuring data segment utilization, and the machines dis-
cussed in this paper all have 32 bit architectures, the measure-
ment results should be portable. This is particularly true
because we use relative measures, such as the fraction of the
data segment which has changed. While a particular architec-
ture may have a less efficient representation of the data, this
should not change the fraction of the data altered by the pro-
gram significantly.

4.1. Franz Lisp

Our first exercise was choosing a computationally inten-
sive process so that we could gather some statistics on the sort
of processes which one would want to improve the perfor-
mance of[8] ; that is, those that consume a lot of resources.
Experience with an ABSTRIPS[11] implementation led us to
use this system to gather statistics. ABSTRIPS is a ‘‘plan-
ning’’ system which works by constructing increasingly
detailed series of actions at decreasing levels (‘‘criticality lev-
els’’) of abstraction. There are primitives defined (in predi-
cate logic) for each level of abstraction; as the levels are
traversed, we gradually ‘‘flesh out’’ the details of a plan for
achieving the goal. ABSTRIPS relies heavily on the use of a
theorem prover; hence, it is representative of much current AI
computation. An example of its output is given in Figure 7.

Franz Lisp, Opus 38.92
-> [load abstrips.lsp]
t
-> criticality level: 4
skeleton plan : ((goal c))
criticality level: 3
skeleton plan : ((get-slippers d)
(give-slippers DOG ME) (goal c))
criticality level: 2
skeleton plan : ((gothrudoor c b DOG)
(gothrudoor b a DOG)
(gothrudoor a d DOG)
(get-slippers d)
(gothrudoor d a DOG)
(gothrudoor a b DOG)
(gothrudoor b c DOG)
(give-slippers DOG ME) (goal c))
criticality level: 1
skeleton plan : ((gothrudoor c b DOG)
(gothrudoor b a DOG)
(pushopen a d)
(gothrudoor a d DOG)
(get-slippers d)
(gothrudoor d a DOG)
(gothrudoor a b DOG)
(gothrudoor b c DOG)
(give-slippers DOG ME)
(goal c))
((gothrudoor c b DOG)
(gothrudoor b a DOG)
(pushopen a d)
(gothrudoor a d DOG)
(get-slippers d)
(gothrudoor d a DOG)
(gothrudoor a b DOG)
(gothrudoor b c DOG)
(give-slippers DOG ME) (goal c))
->

Figure 7: ABSTRIPS Output

The problem in our example was to have a dog fetch your
slippers from another room. This problem takes about 15
minutes to plan on a VAX-11/750; the implementation makes
heavy use of recursion and maintains several large lists.

The size of the Franz executable (from the UNIX size
command) is 139,264(text) + 511,488(data). The data on
memory usage was obtained by using the UNIX system’s abil-
ity to create a core dump of a process’s address space; since
the text segment is read-only, only the data and stack seg-
ments are dumped. Sending the SIGQUIT signal to a process
causes a core dump; this was done at the following points in
the execution of the ABSTRIPS planner.

1. When the LISP interpreter was started. This gives us a
baseline value, with no program loaded and no code
executed. The core dump occupied 528,384 bytes.

2. Immediately after ABSTRIPS was loaded. This tells us
how much of the address space change is due to storage
of the ABSTRIPS program. The core dump occupied
556,032 bytes; a bytewise comparison with the previous
dump showed that 56,937 bytes had changed.

3. Immediately after ABSTRIPS execution is terminated.
This tells us how much of the address space has
changed during execution. The core dump occupied
613,376 bytes, and differed from the previous dump at
77,910 bytes. The difference between this dump and the
first dump was a total of 123,942 bytes changed. No
garbage collection was announced.

An important issue is the locality of reference; our measure-
ment programs for the ‘‘copy-on-write’’ fork performance

-- --

- 7 -

showed that we could write every page by writing one byte on
each page. The byte comparison routine delivers addresses
where it found differences between two files; the difference in
bytes could then be measured by piping the output to ‘‘wc
-l’’; if we divide each address by the pagesize (512 on the
VAX) and pass the results to ‘‘uniq | wc -l’’, we can find
the number of pages that have changed; in this case 270 of the
1,198 (=613,376/512) pages changed, for a write fraction of
0.23.

