Transparent Concurrent Execution of Mutually Exclusive
Alternatives

Jonathan M. Smith
Gerald Q. Maguire, Jr.

Computer Science Department, Columbiavdrsity, New York, NY 10027
Technical Report Number CUCS-387-881

ABSTRACT
We eamine the task of concurrently computing altengatlutions to a problemWe restrict our interest to the case where
only one of the solutions is needed; in this case we need some rule for selecting between the sbtitisas'fastest
first”, where the ifst successful alternag is slected. Br problems where the requiregeeution time is unpredictable,
such as database queries, this method cam sfzstantial gecution time performance increasékhese increases are depen-
dent on the mearxecution time of the alternates, the &stest recution time, and thewverhead iwvolved in concurrent com-
putation.

Among the problems withxploring multiple alternaties in parallel are side-&fcts and combinatorialxplosion in the
amount of state which must be presetv Thesare soled by process management and an applicatiowayy-on-write”

virtual memory management he side d&cts resulting from interprocess communication are handled by a specialized mes-
sage layer which interacts with process management.

In order to test the utility of the design, we whisow it can be applied to tavgoplication areas, distrited execution of
recovery blocks and OR-parallelism in Prolog.

1. Introduction We begn by describing the computations to be ana-
lyzed. Theseare essentially a set of alterwatimethods
for causing a state change to daftace, with the addi-
tional constraint that at most one of the altekmagate
changes occurs.

A question which has intrigued mamnesearchers is o
an increasing supply of computational resources, in the
form of multiple computers, can be utilized to sohig-
ger problems, to soévproblems &ster and to sole prob-

lems more reliably We examine a spedif computational ~ Once the model is dekd, and the semantics thus
problem here, that of pursuing altermesi. Ourdesigns flxed, we can apply semantlcs-preserw_ng transformations
shav what can be done in order taeeute instances of in order to increase performance or aehigher goals.A

this problem type, speculady, in parallel. successful transformation, then, haso trequirements.

First, it must correctly preseevhe semanticsSecond, it

We ae interested in what performancairgs can be must achiee the goal set for it, e.g., a performance

achieved. We measureperformance using the metric of

execution time, which is the amount ofaW clock time nerease. .)
necessary to carry out a computatiofihus, we may _ We present (1) a model for selection of altervesi
increase performance by this measure, while decreasing N @ sequential setting, (2) a transformation whichwalo
performance by measures suchtisughput, which is a alternatves _to e<ecute_concurrentl_y(3) a description of
measure of the amount of usefubnk accomplished per the semantics-pres@ton mechanism, and (4) parameter
unit time. Given this bias, we may risk asted vork in ization of Wher_e_ the performance impements <_:an_be
speculative computation [4], which throughput-oriented ~ €XPected. Additionally we show example application
performance measuresuld discourage. areas for our method.

T In Sth International Conference on Distiled Computing Sys-
tems, Nevport Beach, CA, June 198%®lease cite thatersion.

2. Sequential M odel

Consider the situation where vesal alternatie
methods of computing a result aneitable. Someof the
alternatves may compute an acceptable result, while oth-
ers may not.The essential problem is the choice between
successful alternats, or an indication ofdiilure if there
are no such alternaéis. An ALGOL-like language con-
struct embodying this situation:

ALTBEG N
ENSURE guardl W TH net hodl OR
ENSURE guard2 W TH net hod2 OR

ENSURE guardn W TH net hodn OR
FAI L /* no nethod succeeded
END

*/

Figure1: Alternative Block

What we vant is for at most one of the methods to be
applied to our problem, or for whags conditions consti-
tute failure to be indicatedEach method, 1n, has asso-
ciated with it aguard condition, which it must satisfy in
order to be considered successfAl.method is called an
alternative. When the alternates ae composed into a
block, as illustrated inidure 1, the meaning is that one of
the alternaties (including failure) are selected non-
deterministically The non-determinism in selection is
necessary for highgrerformance computingThe selec-
tion is non-deterministic andnfair, in that the selection

of alternates is not equiprobable, and should not Is; it’
clear that the alternag d failure should be gen as low

a probability of success as is possible, noting that when all
the alternaties fail its conditional probability must be 1.
The semantics of the construct betamilarly to Dijk-
stras [10] guarded commands, in the special case where
the same guard is used for all the statementsin imple-
mentation setting, the construct resembles the Ada
sel ect with guarded alternates; the selection of open
(i.e., have satisfied the guard) alternats is abitrary.

3. Parallel Execution

3.1. System Model

A process is an independently schedulable stream
of instructions. In implementations, it is often associated
with some unit of state, e.g., an address space, and a set of
operations praided by akernel to manage thastate.
Interprocess communication is accomplished solely
through passingnessages. Thus, amessage is the only
means by which:

* Py can mak P; awae of a change if,'s Sate.
* Py, can cause a changefy’s date.

Interprocess communication (IPC) is assumed to \leha
reliably (no lost or duplicated messages) and FIFO (no out
of order messages).

