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ABSTRACT
We examine the task of concurrently computing alternative solutions to a problem.We restrict our interest to the case where
only one of the solutions is needed; in this case we need some rule for selecting between the solutions.We use ‘‘f astest
fi rst’’, where the first successful alternative is selected. For problems where the required execution time is unpredictable,
such as database queries, this method can show substantial execution time performance increases.These increases are depen-
dent on the mean execution time of the alternatives, the fastest execution time, and the overhead involved in concurrent com-
putation.

Among the problems with exploring multiple alternatives in parallel are side-effects and combinatorial explosion in the
amount of state which must be preserved. Theseare solved by process management and an application of ‘‘copy-on-write’’
virtual memory management.The side effects resulting from interprocess communication are handled by a specialized mes-
sage layer which interacts with process management.

In order to test the utility of the design, we show how it can be applied to two application areas, distributed execution of
recovery blocks and OR-parallelism in Prolog.

1. Introduction

A question which has intrigued many researchers is how
an increasing supply of computational resources, in the
form of multiple computers, can be utilized to solve big-
ger problems, to solve problems faster, and to solve prob-
lems more reliably. We examine a specific computational
problem here, that of pursuing alternatives. Ourdesigns
show what can be done in order to execute instances of
this problem type, speculatively, in parallel.

We are interested in what performance gains can be
achieved. We measureperformance using the metric of
execution time, which is the amount of wall clock time
necessary to carry out a computation.Thus, we may
increase performance by this measure, while decreasing
performance by measures such asthroughput, which is a
measure of the amount of useful work accomplished per
unit time. Given this bias, we may risk wasted work in
speculative computation [4], which throughput-oriented
performance measures would discourage.

† In 9th International Conference on Distributed Computing Sys-
tems, Newport Beach, CA, June 1989.Please cite that version.

We begin by describing the computations to be ana-
lyzed. Theseare essentially a set of alternative methods
for causing a state change to take place, with the addi-
tional constraint that at most one of the alternative state
changes occurs.

Once the model is defined, and the semantics thus
fixed, we can apply semantics-preserving transformations
in order to increase performance or achieve other goals.A
successful transformation, then, has two requirements.
First, it must correctly preserve the semantics.Second, it
must achieve the goal set for it, e.g., a performance
increase.

We present (1) a model for selection of alternatives
in a sequential setting, (2) a transformation which allows
alternatives to execute concurrently, (3) a description of
the semantics-preservation mechanism, and (4) parameter-
ization of where the performance improvements can be
expected. Additionally, we show example application
areas for our method.
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2. Sequential Model

Consider the situation where several alternative
methods of computing a result are available. Someof the
alternatives may compute an acceptable result, while oth-
ers may not.The essential problem is the choice between
successful alternatives, or an indication of failure if there
are no such alternatives. An ALGOL-lik e language con-
struct embodying this situation:

ALTBEGIN
ENSURE guard1 WITH method1 OR
ENSURE guard2 WITH method2 OR

.

.

.
ENSURE guardn WITH methodn OR
FAIL /* no method succeeded */

END

Figure 1: Alternative Block

What we want is for at most one of the methods to be
applied to our problem, or for whatever conditions consti-
tute failure to be indicated.Each method, 1.. n, has asso-
ciated with it aguard condition, which it must satisfy in
order to be considered successful.A method is called an
alternative. When the alternatives are composed into a
block, as illustrated in figure 1, the meaning is that one of
the alternatives (including failure) are selected non-
deterministically. The non-determinism in selection is
necessary for higher-performance computing.The selec-
tion is non-deterministic andunfair, in that the selection
of alternates is not equiprobable, and should not be; it’s
clear that the alternative of failure should be given as low
a probability of success as is possible, noting that when all
the alternatives fail its conditional probability must be 1.
The semantics of the construct behave similarly to Dijk-
stra’s [10] guarded commands, in the special case where
the same guard is used for all the statements.In an imple-
mentation setting, the construct resembles the Ada
select with guarded alternatives; the selection of open
(i.e., have satisfied the guard) alternatives is arbitrary.

3. Parallel Execution

3.1. System Model

A process is an independently schedulable stream
of instructions. In implementations, it is often associated
with some unit of state, e.g., an address space, and a set of
operations provided by a kernel to manage thatstate.
Interprocess communication is accomplished solely
through passingmessages. Thus, amessage is the only
means by which:

• Pm can make P j aw are of a change inPm ’s state.

