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Preface

This book is an introduction to fundamental geometric concepts and tools needed
for solving problems of a geometric nature with a computer. Our main goal is to
present a collection of tools that can be used to solve problems in computer vision,
robotics, machine learning, computer graphics, and geometric modeling.

During the ten years following the publication of the first edition of this book,
optimization techniques have made a huge comeback, especially in the fields of
computer vision and machine learning. In particular, convex optimization and its
special incarnation, semidefinite programming (SDP), are now widely used tech-
niques in computer vision and machine learning, as one may verify by looking at
the proceedings of any conference in these fields. Therefore, we felt that it would
be useful to include some material (especially on convex geometry) to prepare the
reader for more comprehensive expositions of convex optimization, such as Boyd
and Vandenberghe [2], a masterly and encyclopedic account of the subject. In par-
ticular, we added Chapter 7, which covers separating and supporting hyperplanes.

We also realized that the importance of the SVD (singular value decomposition)
and of the pseudo-inverse had not been sufficiently stressed in the first edition of this
book, and we rectified this situation in the second edition. In particular, we added
sections on PCA (principal component analysis) and on best affine approximations
and showed how they are efficienlty computed using SVD. We also added a sec-
tion on quadratic optimization and a section on the Schur complement, showing the
usefulness of the pseudo-inverse.

In this second edition, many typos and small mistakes have been corrected, some
proofs have been shortened, some problems have been added, and some references
have been added. Here is a list containing brief descriptions of the chapters that have
been modified or added.

• Chapter 3, on the basic properties of convex sets, has been expanded. In par-
ticular, we state a version of Carathéodory’s theorem for convex cones (Theo-
rem 3.2), a version of Radon’s theorem for pointed cones (Theorem 3.6), and
Tverberg’s theorem (Theorem 3.7), and we define centerpoints and prove their
existence (Theorem 3.9).
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• Chapter 7 is new. This chapter deals with separating hyperplanes, versions of
Farkas’s lemma, and supporting hyperplanes. Following Berger [1], various ver-
sions of the separation of open or closed convex subsets by hyperplanes are
proved as consequences of a geometric version of the Hahn–Banach theorem
(Theorem 7.1). We also show how various versions of Farkas’s lemma (Lemmas
7.3, 7.4, and 7.5) can be easily deduced from separation results (Corollary 7.4
and Proposition 7.3). Farkas’s lemma plays an important result in linear program-
ming. Indeed, it can be used to give a quick proof of so-called strong duality in
linear programming. We also prove the existence of supporting hyperplanes for
boundary points of closed convex sets (Minkowski’s lemma, Proposition 7.4).
Unfortunately, lack of space prevents us from discussing polytopes and polyhe-
dra. The reader will find a masterly exposition of these topics in Ziegler [3].

• Chapter 14 is a major revision of Chapter 13 (Applications of Euclidean Geome-
try to Various Optimization Problems) from the first edition of this book and has
been renamed “Applications of SVD and Pseudo-Inverses.” Section 14.1, about
least squares problems, and the pseudo-inverse has not changed much, but we
have added the fact that AA+ is the orthogonal projection onto the range of A and
that A+A is the orthogonal projection onto Ker(A)⊥, the orthogonal complement
of Ker(A). We have also added Proposition 14.1, which shows how the pseudo-
inverse of a normal matrix A can be obtained from a block diagonalization of A
(see Theorem 12.7). Sections 14.2, 14.3, and 14.4 are new.
In Section 14.2, we define various matrix norms, including operator norms, and
we prove Proposition 14.4, showing how a matrix can be best approximated by a
rank-k matrix (in the ‖‖2 norm).
Section 14.3 is devoted to principal component analysis (PCA). PCA is a very
important statistical tool, yet in our experience, most presentations of this con-
cept lack a crisp definition. Most presentations identify the notion of principal
components with the result of applying SVD and do not prove why SVD does in
fact yield the principal components and directions. To rectify this situation, we
give a precise definition of PCAs (Definition 14.3), and we prove rigorously how
SVD yields PCA (Theorem 14.3), using the Rayleigh–Ritz ratio (Lemma 14.2).
In Section 14.4, it is shown how to best approximate a set of data with an affine
subspace in the least squares sense. Again, SVD can used to find solutions.