Systemsdtate is divided into two types,source and
sink. The dvision is made on the basis of idempotence;
operations onsink devices can be retried without the
effects being visible, while operations sources cannot
be retried. For definiteness, consider a page of backing
store and a teletype dee, respectiely. Sde efects
which afect sink state can be hidden; this is a common
technique in the implementation of such abstract opera-
tions astransactions; the idea is that the transaction has
the property ofatomicity, meaning that either none or all
of the transactions component actions ocamd that
intermediate states are not obsdite external to the trans-
action. Comple transactions may wolve reads, which
can occur unhindered, or writes, which must be done to a
temporary cop until the transactiortommits, or in other
words, males its changes permanerReads intended for
the recently written copare satisied by that cop so that
the transaction is internally consistent, i.e., it can read
what was written.

Snk state is manipulated asxéd-sizepages. All
sink state can be represented in thishfon; this is clear
from implementations of a singlevig store, as in MUL-
TICS [18]. Thus we lry the entire memory hierargh
under the page abstractioilg$ are named sets of pages,
and thus mechanisms which are used to transparently
accessiles over networks [22] can be utilized to hide the
network through the page management abstraction.

3.2. Process Management

Two primitives encapsulate the entire semantics of
the process management componefiie process man-
agement component is concerned with the mutually-obli
ious alternaties. To gpawn the alternaties, the parent
usesal t _spawn(n), which returns numbers from 1
to n in the alternates and O to the pardrius a language
preprocessor applied to a program with mutuatighesive
alternatves would generate (in pseudo-C):

switch(alt_spawn(n))
case 0:
alt_wait(TIMEQUT);
fail(); /* if returned */

case 1:
/* First alternate */

case n:
/* n-th alternate */
alt_wait(0);

}

The purpose o&l t _wai t () is manifold; the essence is
establishing a single path through the tree of possible
computations which is reflected in theeeution history of
the running processAl t _wait () takes a TIMEOUT
vaue as an gument; the point is that thisle should be
chosen such that if TIMEOUT time unitsveadapsed, it
is highly probable that none of the altermedi have suc-
ceeded. Whileehoosing such aalue is ery hard, most
computations hae a execution time which is clearly
unacceptable to the application; thialue can then be
used. Thepoint of passing such a timeoudlue will be
seen shortly

When a spaned alternate callal t _wai t () at
the termination of its computation, a rendezs between
the alt _wai t ()ing parent and the child is fe€ted.
The behaior is much lile that of the Wix exec() sys-
tem call, where the medata and xecutable code are read
in from a namedile. In the case ol t _wait (), the
parent process absorbs the state changes made by its child
by atomically replacing its page pointer with that of the
child. Thus,the flow of control through the child appears
to have een seamless, up to and including maintenance of
the process id.

Use of these primites is hown by concurrent
execution execution of the program genent in fgure 1
shawvn in figure 2:

Sequential
Program

Start
Block

— N e
method1 method2

- =

Synchro-
nization

methodn failure

Normal
Program

Figure2: Concurrent Egcution of Alternates

Assuming that all theGUARD conditions hge heen

satisfed, a process which completes its progragnssnt
attempts to synchronizdf any of the conditions required
by the GUARD were not satistd, the process aborts with-
out synchronizing.Note that theGUARD can be recuted
before spaning the alternatk, in the child process, at the
synchronization point, or at yncombination of these
places, for redundapc We aurrently expect the child pro-
cess to gecute it, thus speeding up spaing and synchro-
nization.

3.2.1. Synchronization

It is at the synchronization point that the data for
sibling elimination are \ailable; all processes which
assumed that the successful child hadefl must be
deleted, as thehavemade an assumption we kmdo be
false. Inorder to minimize the &ct on throughput, when
an alternatie is slected, its ‘siblings” are eliminated.
This is done by informing the scheduler that the process is
to be terminated.The deletion can be accomplished syn-
chronously (where the other alternates are deleted before
execution resumes in the parent) or asynchronously
(where the deletion occurs at some time after the
alt _wait () resumes in the parentutecactly when is
not specied); we suspect that asynchronous elimination
will give better execution-time performance, onceaq at
the pense of resource utilization measures such as
throughput.

Now, communications problems or systeaildires
may preent this information from reaching the schedul-
ing component of a remote system, yet we must still pre-
sene the ‘at most oné’ semantics of our designThe
backup in this case is that the synchronization action is
designed so that it can be accomplished at most once; that
is, if the remote system attempts synchronization for the
alternatve it is executing, it is informed that it is'tbo
late” for the synchronization, and it should terminate
itself. In applications where this might create a single
point of failure, the synchronization is set up as a majority
consensus [28] decision acrossesal nodes. The engi-
neering tradedtere is between performance and reliabil-
ity; the additional communication and protocol of multi-
ple-node synchronization is the price paid for increased
robustness of the synchronization.