• Pm can cause a change inP j ’s state.

Interprocess communication (IPC) is assumed to behave
reliably (no lost or duplicated messages) and FIFO (no out
of order messages).

Systemstate is divided into two types,source and
sink. The division is made on the basis of idempotence;
operations onsink devices can be retried without the
effects being visible, while operations onsources cannot
be retried. For definiteness, consider a page of backing
store and a teletype device, respectively. Side effects
which affect sink state can be hidden; this is a common
technique in the implementation of such abstract opera-
tions astransactions; the idea is that the transaction has
the property ofatomicity, meaning that either none or all
of the transactions component actions occur, and that
intermediate states are not observable external to the trans-
action. Complex transactions may involve reads, which
can occur unhindered, or writes, which must be done to a
temporary copy until the transactioncommits, or in other
words, makes its changes permanent.Reads intended for
the recently written copy are satisfied by that copy so that
the transaction is internally consistent, i.e., it can read
what was written.

Sink state is manipulated as fixed-sizepages. All
sink state can be represented in this fashion; this is clear
from implementations of a single-level store, as in MUL-
TICS [18]. Thus we bury the entire memory hierarchy
under the page abstraction; files are named sets of pages,
and thus mechanisms which are used to transparently
access files over networks [22] can be utilized to hide the
network through the page management abstraction.

3.2. Process Management

Tw o primitives encapsulate the entire semantics of
the process management component.The process man-
agement component is concerned with the mutually obliv-
ious alternatives. To spawn the alternatives, the parent
usesalt_spawn( n ), which returns numbers from 1
to n in the alternates and 0 to the parent.Thus a language
preprocessor applied to a program with mutually exclusive
alternatives would generate (in pseudo-C):
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switch( alt_spawn( n ) )
{

case 0:
alt_wait( TIMEOUT );
fail(); /* if returned */

case 1:
/* First alternate */

.

.

.

.
case n:

/* n-th alternate */
alt_wait( 0 );

}

The purpose ofalt_wait() is manifold; the essence is
establishing a single path through the tree of possible
computations which is reflected in the execution history of
the running process.Alt_wait() takes a TIMEOUT
value as an argument; the point is that this value should be
chosen such that if TIMEOUT time units have elapsed, it
is highly probable that none of the alternatives hav esuc-
ceeded. Whilechoosing such a value is very hard, most
computations have an execution time which is clearly
unacceptable to the application; this value can then be
used. Thepoint of passing such a timeout value will be
seen shortly.

When a spawned alternate callsalt_wait() at
the termination of its computation, a rendezvous between
the alt_wait()ing parent and the child is effected.
The behavior is much like that of the UNIX exec() sys-
tem call, where the new data and executable code are read
in from a named file. In the case ofalt_wait(), the
parent process absorbs the state changes made by its child
by atomically replacing its page pointer with that of the
child. Thus,the flow of control through the child appears
to have been seamless, up to and including maintenance of
the process id.

Use of these primitives is shown by concurrent
execution execution of the program segment in figure 1
shown in figure 2:

Sequential
Program

Start
Block

method1 method2 . . . methodn failure

Synchro-
nization

Normal
Program

Figure 2: Concurrent Execution of Alternates

Assuming that all theGUARD conditions have been

satisfied, a process which completes its program segment
attempts to synchronize.If any of the conditions required
by theGUARD were not satisfied, the process aborts with-
out synchronizing.Note that theGUARD can be executed
before spawning the alternative, in the child process, at the
synchronization point, or at any combination of these
places, for redundancy. We currently expect the child pro-
cess to execute it, thus speeding up spawning and synchro-
nization.

3.2.1. Synchronization

It is at the synchronization point that the data for
sibling elimination are available; all processes which
assumed that the successful child had failed must be
deleted, as they hav emade an assumption we know to be
false. Inorder to minimize the effect on throughput, when
an alternative is selected, its ‘‘siblings’’ are eliminated.
This is done by informing the scheduler that the process is
to be terminated.The deletion can be accomplished syn-
chronously (where the other alternates are deleted before
execution resumes in the parent) or asynchronously
(where the deletion occurs at some time after the
alt_wait() resumes in the parent, but exactly when is
not specified); we suspect that asynchronous elimination
will give better execution-time performance, once again at
the expense of resource utilization measures such as
throughput.