• Chapter 15 is new, except for Section 15.1, which reproduces Section 13.2 from
the first edition of this book. We added the definition of the positive semidefinite
cone ordering, #, on symmetric matrices, since it is extensively used in convex
optimization.
In Section 15.2, we find a necessary and sufficient condition (Proposition 15.2)
for the quadratic function f (x) = 1

2 x$Ax+ x$b to have a minimum in terms of
the pseudo-inverse of A (where A is a symmetric matrix). We also show how to
accommodate linear constraints of the form C$x = 0 or affine constraints of the
form C$x = t (where t %= 0).
In Section 15.3, we consider the problem of maximizing f (x) = x$Ax on the
unit sphere x$x = 1 or, more generally, on the ellipsoid x$Bx = 1, where A is
a symmetric matrix and B is symmetric, positive definite. We show that these
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problems are completely solved by diagonalizing A with respect to an orthogonal
matrix. We also briefly consider the effect of adding linear constraints of the form
C$x = 0 or affine constraints of the form C$x = t (where t %= 0).

• Chapter 16 is new. In this chapter, we define the notion of Schur complement, and
we use it to characterize when a symmetric 2×2 block matrix is either positive
semidefinite or positive definite (Proposition 16.1, Proposition 16.2, and Theo-
rem 16.1).

• Chapter 17 is also brand new. In this chapter, we show how a computer vision
problem, contour grouping, can be formulated as a quadratic optimization prob-
lem involving a Hermitian matrix. Because of the extra dependency on an an-
gle, this optimization problem leads to finding the derivative of eigenvalues and
eigenvectors of a normal matrix X . We derive explicit formulas for these deriva-
tives (in the case of eigenvectors, the formula involves the pseudo-inverse of X)
and we prove their correctness. It appears to be difficult to find these formulas to-
gether with a clean and correct proof in the literature. Our optimization problem
leads naturally to the consideration of the field of values (or numerical range)
F(A) of a complex matrix A. A remarkable property of the field of values is that
it is a convex subset of the plane, a theorem due to Toeplitz and Hausdorff, for
which we give a short proof using a deformation argument (Theorem 17.1). Prop-
erties of the fields of values can be exploited to solve our optimization problem.
This chapter describes current and exciting research in computer vision.

• Chapter 18 (which used to be Chapter 14 in the first edition) has been slightly ex-
panded and improved. Our experience in teaching the material of this chapter, an
introduction to manifolds and Lie groups, is that it is helpful to review carefully
the notion of the derivative of a function f : E → F where E and F are normed
vector spaces. Thus we added Section 18.7, which provides such a review. We
also state the inverse function theorem and define immersions and submersions.
Section 18.8 has also been slightly expanded. We added Proposition 18.6 and
Theorem 18.7, which are often useful in proving that various spaces are mani-
folds; we defined critical and regular values and defined Morse functions; and
we made a few cosmetic improvements in the paragraphs following Definition
18.20. A number of new problems on manifolds have been added.

• The only change to Chapter 19 (Chapter 15 in the first edition) is the inclusion of
a more complete treatment of the Frenet frame for nD curves in Section 19.10.

• Similarly, the only change to Chapter 20 (Chapter 16 in the first edition) is the
addition of Section 20.12, on covariant derivatives and the parallel transport.

Besides adding problems to all the chapters listed above we added one more
problem to Chapter 2.