4.2. GNU Emacs

GNU Emacs provides a facility to dump the currently
executing image into an executable file. When this file is exe-
cuted, the state of the Emacs interpreter is restored to the state
it had when the (dump-emacs) was invoked. We took the
following measurements on the VAX/11-7504. The size of the
GNU Emacs editor we measured was 437,248(text) +
208,896(data), determined with size. We sought an exam-
ple program which had the sort of behavior (fairly
computation-oriented) that we desired. We based our desire
for computationally-intensive examples on the observation
that as heavy resource users, these programs would demon-
strate the greatest effects from an optimization. GNU Emacs
provides a library of LISP code; one of the routines provides a
graphic solution of the classic ‘‘Towers of Hanoi’’ problem.
We ran the GNU LISP interpreter on the following input:
(dump-emacs "pre-hanoi" "/usr/local/emacs")
(hanoi 10)
(dump-emacs "post-hanoi" "/usr/local/emacs")

(As might be expected, this requires patience at 9600 baud!)
The interpreter emitted several messages to the effect that it
was performing garbage collection.

At the completion of the computation, we performed a
bytewise comparison on the two dump files:

$ ls -l post-hanoi pre-hanoi
-rwxr-xr-x 1 jms phd 851968 Oct 27 08:25 post-hanoi
-rwxr-xr-x 1 jms phd 737280 Oct 26 16:01 pre-hanoi

which showed that 183,312 bytes had changed, which for the
computed data segment size of 414,720 (=851,968-437,248) is
slightly less than thirty-five percent of the dump; that is,
almost the same percentage we had observed with Franz Lisp
and ABSTRIPS. Several times during the computation and in
the dump-emacs function the garbage collector was run.
Thus the amount which appears to have changed may include
parts which did not change but were relocated and thus appear
to have changed. It also compacted storage which appeared to
�����������������

4 The results for GNU Emacs were checked on the workstations, and
they are fairly consistent. For the ‘‘Towers of Hanoi’’ problem dis-
cussed below, the fraction of the data altered by the program was 0.30
on the 3B2 and 0.48 on the HP9000. Much of the difference is due to
what features the runnable Emacs is pre-loaded with; the VAX execut-
able has large amounts of pre-loaded information, which is read-only.

be changed (since newly-allocated storage is considered
changed from the previous non-allocated storage). The
important point is that these changes would be seen by a
page-management mechanism in either case.

5. Conclusions

‘‘Copy-on-write’’ paging strategies for address space
inheritance have been shown to be effective in reducing the
real time required to perform UNIX fork() operations. This
qualitative assessment is based on the quantitative data we
gathered and analyzed. For large processes, the time required
is proportional to the fraction of write references, so that a
child process which updates half (0.5) of its address space will
spend half the time doing copying that a child process which
updates all (1.0) of its address space will. For a pair of inter-
preters with large address spaces, we showed that the portion
of the address space changed from process startup until pro-
cess termination was small, typically less than 0.5. These
measurements concur with those of Zayas,[17] who measured
program behavior in an Accent environment, and confirm the
desirable properties observed of a similar scheme for fast state
transfers to remote systems in the V[15] system.

Thus, if these interpreters or programs which behave
similarly were to fork() child processes which executed tasks
similar to those described, a reduction of 50 percent or more
of the system time devoted to copying data might be achieved.
This confirms that the scheme for remote fork() described in
the introduction has considerable merit.

This reduction in copying also reduces the amount of
swap space required, reduces the amount of time spent swap-
ping, increases the number of processes which can be run
without paging, and decreases the cost of context switches
(where the cost of paging out the written pages and the paging
in of pages which are only read and have not been modified is
included). Thus the advantages of the text table are extended
to unmodified pages (or viewed another way UNIX gains via
‘‘copy-on-write’’ the ability to eliminate the text table and
improved fork() performance). With respect to these page
management strategies, it should be noted that the earlier
TENEX had these advantages ten years earlier and needed
neither a distinguished text table nor the confusion of two
varieties of fork().

6. Notes

The paper was improved by thoughtful comments from John
Ioannidis and Nathaniel Polish. UNIX

Ò is a registered trade-
mark, and 3B2 is a trademark of AT&T. DEC and VAX are
trademarks of Digital Equipment Corporation. HP-UX,
HP9000, and HP are trademarks of the Hewlett-Packard Cor-
poration.

-- --

- 8 -

7. References

[1] M. J. Bach, The Design of the UNIX Operating System,
Prentice-Hall (1986).

[2] Richard A. Becker and John M. Chambers, S - An
Interactive Environment for Data Analysis and Graph-
ics, Wadsworth, 1984.

[3] D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S.
Tomlinson, ‘‘TENEX, a Paged Time Sharing System
for the PDP-10,’’ Communications of the ACM 15(3),
pp. 135-143 (March 1972).