Now, communications problems or system failures
may prevent this information from reaching the schedul-
ing component of a remote system, yet we must still pre-
serve the ‘‘at most one’’ semantics of our design.The
backup in this case is that the synchronization action is
designed so that it can be accomplished at most once; that
is, if the remote system attempts synchronization for the
alternative it is executing, it is informed that it is ‘‘too
late’’ f or the synchronization, and it should terminate
itself. In applications where this might create a single
point of failure, the synchronization is set up as a majority
consensus [28] decision across several nodes.The engi-
neering tradeoff here is between performance and reliabil-
ity; the additional communication and protocol of multi-
ple-node synchronization is the price paid for increased
robustness of the synchronization.

3.3. Predicates

Ideally, we would like an alternative to carry on
with its computation as much as it can before either block-
ing or synchronizing. In order to effect this, we add
‘‘ predicates’’ to the messages.The predicates are lists of
process identifiers, some of which the sending process
depends on completing successfully and others on which
the sending process depends on tonot complete success-
fully. Thus, these are even simpler and easier to manage
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than the predicates described by Eswaran,et al.[11] The
advantage of this representation over predication of data
objects is that we can update the value of these elements
as processes change status (e.g., running, blocked), with
the idea that processes change status much less frequently
than they make memory references to objects.These lists
are constructed in two ways. First,the predicates of a
‘‘ child’’ process consist of those of the ‘‘parent’’; this
allows for nesting and potentially complex dependencies.
Second, when the ‘‘parent’’ spawns each of its alternative
‘‘ children’’, each of the children additionally assumes that
it will complete successfully, and that its siblings will not.
Thus, so-called ‘‘sibling rivalry’ ’ i s taken to its extreme in
this design! The failure alternative assumes that none of
the siblings will complete.The state management strategy
is ‘‘copy-on-write’’ [ 3] with page map inheritance from
the parent, thus it is easily implemented within the context
of a system which provides such features, e.g., Mach [30],
and benefits from existing hardware support, e.g., for the
WE® 32101 MMU [2]. The software-implemented predi-
cates are used in the process control and message trans-
mission activities to maximize sharing.Updated and
newly-written pages are predicated by virtue of their resi-
dence in a per-process descriptor table.

3.4. Interprocess Communication

3.4.1. Messages

A message from Pm to P j has the following three part
structure:

1) A sending predicate, encapsulating the assumptions
under which thesender, say Pm sends the message.

2) Thedata comprising the message contents.

3) Somecontrol information, e.g., sender id, destina-
tion id, etc.

Eachprocess in amultiprocessing (e.g., timesharing, mul-
tiprocessor, or distributed) system has aunique identifier,
used to identify the process both within the system (e.g.,
for scheduling and resource allocation), and further, for
interaction with other processes.

3.4.2. Multiple Worlds

An idea from science fiction, inspired by Dewitt’s
[9] multiple worlds notion, is appropriate here.The prob-
lem with interprocess communication stems from the fact
that a given alternative may or may not be successful.In
the case where it is successful, its execution results are
available to the calling process.Where it is not success-
ful, its results and any side-effects it may have generated
must not be observable. Theseinclude side-effects due to
interprocess communication.

The message system, the virtual addressing mecha-
nism, and the process management mechanism are linked
in the following way. When a receiving process accepts a
message, its predicates (R ) are checked against those
attached to the message (S ). If the assumptions that the
receiver makes about the ‘‘state of the world’’, as encapsu-
lated in the predicates, agree with those of the sender (e.g.,
S⊆R ), the message is immediately accepted.If the
receiver’s predicates conflict (p∈S and ¬p∈R), the mes-
sage is ignored, and if the receiver must make further
assumptions to accept the message (p∈S and p∈/ R), two
copies of the receiver are created.One of these copies is
created with the predicates set to the previous values in
conjunction withcomplete( S ), thus implying all
the sender’s predicates; the other is set up with its predi-
cates as before, except thatcomplete( S ) is negated,
thus implying rejection of the sender’s predicates without
creating a logical impossibility. Assuming the negation of
all of S’s predicates might imply that two mutually exclu-
sive processes must complete.The storage and manipula-
tion of these predicates are simple given the representation
as two lists (i.e., ‘‘must complete’’ and ‘‘can’t complete’’)
of process identifiers. Whenthe sending process succeeds
or fails, one of the two receivers must be eliminated in
order to maintain a consistent ‘‘state of the world’’; at this
point the additional assumptions which receipt of the mes-
sage caused will becomeTRUE, and they can be elimi-
nated from the lists.While a process has predicates which
are unsatisfied, it is restricted from causing observable
side-effects, and thus cannot interface withsources.