3.3. Predicates

Ideally, we would like an dternative © carry on
with its computation as much as it can before either block-
ing or synchronizing.In order to eflect this, we add
“ predicates’to the messagesThe predicates are lists of
process identiérs, some of which the sending process
depends on completing successfully and others on which
the sending process depends omdb complete success-
fully. Thus, these areven smpler and easier to manage

than the predicates described by Beam,et al.[11] The
adwantage of this representationepo predication of data
objects is that we can update ttedue of these elements
as processes change status (e.g., running, dxdckvith

The message system, the virtual addressing mecha-
nism, and the process management mechanism aeg link
in the folloving way. When a receing process accepts a
message, its predicatesR() are checkd aginst those

the idea that processes change status much less frequently attached to the messag& §. If the assumptions that the

than thg make memory references to object$hese lists
are constructed in twways. First,the predicates of a
“child” process consist of those of thiparent’; this
allows for nesting and potentially compldependencies.
Second, when théparent’ spavns each of its alternag

“ children’, each of the children additionally assumes that
it will complete successfullyand that its siblings will not.
Thus, so-calledsibling rivalry’’ i s taken to its &treme in
this design! The failure alternatie sssumes that none of
the siblings will complete The state management stgate
is “copy-on-write” [3] with page map inheritance from
the parent, thus it is easily implemented within the cdnte
of a system which prades such features, e.g., Mach [30],
and _benefs from eisting hardvare support, e.g., for the
WE® 32101 MMU [2]. The softvare-implemented predi-

recever makes about thestate of the wrld”, as encapsu-
lated in the predicates, agree with those of the sender (e.g.,
SOR), the message is immediately acceptdtl.the
recever's predicates conflict §(JS and pCR), the mes-
sage is ignored, and if the ree®i must male further
assumptions to accept the messagélf and p[IR), two
copies of the receér are created.One of these copies is
created with the predicates set to thevimgs \alues in
conjunction withconpl ete(S), thus implying all
the sendes predicates; the other is set up with its predi-
cates as beforexeept thattonpl ete(S) is neggded,
thus implying rejection of the sendefgredicates without
creating a logical impossibilityAssuming the rggtion of

all of Ss predicates might imply that twmutually ecclu-
sive processes must complet&he storage and manipula-

cates are used in the process control and message trans-tion of these predicates are simpleegithe representation

mission actiities to maximize sharing.Updated and
newly-written pages are predicated by virtue of their resi-
dence in a peprocess descriptor table.

3.4. Interprocess Communication

3.4.1. Messages

A message from P, to P; has the folling three part
structure:

1) A sending predicate, encapsulating the assumptions
under which thesender, say P, sends the message.

2) Thedata comprising the message contents.

3) Somecontrol information, e.g., sender id, destina-
tion id, etc.

Eachprocess in amultiprocessing (e.g., timesharing, mul-
tiprocessaror distributed) system has unique identifier,
used to identify the process both within the system (e.g.,
for scheduling and resource allocation), and furtfer
interaction with other processes.

3.4.2. Multiple Worlds

An idea from scienceidtion, inspired by Deitt’'s
[9] multiple worlds notion, is appropriate her&he prob-
lem with interprocess communication stems from #we# f
that a gven dternatve may or may not be successfuh
the case where it is successful, ikecaition results are
awailable to the calling procesaVhere it is not success-
ful, its results and anside-efects it may hee generated
must not be obseable. Thesénclude side-décts due to
interprocess communication.

as two lists (i.e., ‘must completé’and “can’t complete’)

of process identiérs. Wherthe sending process succeeds
or fails, one of the ter recevers must be eliminated in
order to maintain a consistefgtate of the wrld”; at this
point the additional assumptions which receipt of the mes-
sage caused will becomERUE, and the/ can be elimi-
nated from the listsWhile a process has predicates which
are unsatiséd, it is restricted from causing obsaiple
side-efects, and thus cannot intade withsources.

This behaior is similar to that required dfansac-
tions. Transactions [13] are a structuring concept for -oper
ations; transactions are required to be atomic with respect
to ary obsener.

4. Performance Analysis

The possibility of a performance increase stems
from the fct that we can select thasfest alternate by
means of the synchronization protocdlhe cost we must
pay for obtaining xecution time proportional to the time
for the fstest alternate is use obdable hardvare.

Note that the action of continuingegution of the
successful alternat and the process of sibling elimina-
tion can tak pgaceasynchronously. The efects of \arious
overheads and system parameters are analyzed in xhe ne
section.

4.1. Overhead

In order to understand thevawhead implied by the
method, we should compare a sequentiatetion of the
construct, in the best case, where thgtdst alternate is
selected. Therare penalties we are paying for parallel
execution of all alternaties versus sequentiakecution of

-5-

the alternatie which will be selected in gncase. These and we can accurately predict for whighhis rela-
are tion holds. In this case, we can construct a synthetic
computation, Cy4q, Which selectsC; when this
holds. D anchor the relation with arxample, con-
sider the case of wvlist-sorting algorithmsQ and

| . Qis faster tharl when the number of elements
to be sorted is greater than 1Thus, using this
knowledge, we can construct a synthetic sorting
routine as follavs:

1. Memory Copying. In the distriluted case we must
actually coy state for a remote child so that it can
read or write locally In the shared memory multipro-
cessor case, the ogpg overhead (in gecution time)
is reduced as the interprocessor bandwidth is much
higher There is more cgpng to be performed during
synchronization, as the changed state is updated in the
parents dorage. Theparent is constrained to remain
blocked while the children arexecuting. sort(list, size) :=

2. Sibling elimination. Thisis asynchronous, and natu- if(size > 10)
rally parallel, lut the instructions to terminate the Q list, size)

alternates must still be issued, andythecrease with
the number of alternates.

3. Effect on throughput, or asted work. Asour bias has

been twards eecution time as a performance goal,

we were willing to tradeveay throughput. Usermay
want to knav what the traded$ are here, so thefe€t
on system throughput should be analyzed.

