
-- --

Implementing remote fork() with checkpoint/restart

Jonathan M. Smith†
John Ioannidis

Computer Science Department
Columbia University
New York, NY 10027

Abstract
We describe a method for implementing checkpoints on a UNIX

Ò system. The method requires no special
operating system support. The checkpoints (a term we use both for the act of saving state and the result)
are created in the file system name space. Availability in the name space allows facilities to duplicate and
transfer files to be applied; in this case, we get replicated processes and process migration rather naturally.
We describe the process migration implementation.

Our process migration implementation was easily optimized to achieve an execution speed improvement of
greater than 7 times over our first implementation; this was accomplished by a combination of a faster file
transfer mechanism and a change in the underlying protocol. We have incorporated the mechanism into a
library routine, rfork(). We conclude with a discussion of advantages, limitations and applications of our
approach.

1. Introduction
An image is a description of a computation which can
be executed by a computer. A process is an image in
some state of execution. At any given time, the state of
the process can be represented as two components: the
initial state (the image) and the changes which have
occurred due to execution. The total information, that
is, the initial state together with the changes, gives us
the state of a process.

It may be desirable to preserve this state at certain
points in time, due perhaps to the amount of computa-
tion required to reach that state. These points in time
can be used for acts of saving state called checkpoints;
this name is also used for the result of saving the state.
The UNIX

Ò paradigm for manipulating objects is
through the file system name space; see Ritchie and
Thompson [5] for details. The approach to accessing
resources through name space entries has been applied
to teletype devices, remote file systems, and system
memory. Killian [3] attacked the problem of accessing
process address spaces through name space entries in a
distinguished directory /proc; the process objects were
named by their process ids. Unfortunately these facili-
ties did not provide complete file semantics; while
entries of /proc could be read, analyzed, and modified,
they could not be created; thus the interface could not
use file system facilities for creating new processes.
The interface was designed to support debugging,
�����������������������������������

† This work was supported in part by equipment grants from the
Hewlett-Packard Corporation and AT&T, and NSF grant CDR-
84-21402. E-mail: jms@close.cs.columbia.edu
Ò UNIX is a registered trademark of AT&T.

which it did successfully. If one could create a new
process, and alter it, we could copy processes for such
reasons as replicated processing and remote execution.
In this paper, we describe a checkpointing method, our
implementation, and the construction of a library inter-
face for a ‘‘remote fork’’ call. A process successfully
executing a fork() operation generates two copies of its
address space; these are often distinguished as parent
and child by the return value of the fork() call. If the
child process continues its execution with the contain-
ing address space located on a processor different form
the parent process, we have achieved a ‘‘remote fork’’.

2. Process Migration
Process migration is the transfer of some (significant)
subset of this information to another location, so that an
ongoing computation can be correctly continued. Pro-
cess migration is most interesting in systems where the
involved processors do not share main memory, as oth-
erwise the state transfer is trivial, as it can be accom-
plished with pointers. A typical environment where
process migration is interesting is autonomous comput-
ers connected by a network. A survey of process
migration mechanisms is available in Smith [7] ; a con-
clusion drawn from the survey is that message-passing
systems ease implementation, and the stateful nature of
most operating system kernels is an impediment to
migrating processes.

In any case, these process migration mechanisms
demonstrate that the state of an executing process can
be moved between homogeneous machines, and that
the execution can be continued. This transfer of
address spaces is what intrigues us.

TCOS Newsletter

-- --

Volume 3 Number 1 2

Assuming that we could effect such a transfer, what
should be the primitive to be used in achieving it? We
chose to implement a call akin to the fork(2) system
call, that creates a child process on a remote machine.
We called it rfork().

Because of implementation limitations, rfork is not a
drop-in replacement for fork, but if proper care is
taken, it can be a significant tool.