As in the first edition, there is some additional material on the web site http:
//www.cis.upenn.edu/˜jean/gbooks/geom2.html

This material has not changed, and the chapter and section numbers are those of
the first edition. A graph showing the dependencies of chapters is shown in Figure
0.1.
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Preface to the First Edition

Many problems arising in engineering, and notably in computer science and me-
chanical engineering, require geometric tools and concepts. This is especially true
of problems arising in computer graphics, geometric modeling, computer vision,
and motion planning, just to mention some key areas. This book is an introduction
to fundamental geometric concepts and tools needed for solving problems of a ge-
ometric nature with a computer. In a previous text, Gallier [24], we focused mostly
on affine geometry and on its applications to the design and representation of poly-
nomial curves and surfaces (and B-splines). The main goal of this book is to provide
an introduction to more sophisticated geometric concepts needed in tackling engi-
neering problems of a geometric nature. Many problems in the above areas require
some nontrivial geometric knowledge, but in our opinion, books dealing with the
relevant geometric material are either too theoretical, or else rather specialized. For
example, there are beautiful texts entirely devoted to projective geometry, Euclidean
geometry, and differential geometry, but reading each one represents a considerable
effort (certainly from a nonmathematician!). Furthermore, these topics are usually
treated for their own sake (and glory), with little attention paid to applications.

This book is an attempt to fill this gap. We present a coherent view of geometric
methods applicable to many engineering problems at a level that can be understood
by a senior undergraduate with a good math background. Thus, this book should
be of interest to a wide audience including computer scientists (both students and
professionals), mathematicians, and engineers interested in geometric methods (for
example, mechanical engineers). In particular, we provide an introduction to affine
geometry, projective geometry, Euclidean geometry, basics of differential geometry
and Lie groups, and a glimpse of computational geometry (convex sets, Voronoi
diagrams, and Delaunay triangulations). This material provides the foundations for
the algorithmic treatment of curves and surfaces, some basic tools of geometric
modeling. The right dose of projective geometry also leads to a rigorous and yet
smooth presentation of rational curves and surfaces. However, to keep the size of
this book reasonable, a number of topics could not be included. Nevertheless, they
can be found in the additional material on the web site: see http://www.cis.

xiii
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upenn.edu/˜jean/gbooks/geom2.html. This is the case of the material
on rational curves and surfaces.

This book consists of sixteen chapters and an appendix. The additional material
on the web site consists of eight chapters and an appendix: see http://www.
cis.upenn.edu/˜jean/gbooks/geom2.html.

• The book starts with a brief introduction (Chapter 1).
• Chapter 2 provides an introduction to affine geometry. This ensures that readers

are on firm ground to proceed with the rest of the book, in particular, projective
geometry. This is also useful to establish the notation and terminology. Readers
proficient in geometry may omit this section, or use it as needed. On the other
hand, readers totally unfamiliar with this material will probably have a hard time
with the rest of the book. These readers are advised do some extra reading in
order to assimilate some basic knowledge of geometry. For example, we highly
recommend Pedoe [42], Coxeter [9], Snapper and Troyer [52], Berger [2, 3],
Fresnel [22], Samuel [51], Hilbert and Cohn–Vossen [31], Boehm and Prautzsch
[5], and Tisseron [54].

• Basic properties of convex sets and convex hulls are discussed in Chapter 3.
Three major theorems are proved: Carthéodory’s theorem, Radon’s theorem, and
Helly’s theorem.

• Chapter 4 presents a construction (the “hat construction”) for embedding an
affine space into a vector space. An important application of this construction
is the projective completion of an affine space, presented in the next chap-
ter. Other applications are treated in Chapter 20 on the web site, see http:
//www.cis.upenn.edu/˜jean/gbooks/geom2.html.

• Chapter 5 provides an introduction to projective geometry. Since we are not
writing a treatise on projective geometry, we cover only the most fundamental
concepts, including projective spaces and subspaces, frames, projective maps,
multiprojective maps, the projective completion of an affine space, cross-ratios,
duality, and the complexification of a real projective space. This material also
provides the foundations for our algorithmic treatment of rational curves and
surfaces, to be found on the web site (Chapters 18, 19, 21, 22, 23, 24); see
http://www.cis.upenn.edu/˜jean/gbooks/geom2.html.