4.2. Analytic Description

Assume that we lva N alternatve methods of per
forming acomputation. A computation is a transforma-

tion from an input set (or Domain) to an output set (or

Range); these sets consist siite vectors, intended to
describe the relant state of the warld, i.e., the machine
state. IBr DomainD and Ranger, x[D is transformed
via the computation into somgIR, thus we could write
y = C(X). Theremay be seeral suchC which we classify
as interesting (transformations @fwhich add or remee
useless operations areiimfely numerous, bt not inter
esting. Algorithmic differences or signitant diferences
in implementation technique are interestingAssume
that theN alternatves postulated earlier arldl such inter
estingCs, and that thewill be applied to somex[D.
EachC consists of some series séps, whereX is trans-
formed intox , - - - until y is achied. Eachstep requires
some amount of clock time;, to complete; forC(X),
7(C, X) is the sum of these times:, the execution time,
gives us a way of comparing the performance ofoheom-
putational methods on the same input, say

There are man practical situations in which we

want to minimize the computation time required for the

transformation ofx to y. We will denote theN alterna-
tives s C4,...,Cy. Since our goal is minimizingxecu-

tion time, let us consider some possible relations between

theC; on elements ob.

1. 7(Ci,x) < 7(Cj, x) for every XxUD which interests
us. It's dear that we should ugg; and discardC;
for every i and j for which this holds.

2. 7(C;,X) < 7(Cj, x) for somex which interest us,

el se
I(list, size).

The synthetic routine partitions the input domain by
performance, and thus achés performance supe-
rior to eitherQ or I . The tough point here is the
partitioning; it's rarely as simple to delimit perfor
mance boundaries asi ze < 10”. If the input
set can be partitionedubonly at signiicant com-
putational cost, the desired property of the synthetic
routine, thatz(Cy.1, X) < 7(Cj, X),1, for all x of
interest, may be achiable with the follaving tech-
nigue.

If all interestingx are knaevn in adwance, we can
associate one of th@; with eachx in a precom-
puted table.Then,z(Cy+1, X) can be calculated by
adding the cost of a table lookup to the cost of
executing the table element on

7(Ci, X) < 7(Cj, X) for somex which interest us, ut
while interesting, thex cannot easily be related to
7(C;, X). Essentially this means that the table
lookup technique cannot be used, because we can-
not reasonably precompute thalues ofz(C;, X).
This might be due to the nature of the input set, e.g.,
infinite size. Or the time may be data dependent.
For example, whenihding the zeros of a polyno-
mial with comple coefficients, the performance of
an algorithm is closely tied to the nature of the
roots. Havever, it's dear that storing a lookup table
of of all “interesting’ polynomials is infeasible.
Another problem is that(C;, X) may vary due to
the eecution enironment (which may or may not
be described by; it probably should be, for com-
pleteness), e.g., processor type, multiprocessing
workload, or interactions with other computations.
In these cases, where performance onxXh® is
unpredictable, we might try other schemes:

A. Statistical data can be applied, eqyicksort
is “almost alvays” O(nlogn). Thus,we’ll
rarely go wrong to use it.

-6-

B. An algorithm can be selected at random from
amongst th&; when gven X.

C. TheC; can be applied t& concurrently; the
first C; which producesy is selected. The
otherC; are irrel&ant and can be terminated.
There is, hwvever, overhead in setup and syn-
chronization (selection) which cannot be
ignored.

SchemeA. relies on information which may not be
awailable. Schem8., when run repeatedly on some

input X, will perform at the arithmetic means of the
N

2 7(Ci, X)

computations’ performance, |e':1T It is

interesting to note, as well, thatiltires or ininite
loops will frustrate this methodSchemeC. offers
some opportunity for achieng the best perfer
mance on each inpst We will try to characterize
this opportunity Note that there are twpossibili-
ties for concurrent>ecution, real andvirtual. Real
concurreng means that thevaluation of C;(X) is
taking place simultaneously with that ©f(x); vir-
tual means that there is some sharing of hardw
for example through multiprocessing.

4.3. Parallel Speedup

Our analysis must lgén with semantics, as other
wise we are subject to criticism of th&apples and
oranges’'type. Suckcriticism stems from the obseion
that changing the problem in order to apply a program
transformation maks performance results incomparable;
we are comparing unléprograms.

To an dbsener, the concurrent»ecution of theC;
must look like SShemeB. (as discussed abe); that is,
that we hae followed a single thread of computation, cho-
sen arbitrarily from amongstC,,...,Cy. Snce the
C4,...,Cy may update shared state describedxbyve
solve the problem by copng state when needed and by
selecting someC; by virtue of its state changedhus,
since the obseer sees non-deterministic selection of one
of the alternaties, we must compare concurrereeution
to sequentially performing one of ti, chosen arbitrar
ily (we'll assume randomness)Since, as stated pie
ously, execution time is ourifure of merit, wdl analyze
with that intent, ignoring measures such as throughput.
Arbitrary selection can be done by a call to a random
number generatpwhich costs nothing for purposes of our
analysis. Theexecution of the selected alternagi msts
7(C;, X) for the X under study Thus, we can>gect the

N

Z 7(Ci, X)
mean cost to bé‘lN—, the arerage of theC;s times
when applied tx.