3. Implementation Details
A UNIX process’s address space typically has the layout
of the leftmost part of Figure 1. The stack segment is at
the numerically higher addresses, while the text seg-
ment is at the numerically lower addresses. The
address space, objects referenced by descriptors in the
address space (e.g., open files), and system state (e.g.,
virtual-to-physical address mappings) comprise the
state of a process. Since address mappings and similar
state are transparent to the process, we will ignore such
information as state. We are interested in the transfer
of this state to some remote location. We note that the
information in the address space is dependent on the
architecture of the machine and the operating system;
the program only runs on this kind of ‘‘UNIX virtual
machine’’, and hence the proposed migration is
referred to as homogeneous, as opposed to heterogene-
ous[8] process migration, where the process’s state
could be transferred between unlike machines. We
note that heterogeneous migration can be accomplished
by inserting an intervening ‘‘virtual machine’’, e.g., an
interpreter. Falcone [1] presents some ideas along this
line; a complete implementation of such a migration
mechanism is obviously a non-trivial exercise.

How can we transfer a running process from one
machine to another? At the highest level of abstraction,
we want to do the following:

1. Checkpoint the process

2. Move the image

3. Restart it

Since the existing facilities for transferring information
are biased towards file transfer, we felt that the follow-
ing realization of the abstraction was most effective:

1. Store the state of the process into a file.

2. Copy the file to a remote system. One way we can
do this is by using a remote copy command (e.g.,
rcp). Alternatively, we can take advantage of the
homogeneous namespace provided by a distributed
file system, such as the Sun NFS [6] and just
checkpoint the process in a globally accessible file.
This has the advantage that the image of the execut-
able file goes across the network at most twice
(once when dumping and maybe once more when

loading it, if the execution is restarted on a diskless
workstation). As a mounted file system behaves
like a virtual channel, in that efficiency is high once
a connection is made, latency is reduced.

3. Restore the process from the file, at the remote sys-
tem.

Since step #2 can easily be accomplished, we sought to
achieve the other two steps.

Step #3 can only be accomplished by use of the exec()
system call that will be invoked on the remote machine,
as it is the only way to obtain a running copy of an
image. Hence, step #1 must create the file in a format
which exec() can use; on UNIX, executables are in
a.out() format; see Section 5, ‘‘File Formats’’ in [10]
for details. Figure 1 illustrates the mechanics.

data
segment

text
segment

boot-
strap
a.out

header

stack
segment

.

.

.

.

.

.

.

.

.

.

.

bss
segment

data
segment

text
segment

file
transfer

text
segment

data
segment

boot-
strap
a.out

header

stack
segment

.

.

.

.

.

.

.

.

.

.

.

bss
segment

data
segment

text
segment

Figure 1: UNIX process migration

3.1. Commentary
It should be noted that our implementation of rfork() is
entirely user level. No kernel modifications were
required. Currently, the processes as migrated in this
fashion are deaf, dumb, and blind. That is, they don’t
carry any of the state which the system retains in order
for, e.g., file descriptors to make sense. If restrictions
are adhered to, a set of library routines could be gen-
erated to provide the semantics of the standard I/O
library; these would have extra data such as the file
name associated with the opening of files; file posi-
tions, et cetera could easily be stored and restored. Of
course, this may require special handling to deal with
devices such as terminals; disk files seem relatively
simple, especially with a network file system. Other
examples are:

TCOS Newsletter

-- --

Volume 3 Number 1 3

1. The process group in which a given process is con-
tained. This also means that when a ‘remote’ child
terminates, its originating process cannot be sig-
naled and, of course, it cannot wait() for it.

2. The current working directory of a process.

3. The signals received by a process.

4. The time used by the process so far in its execution.

5. Children the process may have spawned with the
fork() primitive.

6. The unique process identifier associated with the
process.

7. State from active inter-process communications,
such as pipelines, network connections, etc.

8. Other state related to specific facilities a particular
version of the UNIX system may provide, such as
shared memory, semaphores, and page maps.