[4] S.R. Bourne, ‘‘The UNIX Shell,’’ The Bell System
Technical Journal 57(6, Part 2), pp. 1971-1990 (July-
August 1978).

[5] BSD, UNIX User’s Manual, 4.2 BSD, University of Cal-
ifornia, Berkeley (1982).

[6] Richard P. Feynman, Robert B. Leighton, and Matthew
Sands, The Feynman Lectures on Physics, Addison-
Wesley, Reading, MA (1963).

[7] W. Joy, 4.2BSD System Manual, 1982.

[8] Will E. Leland and Teunis J. Ott, ‘‘Load-balancing
Heuristics and Process Behavior,’’ in Proceedings,
ACM SigMetrics Performance 1986 Conference (1986).

[9] G. Q. Maguire,Jr., ‘‘PACS for those interested in image
processing: an expert configuration system,’’ in Les
Entretiens de Lyon - Computer Science and Life: Medi-
cal Imaging and Experts Systems Applied to Medicine
(1988). S.E.E., C.E.R.F., and S.F.B.M.N.

[10] D.M. Ritchie and K.L. Thompson, ‘‘The UNIX Time-
Sharing System,’’ Bell System Technical Journal 57(6),
pp. 1905-1930 (July-August 1978).

[11] E. D. Sacerdoti, ‘‘Planning in a Hierarchy of Abstrac-
tion Spaces,’’ Artificial Intelligence 5 (1974).

[12] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
R. Lyon, ‘‘The Design and Implementation of the Sun
Network File System,’’ in USENIX Proceedings (June
1985), pp. 119-130.

[13] Jonathan M. Smith and John Ioannidis, ‘‘Implementing
remote fork() with checkpoint/restart,’’ IEEE Technical
Committee on Operating Systems Newsletter, pp. 12-16
(February, 1989).

[14] Richard Stallman, GNU Emacs Manual, Fourth Edition,
Version 17, Free Software Foundation, Inc., 100 Mass
Ave., Cambridge, MA 02138 (February 1986).

[15] Marvin M. Theimer, Keith A. Lantz, and David R.
Cheriton, ‘‘Preemptable Remote Execution Facilities for
the V-System,’’ in Proceedings, 10th ACM Symposium
on Operating Systems Principles (1985), pp. 2-12.

[16] M. Young, A. Tevanian, R. Rashid, D. Golub, J.
Eppinger, J. Chew, W. Bolosky, D. Black, and R.

Baron, ‘‘The Duality of Memory and Communication in
the Implementation of a Multiprocessor Operating Sys-
tem,’’ Proceedings of the Eleventh ACM Symposium on
Operating Systems Principles, Austin, TX, pp. 63-76, In
ACM Operating Systems Review 21:5 (8-11 November
1987).

[17] E. Zayas, ‘‘Attacking the Process Migration
Bottleneck,’’ Proceedings of the Eleventh ACM Sympo-
sium on Operating Systems Principles, Austin, TX,
pp. 13-24, In ACM Operating Systems Review 21:5 (8-
11 November 1987).

8. Appendix: do_fork.c

#include <errno.h>
#include <sys/param.h>

#ifndef NBPC
#define PAGE_SIZE 2048
#else
#define PAGE_SIZE NBPC
#endif

#ifndef NULL
#define NULL 0
#endif

main(argc, argv)
int argc;
char *argv[];
{

int count = 0, heap_size = 0, pid, status;
double atof(), write_fraction = 0.0,

write_count = 0.0, write_size = 0.0;
register char *ptr;
char *malloc();
extern int errno;

if(argc > 1)
{

count = atoi(argv[1]);
if(argc > 2)
{

heap_size = atoi(argv[2]);
if((ptr = malloc(heap_size))

== (char *) NULL)
error("Insufficient memory available. Exiting.\n");

if(argc > 3)
{

write_fraction = atof(argv[3]);
if(write_fraction < 0.0 || write_fraction > 1.0)

error("0.0 <= writes <= 1.0; Exiting.\n");
write_size = write_fraction * (double) heap_size;

}
}

}

while(count > 0)
{

switch((pid = fork()))
{
case -1: /* failed. If EAGAIN, wait. */

if(errno == EAGAIN)
wait(&status);

break;

case 0: /* child. make refs if needed, and exit */
while(write_count < write_size)
{

*ptr = ’ ’;
ptr = &ptr[PAGE_SIZE];
write_count += (double) PAGE_SIZE;

}
exit(0);

default:
count -= 1;

}
}

exit(0);

-- --

- 9 -

}

error(string)
char *string;
{

write(2, string, strlen(string));
exit(1);

}

-- --