By executing theC; concurrentlywe will expect the
cost of eecution to be

7(Cpegts X) + 7(0Verhead)
where
7(Cpests X) £ -+ - £ 7(Corsts X)

and overhead is quite comple. Overhead consists of
operations performed to support concurrerecation
which would not be necessary in the nondeterministic
sequential casdt consists of the follwing components:

setup: Insteaaf simply callingC;, we nust nav
spend gcles creating xecution ewiron-
ments forCy,...,Cy; for example, setting

up process table entries and page map tables.

runtime: This consists of coging memory areas
which are shared between tig,...,Cy
when updates are attemptedhis perfor
mance is strongly influenced bgcality of
reference. Additionally, if C, is sharing
resources, e.g., CPU time, with sor@g

i # best, then for all suchC;, C;’s runtime
must be added to the runtimeethead of
Crest» 8 ¢ycles spent processing are not
spent processinGpeq -

selection: Thisis the cost imolved in selectingCey,
e.g., deletingC; such that i # best, ceaning
up system state, such as actually performing
the updates made b@,., eg., writing

checks or bottling beer
Thus, for a gienC4, ...,Cy andx,
z(overhead) =
r(setup(Cy - - -Cy, X)) +
r(runtime(Cpeg, X)) +

r(selection(Cpeg; C1, - - - ,Cnis X)),
and the parallebecution winsiff
N
Z 7(Ci, X)
7(Cpeg, X) + 7(overhead) < =2 N

For notational comenience, defie C,, such that
N

Z 7'-(Ci ’ X)

i=1
N

Thus, we can calculate the performance imgment PI)
as:

7(Crnean, X) =

P| = 7(Crneans X)

7(Cpeg, X) + 7(0verhead)
essentially a ratio of xecution times. For illustration,
consider a case whei¢ =3, on inputx. Thus, we hee

three method<C;, C,, and C;. Let r(overhead) be 5
Some possible relations are wiédied:

17(Cq, X):7(Cy, X):7(Cs, X):PI
(1) 10 | 20 30 | 1.33
(2) 1 19 | 106| 7.0
3 20| 20 20| 0.8
4 1 2 31| 033
(5) 115 | 120 | 125| 1.0
(6) 100 | 200 | 300| 1.9

What can we infer from thexamples? (3)indicates,
along with (5), that the size of the féifences matters(4)
shaws that the relate magnitudes of thexecution times
and the werhead matters(6) shavs that the décts of the
overhead (under our assumptions) diminish with increas-
ing relatve exeution time. (2) illustrates a good situa-
tion, where the diérence

7(Cuorsts X) = 7(Chests X)

is very lage. This magnitude of dference is well-
encapsulated by such a statistical measure of dispersion
(letting values ofr sene @ the random ariable) as the
variance.

4.4, Measured Over head

It is informative tb examine measuredalues of pos-
sible contrilutors toz(overhead). In another report [23]
we provide a detailed set of measurements and perfor
mance analysis ofcopy-on-write” fork operations under
UNIX. Our measurements were made orp tworksta-
tions, the A&T 3B2/310 and the Helett-Packard
HP9000/350. Br the 3B2, afork() (with no memory
updates to a 320K address spacegdakbout 31 millisec-
onds; under the same conditions the HP requires about 12
milliseconds. Themeasured service rate of page ydog
was 6 2K pages/second for the 3B2, and 1034 4K
pages/second for the HRhe fraction of the pages in the
address space which are written is the important indepen-
dent \ariable for a program with a knm address space
size, using‘topy-on-write”. Thesecosts should be repre-
sentatve d a shared memory coitfuration of equialent
processor technology

There is somghat more werhead associated with
the distriluted case.In Smith and loannidis [24] we dis-
cuss an implementation of a remdévek() procedure and
the process migration scheme we implemented using it.
An rfork() of a 70K process requires slightly less than a
second, and netwk delays gveus an obseed aerage
execution time of about 1.3 seconds; we used a special-
purpose remotexecution protocol which uses a netwk
file system to reduce cgipg. Themajor cost (since we
implemented rfork() without operating system

modification) was creating @heckpoint of the process in
its entirety More sophisticated migration schemes, using
“on-demand’ state management techniquesvéabeen
constructed [27].In ary case, most programsxigbit
locality of reference; in particular symbolic computations
which utilize lage amounts of system resources [23].

5. Applications

What properties must we V&g other than minimal
implementation werhead, for the concurrentxeeution
method we describe to be useful¥e've identified the
following as desirable properties:

1. Alarge portion of the shared state is read-only

2. Thereis some state shared between the altemsti
which each may update.

3. Thereare epected to be performance féifences
between the alternats, due to unknon data char
acteristics or use of heuristic methods.

Two application areas for our design are described in the
following sections.

5.1. Distributed Execution of Recovery Blocks

The Recwery Block [14] is a method for writing
software which is tolerant of mistak in its avn logic,
from which failures can ariseThe idea is quite simpldt
is assumed that the sofive in question has been written
to some spediation. Seeral alternatve vesions of the
software are written, according to the speeifion. A
boolean ‘acceptance test'which checks the results of the
software is deeloped along with the softare, using the
specifcation. Theacceptance test, which either succeeds
or fails, will be reined once somexgerience with the
software is deeloped.