• Chapters 6, 8, and 9, provide an introduction to Euclidean geometry, to the groups
of isometries O(n) and SO(n), the groups of affine rigid motions Is(n) and
SE(n), and to the quaternions. Several versions of the Cartan–Dieudonné the-
orem are proved in Chapter 8. The QR-decomposition of matrices is explained
geometrically, both in terms of the Gram–Schmidt procedure and in terms of
Householder transformations. These chapters are crucial to a firm understanding
of the differential geometry of curves and surfaces, and computational geometry.

• Chapter 10 gives a short introduction to some fundamental topics in computa-
tional geometry: Voronoi diagrams and Delaunay triangulations.

• Chapter 11 provides an introduction to Hermitian geometry, to the groups of
isometries U(n) and SU(n), and the groups of affine rigid motions Is(n,C)
and SE(n,C). The generalization of the Cartan–Dieudonné theorem to Her-
mitian spaces can be found on the web site, Chapter 25; see http://www.
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cis.upenn.edu/˜jean/gbooks/geom2.html. A short introduction to
Hilbert spaces, including the projection theorem, and the isomorphism of every
Hilbert space with some space l2(K), can also be found on the web site in Chapter
26, see http://www.cis.upenn.edu/˜jean/gbooks/geom2.html.

• Chapter 12 provides a presentation of the spectral theorems in Euclidean and
Hermitian spaces, including normal, self-adjoint, skew self-adjoint, and orthog-
onal linear maps. Normal form (in terms of block diagonal matrices) for various
types of linear maps are presented.

• The singular value decomposition (SVD) and the polar form of linear maps are
discussed quite extensively in Chapter 13. The pseudo-inverse of a matrix and its
characterization using the Penrose properties are presented.

• Chapter 14 presents some applications of Euclidean geometry to various opti-
mization problems. The method of least squares is presented, as well as the ap-
plications of the SVD and QR-decomposition to solve least squares problems.
We also describe a method for minimizing positive definite quadratic forms, us-
ing Lagrange multipliers.

• Chapter 18 provides an introduction to the linear Lie groups, via a presentation
of some of the classical groups and their Lie algebras, using the exponential map.
The surjectivity of the exponential map is proved for SO(n) and SE(n).

• An introduction to the local differential geometry of curves is given in Chapter
19 (curvature, torsion, the Frenet frame, etc).

• An introduction to the local differential geometry of surfaces based on some
lectures by Eugenio Calabi is given in Chapter 20. This chapter is rather unique,
as it reflects decades of experience from a very distinguished geometer.

• Chapter 21 is an appendix consisting of short sections consisting of basics of
linear algebra and analysis. This chapter has been included to make the material
self-contained. Our advice is to use it as needed!

A very elegant presentation of rational curves and surfaces can be given us-
ing some notions of affine and projective geometry. We push this approach quite
far in the material on the web; see http://www.cis.upenn.edu/˜jean/
gbooks/geom2.html. However, we provide only a cursory coverage of CAGD
methods. Luckily, there are excellent texts on CAGD, including Bartels, Beatty, and
Barsky [1], Farin [17, 18], Fiorot and Jeannin [20, 21], Riesler [50], Hoschek and
Lasser [33], and Piegl and Tiller [43]. Although we cover affine, projective, and Eu-
clidean geometry in some detail, we are far from giving a comprehensive treatment
of these topics. For such a treatment, we highly recommend Berger [2, 3], Samuel
[51], Pedoe [42], Coxeter [11, 10, 8, 9], Snapper and Troyer [52], Fresnel [22], Tis-
seron [54], Sidler [45], Dieudonné [13], and Veblen and Young [57, 58], a great
classic.