This behavior is similar to that required oftransac-
tions. Transactions [13] are a structuring concept for oper-
ations; transactions are required to be atomic with respect
to any observer.

4. Performance Analysis

The possibility of a performance increase stems
from the fact that we can select the fastest alternative by
means of the synchronization protocol.The cost we must
pay for obtaining execution time proportional to the time
for the fastest alternate is use of available hardware.

Note that the action of continuing execution of the
successful alternative and the process of sibling elimina-
tion can take placeasynchronously. The effects of various
overheads and system parameters are analyzed in the next
section.

4.1. Overhead

In order to understand the overhead implied by the
method, we should compare a sequential execution of the
construct, in the best case, where the fastest alternative is
selected. Thereare penalties we are paying for parallel
execution of all alternatives versus sequential execution of
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the alternative which will be selected in any case. These
are

1. Memory Copying. In the distributed case we must
actually copy state for a remote child so that it can
read or write locally. In the shared memory multipro-
cessor case, the copying overhead (in execution time)
is reduced as the interprocessor bandwidth is much
higher. There is more copying to be performed during
synchronization, as the changed state is updated in the
parent’s storage. Theparent is constrained to remain
blocked while the children are executing.

2. Sibling elimination. Thisis asynchronous, and natu-
rally parallel, but the instructions to terminate the
alternates must still be issued, and they increase with
the number of alternates.

3. Effect on throughput, or wasted work. Asour bias has
been towards execution time as a performance goal,
we were willing to trade away throughput. Usersmay
want to know what the tradeoffs are here, so the effect
on system throughput should be analyzed.

4.2. Analytic Description

Assume that we have N alternative methods of per-
forming a computation. A computation is a transforma-
tion from an input set (or Domain) to an output set (or
Range); these sets consist ofstate vectors, intended to
describe the relevant state of the world, i.e., the machine
state. For DomainD and RangeR, →x ∈D is transformed
via the computation into some→y ∈R, thus we could write
→y = C( →x). Theremay be several suchC which we classify
as interesting (transformations ofC which add or remove
useless operations are infinitely numerous, but not inter-
esting. Algorithmic differences or significant differences
in implementation technique are interesting.).Assume
that theN alternatives postulated earlier areN such inter-
esting Cs, and that they will be applied to some→x ∈D.
EachC consists of some series ofsteps, where →x is trans-
formed into →x ′, . . . until →y is achieved. Eachstep requires
some amount of clock time,� , to complete; forC( →x),

� (C, →x) is the sum of these times.� , the execution time,
gives us a way of comparing the performance of two com-
putational methods on the same input, say→x.

There are many practical situations in which we
want to minimize the computation time required for the
transformation of→x to →y. We will denote theN alterna-
tives as C1, . . . ,CN . Since our goal is minimizing execu-
tion time, let us consider some possible relations between
theCi on elements ofD.

1. � (Ci,
→x) ≤ � (C j ,

→x) for every →x ∈D which interests
us. It’s clear that we should useCi and discardC j

for every i and j for which this holds.

2. � (Ci,
→x) ≤ � (C j ,

→x) for some →x which interest us,

and we can accurately predict for which→x this rela-
tion holds. In this case, we can construct a synthetic
computation, CN+1, which selectsCi when this
holds. To anchor the relation with an example, con-
sider the case of two list-sorting algorithms,Q and
I. Q is faster thanI when the number of elements
to be sorted is greater than 10.Thus, using this
knowledge, we can construct a synthetic sorting
routine as follows:

sort( list, size ) :=
if( size > 10 )

Q( list, size )
else

I( list, size ).

The synthetic routine partitions the input domain by
performance, and thus achieves performance supe-
rior to eitherQ or I. The tough point here is the
partitioning; it’s rarely as simple to delimit perfor-
mance boundaries as ‘‘size < 10’’ . If the input
set can be partitioned, but only at significant com-
putational cost, the desired property of the synthetic
routine, that � (CN+1, →x) ≤ � (Ci,

→x),−i, for all →x of
interest, may be achievable with the following tech-
nique.
If all interesting →x are known in advance, we can
associate one of theCi with each →x in a precom-
puted table.Then, � (CN+1, →x) can be calculated by
adding the cost of a table lookup to the cost of
executing the table element on→x.