It does not seem easy to deal with some of these items,
e.g. maintaining the same process id can not be done
from the user level. However, many of the more
important system functions (namely those dealing with
files, as mentioned above) can be provided by means of
library routines combined with programmer conven-
tions. For example, if all programmers adhere to the
use of the stdio library routines for file I/O, we can do
the following:

1. Replace the stdio library routines with routines
which store extra information which we will need to
restore some of the process state.

2. Capture the file name passed to fopen() and store it
in a buffer associated with the file.

3. Save the value of the file pointer, as it will be
changed only by our routines, such as fseek(),
fread(), and fwrite().

4. Indicate in the extra information associated with a
file that the file must be reopened when the process
is about to be moved. When the process is res-
tarted, the files will be reopened and repositioned.

General file descriptors would be too difficult to handle
transparently. For example, consider the case where
we have a program running which has reset the termi-
nal modes using ioctl(); it stores the previous terminal
modes in some system dependent data structure. When
the program terminates, it may reset the terminal
modes; however if it has migrated to a system which is
of a different type, it may cause an error even if we
have reopened the file. Use of the X Window System
[4], NeWS [2], or similar network window systems can
eliminate many of the terminal interface problems, but
they illustrate the problems with detailed examination
of process state.

As with any engineering problem, circumstances create
uncertainty about the right way to save descriptor-
accessed state. Two methods we’ve considered are:

1. Preserving the names of opened files (as mentioned
above), with the intent of reopening them upon res-
tart. File positions, etc., can be retrieved with sys-
tem calls. The problem is that the files may be
inaccessible or modified, so that data the running
module had access to and knowledge about are not
the same.

2. Flushing all writable file descriptors and draining
all readable file descriptors into memory buffers.
After restart, read() calls will be satisfied from the
buffer. This remedies the previous accessibility
problem, in that what was accessible before will
remain accessible; readable data has been preserved
in the address space. Unfortunately, many interest-
ing files are large; set so large in fact that size limi-
tations in exec() make the result of this approach
non-executable.

Of course, neither of these approaches are fully gen-
eral; consider the case where the state to be preserved
involves an *active* entity, e.g., we want to save pro-
cess ‘‘b’’ from

a | b | c

How do we deal with the states of processes ‘‘a’’ and
‘‘c’’?

Deciding which set of facilities to preserve is an
engineering issue, and it serves as the set of constraints
under which migration is achievable, as mentioned in
the section above on process migration.

3.2. Performance
The checkpoint/restart facility was implemented and
tested on Hewlett-Packard HP9000 (Series 320) and
SUN-2 workstations connected via a 10Mbit Ethernet
in Columbia University’s Computer Science Depart-
ment in the Fall of 1986. This in turn has been used to
construct a process migration mechanism, by using the
4.[23] BSD rcp command to perform the remote file
transfer and the rsh command to execute the newly
transferred image. This process migration mechanism
has been used to move running processes between 20 of
these workstations. By distinguishing between the state
saving (checkpointing) activity and the state transfer
activity, we were able to measure and refine the perfor-
mance of each activity independently. In the Fall of
1987, the checkpointing code was ported, with consid-
erable effort, to the AT&T 3B2/310 computer. Some
simple timing measurements were made with a trivial
checkpointing program. The checkpoint required
18668 bytes of storage, where the original program

TCOS Newsletter

-- --

Volume 3 Number 1 4

required 29756. The program required 0.51 sec. of real
time, 0.02 sec. of user time, and 0.21 sec. of sys time.
Copying (rcp) the checkpoint from the 3B2 to a VAX
11/750 took 7.57 sec. real, 0.10 sec. user, and 0.55 sec.
sys. For a Hewlett-Packard HP9000 (Series 320) run-
ning HP-UX version 5.17 (code for automatic segment
size determination and COFF section headers not in
tst_frz) the program took 18712 bytes, while 22516
were needed by the checkpoint. Checkpointing
required 0.82 sec. real, 0.02 sec. user, and 0.36 sec. sys.
Copying took 6.28 sec. real, 0.08 sec. user, and 0.70
sec. sys.