The alternaties and the acceptance test asdhgered
into an ALGOL-like Hock construct, where the alterna-
tives ae typically ordered on the basis of obsshor esti-
mated characteristics such as reliability aneceation
speed.

When the acceptance test succeeds, the results
(including all state changes) of the altervatiwhich
passed the test are madailable. Whenthe acceptance
test fils, the state of the program islled back’ to the
state the program had before the blocksventered, and
the net alternatve is tried. If the last alternate in the
sequence results in ailed acceptance test, the block as a
whole fils.

5.1.1. Sequential M odél

The recwoery block is somehat diferent in beha
ior than the‘Alternatve Block” we proposed as a sequen-
tial model in Section 2.First, rather than héng one

-8-

guard per bodythe Recwery Block possesses one guard
to which all the alternates ae passedSecond, the guard

is appliedafter the body is gecuted, rather than before.
However, neither of these are problems for our design, as
(1) the computation can be wied as part of the guard,
with the body consisting solely of updates xteenal \ari-
ables, or (2) the blocks can be wed as self-checking
entities where the guard isnays enabled for scheduling
of the computation, which magif due to self-checks.

The changes to the prograngate space are equi
alent to some»ecution which selectedxactly one of the
alternatves (or failure) at each Rewery Block. Thus,
this is eactly the nondeterministic selection which we
chose for our model, and it should be all thabst facto
examiner of the program state can deduce.

5.1.2. Concurrent Execution

Since Recwery Block alternates may attempt to
update shared state, e.g., databdes br eternal \ari-
ables, our mechanism for pemting obseration of a sib-
ling’s actions is necessargnd the ‘copy-on-write” mem-
ory management reduces the amount of state which must
be maintained One special problem which arises with the
parallel execution of Recwery Block alternates [15, 29] is
the fact that the method is designed to cope vaitluffes,
so that we must do moreovk in order not to add me
failure modes. Two issues in particular are important.
First, we may cop al of the state rather than cgipg as
necessaryin order that the state not become inaccessible
and so cause aifure. Secondthe synchronization must
not introduce a single point oéifure. Thisis remedied
by the use of majority consensus, as discussedeatm
achieve a fawult-tolerant 0-1 semaphore for use in synchro-
nization.

5.2. OR-parallelism in Prolog

The Prolog [5] programming language is based on
predicate logic, using'Horn clauses’[20] to describe
data and interrelationshipsMany normal operations are
subsumed by the ughtion algorithm by whichProlog
attempts to satisfy predicatesgriables are bound during
the unifcation process toalues which caused the predi-
cates to become trueThus equal (X, el rod) will
cause the ariable X to tale on the \alueel r od, as this
binding is the only one which alls the predicate
equal () to be satiséd.

Progress is achied with a goal-oriented predicate-
satishction algorithm; a database of predicaadugs and
rules is used to construct a set of depengeatations;
top-level goals are decomposed into sub-goals using the
relations between the rules, objects, and predicdtes.
example, testing equality of lists implies that their ele-
ments are equal; testing element-wise equality may then

give a Ist of sub-goals.This gives rise to a possibility for
parallel execution, havever the granularity of such paral-
lelism seems inappropriatdlore appropriate is rulevel
parallelism, which is centered on dwtypes, AND-
parallelism and OR-parallelismThe idea with AND-
parallelism is that if we h@ a #uation where goals A
and B must be satisfl, we can pursue the satisfion of

A and B in parallel. The situation is similar for OR-
parallelism; this is more interesting to us, since it maps
closely to our problem of attempting alternesi in paral-

lel. The alternatves here are specialized to predicates.
Crammond [8] preides a good werview of the problems,
and pra@ides some analysis of mechanisms designed for
efficient reference of shared data, in particular the update
of shared data.

Some of the solutions which V& bteen proposed
are: (1) blocking the process which updates shared state;
(2) not allaving guards to update shared state; (3) sharing
pointers, and hence updates, to a shargttoement; (4)
copying and meging. Whatour method does is cgpand
since we choose only one altermatino mermging is neces-
sary Since there are nox#a (beond whateer is
required for sequentialxecution) pointer chains to tra-
verse on wariable references, memory accessas.f Use
of the method requires changing tRelog interpreter to
detect and xploit OR-parallelism. How aggressiely
awailable parallelism isxploited is a function of thewver-
head associated with maintaining a procebwever,
once this is kman, the proper granularity can be used as a
factor in the decomposition process.

6. Related Work

Exploring alternaties in parallel is &r from a ne
idea; hardwre engineers load to it as a ay of main-
taining pipeline utilization in some high-speed computers,
most notably the IBM 360 Model 91 [1]Their approach
was to prefetch components of both possible branch paths
until either the results of the conditionateeution are
awailable (in which case the correct stream can be chosen
and the other discarded) or anvwessible side dect (such
as instruction xecution) would occur Our management
of side efects lets us go further

Version control systems such as SCCS [21] use the
idea of deltas to store multipleensions of data.More
related to oumpredicates is the idea used in the PEDIT
[16] parametric line editorAssociated with each line of
text is a set ofparameters. These parameters are state
variables, e.g. SYSTEM=UNI X, VERSI ON=SysV, et
cetera. Thdine is selected for display if the mask set in
the viewv of the ile matches the settings of the stateiv
ables; thus, the weer of a source program in a particular
ervironment might see the source without the obscuring
effect of \various conditional compilation direeéis. Each

setting of the stateaviables gres a dstinctversion, but in
practice most of the xéis shared between thergions.