3. � (Ci,
→x) ≤ � (C j ,

→x) for some→x which interest us, but
while interesting, the→x cannot easily be related to
� (Ci,

→x). Essentially, this means that the table
lookup technique cannot be used, because we can-
not reasonably precompute the values of � (Ci,

→x).
This might be due to the nature of the input set, e.g.,
infinite size. Or the time may be data dependent.
For example, when finding the zeros of a polyno-
mial with complex coefficients, the performance of
an algorithm is closely tied to the nature of the
roots. However, it’s clear that storing a lookup table
of of all ‘‘interesting’’ polynomials is infeasible.
Another problem is that� (Ci,

→x) may vary due to
the execution environment (which may or may not
be described by→x; it probably should be, for com-
pleteness), e.g., processor type, multiprocessing
workload, or interactions with other computations.
In these cases, where performance on the→x ∈D is
unpredictable, we might try other schemes:

A. Statistical data can be applied, e.g.,quicksort
is ‘‘almost always’’ O(n log n). Thus, we’ll
rarely go wrong to use it.
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B. An algorithm can be selected at random from
amongst theCi when given →x.

C. The Ci can be applied to→x concurrently; the
fi rst Ci which produces→y is selected.The
otherCi are irrelevant and can be terminated.
There is, however, overhead in setup and syn-
chronization (selection) which cannot be
ignored.

SchemeA. relies on information which may not be
available. SchemeB., when run repeatedly on some
input →x, will perform at the arithmetic means of the

computations’ performance, i.e.,

N

i=1
Σ � (Ci,

→x)

N
. It is

interesting to note, as well, that failures or infinite
loops will frustrate this method.SchemeC. offers
some opportunity for achieving the best perfor-
mance on each input→x. We will try to characterize
this opportunity. Note that there are two possibili-
ties for concurrent execution,real andvirtual. Real
concurrency means that the evaluation of Ci(

→x) is
taking place simultaneously with that ofC j(

→x); vir-
tual means that there is some sharing of hardware,
for example through multiprocessing.

4.3. Parallel Speedup

Our analysis must begin with semantics, as other-
wise we are subject to criticism of the ‘‘apples and
oranges’’ type. Suchcriticism stems from the observation
that changing the problem in order to apply a program
transformation makes performance results incomparable;
we are comparing unlike programs.

To an observer, the concurrent execution of theCi

must look like SchemeB. (as discussed above); that is,
that we have followed a single thread of computation, cho-
sen arbitrarily from amongstC1, . . . ,CN . Since the
C1, . . . ,CN may update shared state described by→x, we
solve the problem by copying state when needed and by
selecting someCi by virtue of its state changes.Thus,
since the observer sees non-deterministic selection of one
of the alternatives, we must compare concurrent execution
to sequentially performing one of theCi, chosen arbitrar-
ily (we’ll assume randomness).Since, as stated previ-
ously, execution time is our figure of merit, we’ll analyze
with that intent, ignoring measures such as throughput.
Arbitrary selection can be done by a call to a random
number generator, which costs nothing for purposes of our
analysis. Theexecution of the selected alternative costs

� (Ci,
→x) for the →x under study. Thus, we can expect the

mean cost to be

N

i=1
Σ � (Ci,

→x)

N
, the average of theCis times

when applied to→x.

By executing theCi concurrently, we will expect the
cost of execution to be

� (Cbest ,
→x) + � (overhead)

where
� (Cbest ,

→x) ≤ . . . ≤ � (Cworst ,
→x)

and overhead is quite complex. Overhead consists of
operations performed to support concurrent execution
which would not be necessary in the nondeterministic
sequential case.It consists of the following components:

setup: Insteadof simply callingCi, we must now
spend cycles creating execution environ-
ments forC1, . . . ,CN ; for example, setting
up process table entries and page map tables.

runtime: This consists of copying memory areas
which are shared between theC1, . . . ,CN

when updates are attempted.This perfor-
mance is strongly influenced bylocality of
reference. Additionally, if Cbest is sharing
resources, e.g., CPU time, with someCi,
i ≠ best, then for all suchCi, Ci ’s runtime
must be added to the runtime overhead of
Cbest , as cycles spent processingCi are not
spent processingCbest .

selection: Thisis the cost involved in selectingCbest ,
e.g., deletingCi such that i ≠ best, cleaning
up system state, such as actually performing
the updates made byCbest , e.g., writing
checks or bottling beer.