3.3. Implementation using NFS
We implemented rfork for a network of Sun-2’s run-
ning release 2.0 of the SUN version of UNIX. The first
thing we did to enhance performance was take advan-
tage of the Network File System. We set up a spooling
directory, accessible from all the machines, where we
stored the checkpointed image of the process to be
moved. Since NFS is tuned for performance, file
transfer (a performance problem when using rcp)
incurred a much smaller delay. Another by-product of
this method is buffer cache availability of the
transferred blocks. The data blocks saved in the spool
directory were in the server’s disk buffers, which
improved the transfer speed when the request for the
blocks occurred within a short time after they were
saved; this is usually the case.

The remote execution server of the release of the
operating system that we were using, rshd, was creat-
ing problems with zombie processes, child processes
not being properly terminated and waited for, etc. It
also used the yp (yellow pages) distributed name server
every time it wanted to map a host name into a host
address, which resulted in an overhead of about 5
seconds of real time. Also, the virtual-circuit oriented
mode of operation of rsh meant that there would be
processes lingering in the local system for some time.
For these reasons, we wrote our own simple remote
execution server. Thus, on all the machines that we
wanted to be able to move to, we run a small program
that would accept a UDP datagram containing some
rudimentary authentication information and the name of
an executable program (usually the program just saved
in the rfork spool directory).

We also wrote a notification system, again using UDP
datagrams. This service ran on one of the workstations
and accepted short messages from any other. Upon
receipt, it would timestamp each message and log it to
the terminal. We used this facility to obtain our timing
measurements and monitor the progress of the migrat-
ing processes through the network.

3.3.1. Programming Example

We’ll examine a program used for taking measure-
ments on the HP-UX implementation, given as Figure
2.

/*
* Merry-Go-Round
*/
#include <sys/types.h>
#include <stdio.h>
#include "../include/hosts.h"
#include "../include/ckrs.h"

#define INET_MONITOR INET_read
extern int diag_msgs_host;

char *CKRS_DIR="/src/doug/migrate";
/* inet addresses of machines to visit */
u_long visit[] =
{

INET_wait, INET_fork, INET_kill,
INET_select, INET_close, INET_read,

};

main(argc, argv)
int argc;
char **argv;
{

char hostname[255], line[40];
int i;

diag_msgs_host = INET_MONITOR;

for (i=0; i<6; i++){
gethostname(hostname, 155);
sprintf(line, "I am at %s.%d",

hostname, getpid());
report(INET_MONITOR, line);

move_to(visit[i]);
}

report(INET_MONITOR, "I’m back");
}

Figure 2: Source, Merry-Go-Round

where the macro move_to(_x) is defined as
if(rfork(_x)==PARENT)exit(0). The
report() call sends a message to the monitor daemon,
which prints the originating internet address, the time
and the message received. The rfork() call also sends
three diagnostic messages: one when it starts dumping,
one when it’s finished dumping, and one when it
resumes execution on the remote machine.

3.4. Observations
The overall migration time was roughly 1.3 seconds
(with an aberrant value of 2.42 due to very heavy load
on a server machine (kill)).

The average time to dump the executable (approxi-
mately 70Kbytes) was just under 700 milliseconds, and

TCOS Newsletter

-- --

Volume 3 Number 1 5

the average time to start up the new process on the
remote machine was just over 300 milliseconds.

In all cases, the dump file was stored and retrieved over
NFS. The spool directory resided on a SUN-3/280 run-
ning release 3.5 of SunOS.

What we didn’t do:
� For reasons stated previously, our migrating

processes were blind, dumb and deaf. However, by
using the monitor service, we could send status
reports and monitor the status of the process as it
moved from machine to machine.