Our method uses predicates to detect confliais, b
delays their resolution as long as is possildlaus, it is
optimigtic in the sense that each timeline assumes that it
will succeed.At each point where this success may come
into question, it generates a predicafithese predicated
processes are similar to thessibilities anddependencies
discussed by Reed [19] in his thesis;wheer, his
NAMOS system w&s somehat further from realization
than the methods described here.

The notion of multiple alterna#és is athogonal to
the transaction concept; if we wen dternative “block”™
as efecting a transaction on the system state, the $pecif
cation is a description of loto accomplish the transac-
tion reliably It could also be vieed as a set ofcompet-
ing” transactions, at most one of which will ¢séff ect.

One signifcant feature of our use qgfredicates
there is littlewaiting as possible in the system; each pro-
cess which could xecute under an set of assumptions
malkes that set of assumptions, until some conflict with the
correctness policies resultén other settings, such meth-
ods are calledptimistic [17, 26] because tlgeassume that
delay-causing ordilure-causing conditions happen infre-
qguently Thus, normal operation is made cheap, at the
expense of sonvehat more gpensve handling when the
assumption is wrong.n our setting, the operarupti-
mistic assumption is that thexecuting alternatie is the
one which will complete successfullyThus, the predi-
cates indicate that a process assumes that it will complete
successfully; rather thawaiting, it continues under that
assumption. In fact, Strom and &mini's [25] dependency
vectors behae nuch like aur predicates.

Distribution of computation across \&@eal nodes
offers attractte possibilities for both reliability and per
formance. Coopef7] discusses the use of replicated dis-
tributed programs in order to lkdvantage of this poten-
tial. Coopers ARCUS [6] system transparently replicates
computations across \s&gal nodes in order to increase
reliability. Goldbegg [12] has also discussed process repli-
cation, with a focus more on performance thauitftoler
ance. Replicatioiis som&vhat diferent than the problem
we hare examined, mainly because we cannot count on all
of the concurrent alternatis exhibiting the same beha
ior, eg., reading and writingFor example, when manag-
ing 1/O for replicated computations, only one read opera-
tion can be performed, and its resultgféred for subse-
guent readers of the same dafehus, idempotenc of
somesource state can be forced throughftering.

Transparent replication can easily be combined with
the use of parallel xecution of seeral alternaties for
increases in performance, reliability both.

7. Conclusions

The best sort of situation for our approach is one
where:

. Alternatives require a signi€ant amount of compu-
tation time, as encapsulatedzifC eqn, X)-

. Each alternatie changes a small amount of the state
of the calling process, thus reducing the penalty of
z(overhead).

. There is enough ddrence between thexecution
times of the alternates that choosing theaktest
and killing the others is arth the @erhead of
spavning the copies and deleting the veér sib-
lings. Thismay also be true in real-time systems,
where the sibling elimination can be carried out
asynchronously with respect to result dery.

It appears that parallel implementation of logic program-
ming languages pwides such an eironment, because
the computation is data-#len, and thus the xecution

time and control flev can \ary greatly with the inputThe

way in which unifcation operates (as @ophisticated pat-
tern matchet] leads to an werwhelming preponderance

of read references made to page-managed memory; while
a hgh percentage of references are writes, these are
mainly to the stack, and thus locality should be quite high.

Distributed eecution of recwery block alternates
uses the'fastestdifst” behavior in an attempt toifid a
rapid filure-free path through the computation.

8. Notes and Acknowledgments

Robert Strom has beerxteemely helpful in our
ganing an understanding of the problems, approaches,
and trade-d§; he has inspired mgrof the ideas we'e
presented hereDiscussions with Calton Pu,ethiam
Yemini, Steve Feiner and Deid Farber hae wntributed to
what we present in this repor&al Stolfo pointed ou®ro-
log OR-parallelism as an application, and Andywlrp
pointed out a flev in an earlier presentation of the predi-
cate scheme for IPC.

UNix and WE 32101 are gestered trademarks, and 3B2 is
a rademark of A&T; HP-UX, HP9000, and HP are
trademarks of the Hdett-Packard Corporation. This
work was supported in part by equipment grants from the
Hewlett-Packard Corporation andT&T, and NSF grant
CDR-84-21402.

9. References

[1] D. W. Anderson, FJ. Sparacio, and R. M.dmasulo,
“The IBM System/360 Model 91: Machine Philospph
and Instruction-Handling,|BM Journal of Research and
Development, pp. 8-24 (January 1967).

-10 -

[2] AT&T, WE 32101 Memory Management Unit Infor-
mation Manual, Call 1-800-432-6600; Select Code
307-731, Neember 1986.

[3] D. G. Bobrav, J D. Burchfiel, D. L. Murpty, and R.
S. Tomlinson, “TENEX, a Raged Tme Sharing System
for the PDP-10, Communications of the ACM 15(3),
pp. 135-143 (March 1972).

[4] F. W. Burton, ‘Speculatve Computation, Brallelism,
and Functional Programmirig,|EEE Transactions on
Computers C-34(12), pp. 1190-1193 (December 1985).