Thus, for a given C1, . . . ,CN and →x,
� (overhead) =
� (setup(C1

. . .CN , →x)) +
� (runtime(Cbest ,

→x)) +
� (selection(Cbest ,C1, . . . ,CN , →x)),

and the parallel execution winsiff

� (Cbest ,
→x) + � (overhead) <

N

i=1
Σ � (Ci,

→x)

N
.

For notational convenience, defineCmean such that

� (Cmean, →x) =

N

i=1
Σ � (Ci,

→x)

N

Thus, we can calculate the performance improvement (PI)
as:

PI =
� (Cmean, →x)

� (Cbest ,
→x) + � (overhead)

essentially a ratio of execution times. For illustration,
consider a case whereN = 3, on input→x. Thus, we have
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three methodsC1, C2, and C3. Let � (overhead) be 5.
Some possible relations are tabulated:

:� (C1, →x):� (C2, →x):� (C3, →x):PI

(1) 10 20 30 1.33
(2) 1 19 106 7.0
(3) 20 20 20 0.8
(4) 1 2 3 0.33
(5) 115 120 125 1.0
(6) 100 200 300 1.9

What can we infer from the examples? (3)indicates,
along with (5), that the size of the differences matters.(4)
shows that the relative magnitudes of the execution times
and the overhead matters.(6) shows that the effects of the
overhead (under our assumptions) diminish with increas-
ing relative execution time. (2) illustrates a good situa-
tion, where the difference

� (Cworst ,
→x) − � (Cbest ,

→x)

is very large. This magnitude of difference is well-
encapsulated by such a statistical measure of dispersion
(letting values of � serve as the random variable) as the
variance.

4.4. Measured Overhead

It is informative to examine measured values of pos-
sible contributors to � (overhead). In another report [23]
we provide a detailed set of measurements and perfor-
mance analysis of ‘‘copy-on-write’’ fork operations under
UNIX . Our measurements were made on two worksta-
tions, the AT&T 3B2/310 and the Hewlett-Packard
HP9000/350. For the 3B2, afork() (with no memory
updates to a 320K address space) takes about 31 millisec-
onds; under the same conditions the HP requires about 12
milliseconds. Themeasured service rate of page copying
was 326 2K pages/second for the 3B2, and 1034 4K
pages/second for the HP. The fraction of the pages in the
address space which are written is the important indepen-
dent variable for a program with a known address space
size, using ‘‘copy-on-write’’. Thesecosts should be repre-
sentative of a  shared memory configuration of equivalent
processor technology.

There is somewhat more overhead associated with
the distributed case.In Smith and Ioannidis [24] we dis-
cuss an implementation of a remotefork() procedure and
the process migration scheme we implemented using it.
An rfork() of a 70K process requires slightly less than a
second, and network delays gav eus an observed average
execution time of about 1.3 seconds; we used a special-
purpose remote-execution protocol which uses a network
fi le system to reduce copying. Themajor cost (since we
implemented rfork() without operating system

modification) was creating acheckpoint of the process in
its entirety. More sophisticated migration schemes, using
‘‘ on-demand’’ state management techniques have been
constructed [27]. In any case, most programs exhibit
locality of reference; in particular symbolic computations
which utilize large amounts of system resources [23].

5. Applications

What properties must we have, other than minimal
implementation overhead, for the concurrent execution
method we describe to be useful?We’v e identified the
following as desirable properties:

1. A large portion of the shared state is read-only.

2. Thereis some state shared between the alternatives
which each may update.

3. Thereare expected to be performance differences
between the alternatives, due to unknown data char-
acteristics or use of heuristic methods.

Tw o application areas for our design are described in the
following sections.

5.1. Distributed Execution of Recovery Blocks

The Recovery Block [14] is a method for writing
software which is tolerant of mistakes in its own logic,
from which failures can arise.The idea is quite simple.It
is assumed that the software in question has been written
to some specification. Several alternative versions of the
software are written, according to the specification. A
boolean ‘‘acceptance test’’, which checks the results of the
software is developed along with the software, using the
specification. Theacceptance test, which either succeeds
or fails, will be refined once some experience with the
software is developed.