� Again because we only did a prototype, we had no
way of signaling completion of the remote process
(death of an rchild). Conceivably, we could have a
SIGNALing daemon on each machine that would
listen on a UDP port, do some rudimentary authen-
tication and send the appropriate SIGNAL to the
local process.

Another useful program could implemented using
rfork() to hop through a list of hosts, gathering user
names at each host, storing the names in malloc()’ed
memory, and returning to the originating system to
report the findings. We believe that the functionality of
rfork() is particularly appropriate to compute-intensive
applications. A master program can start on one
machine, then do a series of rfork operations to distri-
bute itself to available machines to perform portions of
a computation. Some experiments to verify this are
planned; in particular for a computationally intensive
task such as ray-tracing.

4. Conclusions
We have implemented a mechanism to create a process
checkpoint which resides in the UNIX file system. This
allows the checkpoint to be manipulated, e.g., to be
copied and transferred across a network.

Using this mechanism, we were able to create a simple
and elegant implementation of process migration. In
addition, we implemented rfork(). Rfork() resembles
the UNIX fork() system call, yet allows the child to con-
tinue executing on a remote machine. Once the design
and initial implementation were complete, we analyzed
the performance, and reimplemented pieces of the sys-
tem (on several different machine architectures) in
order to improve the response time. This improvement
was dramatic; from about 7 seconds of real time on the
HP9000 and the 3B2, to less than 1 second on the HPs
and Suns using NFS. As the fork() primitive has pro-
ven useful in developing multiple process applications
on uniprocessors, we have every reason to believe that
rfork() can be a useful tool in developing distributed
applications.

5. Acknowledgements
Prof. Gerald Q. Maguire, Jr. encouraged and assisted
us. Perry Metzger wrote the first version of the remote
execution daemon for the Suns.

Spencer Thomas and others wrote the code for GNU
Emacs [9] unexec(), which we examined. Robert
Herndon wrote a version of the freeze() library
routine for the VAX from which we borrowed.

6. References

[1] Joseph R. Falcone, ‘‘A Programmable Interface
Language for Heterogeneous Distributed Systems,’’
ACM Transactions on Computer Systems 5(4),
pp. 330-351 (November 1987).

[2] Sun Microsystems Inc., NeWS Preliminary Techni-
cal Overview, October 1986.

[3] T.J. Killian, ‘‘Processes as Files,’’ in USENIX
Proceedings (June 1984), pp. 203-207.

[4] Ram Rao and Smokey Wallace, ‘‘The X Toolkit:
The Standard Toolkit for X Version 11,’’ in Proceed-
ings, Summer 1987 USENIX Conference, Phoenix, AZ
(June, 1987), pp. 117-130.

[5] D.M. Ritchie and K.L. Thompson, ‘‘The UNIX
Operating System,’’ Communications of the ACM 17,
pp. 365-375 (July 1974).

[6] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
and R. Lyon, ‘‘The Design and Implementation of the
Sun Network File System,’’ in USENIX Proceedings
(June 1985), pp. 119-130.

[7] Jonathan M. Smith, ‘‘A Survey of Process Migra-
tion Mechanisms,’’ ACM SIGOPS Operating Systems
Review, pp. 28-40 (July, 1988).

[8] Jonathan M. Smith and Gerald Q. Maguire,Jr.,
‘‘Process Migration: Effects on Scientific Computa-
tion,’’ ACM SIGPLAN Notices 23(3), pp. 102-106
(March 1988).

[9] Richard Stallman, GNU Emacs Manual, Fourth
Edition, Version 17, Free Software Foundation, Inc.,
100 Mass Ave., Cambridge, MA 02138 (February
1986).

[10] K. Thompson and D. M. Ritchie, UNIX

Programmer’s Manual, Bell Laboratories (1978).
Seventh Edition.

TCOS Newsletter

-- --