[5] W. F Clocksin and C. S. MellishProgramming in
Prolog (2nd Edition), SpringerVerlag (1984).

[6] Eric Charles Coopef‘Circus: A replicated procedure
call facility,” in Proceedings of the 4th Symposium on
Reliability in Distributed Software and Database Systems
(October 1984), pp. 11-24.

[7] Eric Charles Cooper“Replicated Distribnted Pro-
grams; Ph.D. Thesis,University of California, Berkley
(1985).

[8] J. Crammond, ‘A Comparatve Sudy of Unification

Algorithms for OR-Rrallel Execution of Logic Lan-
guages, IEEE Transactions on Computers C-34(10),
pp. 911-917 (October 1985).

[9] Bryce DeWitt and R. Neill GrahamThe Many Worlds
Interpretation of Quantum Mechanics, Princeton Unver-
sity Press, 1973.

[10] E. W. Dijkstra, A Discipline of Programming, Pren-
tice-Hall, Englevood Cliffs, N.J. (1976).

[11] K. P. Eswaran, J. N. GrayR. A. Lorie, and |I. L.
Traiger “The notions of consistegand predicate locks
in a database systeémCommunications of the ACM 19,
pp. 624-633 (Neember 1976).

[12] Arthur P. Goldbeg and David R. Jeferson, “Trans-
parent Process Cloning: Adl for Load Management of
Distributed Programs,in Proceedings, International
Conference on Parallel Processing (1987), pp. 728-734.

[13] J. N. Gray “Notes on Data Base Operating Sys-

tems] i n Operating Systems: An Advanced Course, ed.
R. Bayer R. M. Graham, and G. Sgmueller (1978),
pp. 393-481.Springer

[14] J.J.Horning, H.C. LauerPM. Melliar-Smith, and B.

Randell, ‘A program structure for error detection and

recovery.,” in Proceedings, Conference on Operating
Systems. Theoretical and Practical Aspects (April 1974),
pp. 177-193.

[15] K.H. Kim, “Distributed BExcution of Receery
Blocks: An Approach to Uniform réatment of Hard-
ware and Softwre Faults] i n IEEE Fourth International
Conference on Distributed Computing Systems (1984),
pp. 526-532.

[16] V. Kruskal, ‘Managing Multi-version Programs with
an Editor” IBM Journal of Research and Development
28(1), pp. 74-81 (January984).

[17] H. T. Kung and John .TRobinson, “On Optimistic

Methods for ConcurrecControl; ACM Transactions
on Database Systems 6(2), pp. 213-226 (June, 1981).

[18] Elliott 1. Organick, The Multics System, Mas-
sachusetts Institute oEThnology Press (1972).

[19] David P. Reed, ‘Naming and Synchronization in a
Decentralized Computer Systént,echnical Report 205
(Ph.D. Thesis) (Septemhd®78). MITLCS

[20] Elaine Rich, Artificial Intelligence, McGraw-Hill
(1983).

[21] M. J. Rochkind, “The Source Code Control Sys-
tem; |EEE Transactions on Software Engineering SE-1,
pp. 364-370 (1975).

[22] R. Sandbey, D. Goldbeg, S. Kleiman, D. \&lsh,
and R. lyon, “The Design and Implementation of the
Sun Netvork File Systemi, in USENIX Proceedings
(June 1985), pp. 119-130.

[23] JonathanM. Smith and Gerald Q. Maguirér,

“ Effects of cog-on-write memory management on the
response time of UNIXork operations, Computing Sys-
tems. The Journal of the USENIX Association 1(3),
pp. 255-278, Uniersity of California Press (1988).

[24] JonatharM. Smith and John loannidis|rhplement-
ing remotefork() with checkpoint/restaft,|EEE Techni-
cal Committee on Operating Systems Newdletter,
pp. 12-16 (February989). Irvited Raper

[25] R.E. Strom and S. &mini, “Optimistic Recwery in
Distributed System’%, ACM Transactions on Computer
Systems 3(3), pp. 204-226 (August 1985).

[26] R. E. Strom and S. &mini, ‘Synthesizing Dis-
tributed and Brallel Programs through Optimisticahs-
formations; i n Current Advances in Distributed Com-
puting and Communications (1987). ComputeScience
Press

[27] Marvin M. Theimer Keith A. Lantz, and Ddd R.
Cheriton, ‘Preemptable Remote Egution Rcilities for
the \:Systent, i n Proceedings, 10th ACM Symposium
on Operating Systems Principles (1985), pp. 2-12.

[28] R.H. Thomas,‘A M ajority Consensus Approach to
Concurreng Control for Multiple Coly Databases,
ACM Transactions on Database Systems 4(2),
pp. 180-209 (June 1979).

[29] H.O. Welch, “Distributed Recwery Block Perfor
mance in a Realime Control Loogd, i n Proceedings,
IEEE Real-Time Systems Symposium (1983),
pp. 268-276.

[30] M. Young, A. Tevanian, R. Rashid, D. Golub, J.
Eppinger J. Chew, W. Bolosky, D. Black, and R. Baron,
“The Duality of Memory and Communication in the
Implementation of a Multiprocessor Operating System,
Proceedings of the Eleventh ACM Symposium on Operat-
ing Systems Principles, Austin, TX, pp.63-76, INnACM
Operating Systems Review 215 (8-11 Narember 1987).