The alternatives and the acceptance test are gathered
into an ALGOL-like block construct, where the alterna-
tives are typically ordered on the basis of observed or esti-
mated characteristics such as reliability and execution
speed.

When the acceptance test succeeds, the results
(including all state changes) of the alternative which
passed the test are made available. Whenthe acceptance
test fails, the state of the program is ‘‘rolled back’’ to the
state the program had before the block was entered, and
the next alternative is tried. If the last alternative in the
sequence results in a failed acceptance test, the block as a
whole fails.

5.1.1. Sequential Model

The recovery block is somewhat different in behav-
ior than the ‘‘A lternative Block’’ we proposed as a sequen-
tial model in Section 2.First, rather than having one
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guard per body, the Recovery Block possesses one guard
to which all the alternatives are passed.Second, the guard
is appliedafter the body is executed, rather than before.
However, neither of these are problems for our design, as
(1) the computation can be viewed as part of the guard,
with the body consisting solely of updates to external vari-
ables, or (2) the blocks can be viewed as self-checking
entities where the guard is always enabled for scheduling
of the computation, which may fail due to self-checks.

The changes to the program’s state space are equiv-
alent to some execution which selected exactly one of the
alternatives (or failure) at each Recovery Block. Thus,
this is exactly the nondeterministic selection which we
chose for our model, and it should be all that apost facto
examiner of the program state can deduce.

5.1.2. Concurrent Execution

Since Recovery Block alternates may attempt to
update shared state, e.g., database files or external vari-
ables, our mechanism for preventing observation of a sib-
ling’s actions is necessary, and the ‘‘copy-on-write’’ mem-
ory management reduces the amount of state which must
be maintained.One special problem which arises with the
parallel execution of Recovery Block alternates [15, 29] is
the fact that the method is designed to cope with failures,
so that we must do more work in order not to add new
failure modes. Tw o issues in particular are important.
First, we may copy all of the state rather than copying as
necessary, in order that the state not become inaccessible
and so cause a failure. Second,the synchronization must
not introduce a single point of failure. Thisis remedied
by the use of majority consensus, as discussed above, to
achieve a fault-tolerant 0-1 semaphore for use in synchro-
nization.

5.2. OR-parallelism in Prolog

The Prolog [5] programming language is based on
predicate logic, using ‘‘Horn clauses’’ [ 20] to describe
data and interrelationships.Many normal operations are
subsumed by the unification algorithm by whichProlog
attempts to satisfy predicates; variables are bound during
the unification process to values which caused the predi-
cates to become true.Thus equal(X,elrod) will
cause the variableX to take on the valueelrod, as this
binding is the only one which allows the predicate
equal() to be satisfied.

Progress is achieved with a goal-oriented predicate-
satisfaction algorithm; a database of predicate values and
rules is used to construct a set of dependency relations;
top-level goals are decomposed into sub-goals using the
relations between the rules, objects, and predicates.For
example, testing equality of lists implies that their ele-
ments are equal; testing element-wise equality may then

give a list of sub-goals.This gives rise to a possibility for
parallel execution, however the granularity of such paral-
lelism seems inappropriate.More appropriate is rule-level
parallelism, which is centered on two types, AND-
parallelism and OR-parallelism.The idea with AND-
parallelism is that if we have a situation where goals A
and B must be satisfied, we can pursue the satisfaction of
A and B in parallel. The situation is similar for OR-
parallelism; this is more interesting to us, since it maps
closely to our problem of attempting alternatives in paral-
lel. The alternatives here are specialized to predicates.
Crammond [8] provides a good overview of the problems,
and provides some analysis of mechanisms designed for
efficient reference of shared data, in particular the update
of shared data.

Some of the solutions which have been proposed
are: (1) blocking the process which updates shared state;
(2) not allowing guards to update shared state; (3) sharing
pointers, and hence updates, to a shared environment; (4)
copying and merging. Whatour method does is copy, and
since we choose only one alternative, no merging is neces-
sary. Since there are no extra (beyond whatever is
required for sequential execution) pointer chains to tra-
verse on variable references, memory access is fast. Use
of the method requires changing theProlog interpreter to
detect and exploit OR-parallelism. How aggressively
available parallelism is exploited is a function of the over-
head associated with maintaining a process.However,
once this is known, the proper granularity can be used as a
factor in the decomposition process.

6. Related Work

Exploring alternatives in parallel is far from a new
idea; hardware engineers looked to it as a way of main-
taining pipeline utilization in some high-speed computers,
most notably the IBM 360 Model 91 [1].Their approach
was to prefetch components of both possible branch paths
until either the results of the conditional execution are
available (in which case the correct stream can be chosen
and the other discarded) or an irreversible side effect (such
as instruction execution) would occur. Our management
of side effects lets us go further.

Version control systems such as SCCS [21] use the
idea of deltas to store multiple versions of data.More
related to ourpredicates is the idea used in the PEDIT
[16] parametric line editor. Associated with each line of
text is a set ofparameters. These parameters are state
variables, e.g. SYSTEM=UNIX, VERSION=SysV, et
cetera. Theline is selected for display if the mask set in
the view of the file matches the settings of the state vari-
ables; thus, the viewer of a source program in a particular
environment might see the source without the obscuring
effect of various conditional compilation directives. Each
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setting of the state variables gives a distinct version, but in
practice most of the text is shared between the versions.

Our method uses predicates to detect conflicts, but
delays their resolution as long as is possible.Thus, it is
optimistic in the sense that each timeline assumes that it
will succeed.At each point where this success may come
into question, it generates a predicate.These predicated
processes are similar to thepossibilities anddependencies
discussed by Reed [19] in his thesis; however, his
NAMOS system was somewhat further from realization
than the methods described here.

The notion of multiple alternatives is orthogonal to
the transaction concept; if we view an alternative ‘‘block’’
as effecting a transaction on the system state, the specifi-
cation is a description of how to accomplish the transac-
tion reliably. It could also be viewed as a set of ‘‘compet-
ing’’ t ransactions, at most one of which will take effect.

One significant feature of our use ofpredicates
there is littlewaiting as possible in the system; each pro-
cess which could execute under any set of assumptions
makes that set of assumptions, until some conflict with the
correctness policies results.In other settings, such meth-
ods are calledoptimistic [17, 26] because they assume that
delay-causing or failure-causing conditions happen infre-
quently. Thus, normal operation is made cheap, at the
expense of somewhat more expensive handling when the
assumption is wrong.In our setting, the operantopti-
mistic assumption is that the executing alternative is the
one which will complete successfully. Thus, the predi-
cates indicate that a process assumes that it will complete
successfully; rather thanwaiting, it continues under that
assumption. In fact, Strom and Yemini’s [25] dependency
vectors behave much like our predicates.

Distribution of computation across several nodes
offers attractive possibilities for both reliability and per-
formance. Cooper[7] discusses the use of replicated dis-
tributed programs in order to take advantage of this poten-
tial. Cooper’s CIRCUS [6] system transparently replicates
computations across several nodes in order to increase
reliability. Goldberg [12] has also discussed process repli-
cation, with a focus more on performance than fault toler-
ance. Replicationis somewhat different than the problem
we have examined, mainly because we cannot count on all
of the concurrent alternatives exhibiting the same behav-
ior, e.g., reading and writing.For example, when manag-
ing I/O for replicated computations, only one read opera-
tion can be performed, and its results buffered for subse-
quent readers of the same data.Thus, idempotency of
somesource state can be forced through buffering.

Transparent replication can easily be combined with
the use of parallel execution of several alternatives for
increases in performance, reliability, or both.

7. Conclusions

The best sort of situation for our approach is one
where:

• Alternatives require a significant amount of compu-
tation time, as encapsulated in� (Cmean, →x).

• Each alternative changes a small amount of the state
of the calling process, thus reducing the penalty of

� (overhead).

• There is enough difference between the execution
times of the alternatives that choosing the fastest
and killing the others is worth the overhead of
spawning the copies and deleting the slower sib-
lings. Thismay also be true in real-time systems,
where the sibling elimination can be carried out
asynchronously with respect to result delivery.

It appears that parallel implementation of logic program-
ming languages provides such an environment, because
the computation is data-driven, and thus the execution
time and control flow can vary greatly with the input.The
way in which unification operates (as a ‘‘sophisticated pat-
tern matcher’’) leads to an overwhelming preponderance
of read references made to page-managed memory; while
a high percentage of references are writes, these are
mainly to the stack, and thus locality should be quite high.

Distributed execution of recovery block alternates
uses the ‘‘f astest-first’’ behavior in an attempt to find a
rapid failure-free path through the computation.
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