Similarly, although we present some basics of differential geometry and Lie
groups, we only scratch the surface. For instance, we refrain from discussing mani-
folds in full generality. We hope that our presentation is a good preparation for more
advanced texts, such as Gray [27], do Carmo [14], Berger and Gostiaux [4], and
Lafontaine [36]. The above are still fairly elementary. More advanced texts on dif-
ferential geometry include do Carmo [15, 16], Guillemin and Pollack [29], Warner
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[59], Lang [37], Boothby [6], Lehmann and Sacré [38], Stoker [53], Gallot, Hulin,
and Lafontaine [25], Milnor [41], Sharpe [44], Malliavin [39], and Godbillon [26].

It is often possible to reduce interpolation problems involving polynomial curves
or surfaces to solving systems of linear equations. Thus, it is very helpful to be
aware of efficient methods for numerical matrix analysis. For instance, we present
the QR-decomposition of matrices, both in terms of the (modified) Gram–Schmidt
method and in terms of Householder transformations, in a novel geometric fashion.
For further information on these topics, readers are referred to the excellent texts by
Strang [48], Golub and Van Loan [28], Trefethen and Bau [55], Ciarlet [7], and Kin-
caid and Cheney [34]. Strang’s beautiful book on applied mathematics is also highly
recommended as a general reference [46]. There are other interesting applications
of geometry to computer vision, computer graphics, and solid modeling. Some good
references are Trucco and Verri [56], Koenderink [35], and Faugeras [19] for com-
puter vision; Hoffman [32] for solid modeling; and Metaxas [40] for physics-based
deformable models.

Novelties

As far as we know, there is no fully developed modern exposition integrating the
basic concepts of affine geometry, projective geometry, Euclidean geometry, Her-
mitian geometry, basics of Hilbert spaces with a touch of Fourier series, basics of
Lie groups and Lie algebras, as well as a presentation of curves and surfaces both
from the standard differential point of view and from the algorithmic point of view
in terms of control points (in the polynomial and rational case).

New Treatment, New Results
This books provides an introduction to affine geometry, projective geometry, Eu-
clidean geometry, Hermitian geometry, Hilbert spaces, a glimpse at Lie groups and
Lie algebras, and the basics of local differential geometry of curves and surfaces.
We also cover some classics of convex geometry, such as Carathéodory’s theo-
rem, Radon’s theorem, and Helly’s theorem. However, in order to help the reader
assimilate all these concepts with the least amount of pain, we begin with some
basic notions of affine geometry in Chapter 2. Basic notions of Euclidean geom-
etry come later only in Chapters 6, 8, 9. Generally, noncore material is relegated
to appendices or to the web site: see http://www.cis.upenn.edu/˜jean/
gbooks/geom2.html.

We cover the standard local differential properties of curves and surfaces at an
elementary level, but also provide an in-depth presentation of polynomial and ra-
tional curves and surfaces from an algorithmic point of view. The approach (some-
times called blossoming) consists in multilinearizing everything in sight (getting
polar forms), which leads very naturally to a presentation of polynomial and ratio-
nal curves and surfaces in terms of control points (Bézier curves and surfaces). We
present many algorithms for subdividing and drawing curves and surfaces, all im-
plemented in Mathematica. A clean and elegant presentation of control points with
weights (and control vectors) is obtained by using a construction for embedding
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an affine space into a vector space (the so-called “hat construction,” originating in
Berger [2]). We also give several new methods for drawing efficiently closed ratio-
nal curves and surfaces, and a method for resolving base points of triangular rational
surfaces. We give a quick introduction to the concepts of Voronoi diagrams and De-
launay triangulations, two of the most fundamental concepts in computational ge-
ometry. As a general rule, we try to be rigorous, but we always keep the algorithmic
nature of the mathematical objects under consideration in the forefront.

Many problems and programming projects are proposed (over 230). Some are
routine, some are (very) difficult.

Applications
Although it is core mathematics, geometry has many practical applications. When-
ever possible, we point out some of these applications, For example, we mention
some (perhaps unexpected) applications of projective geometry to computer vision
(camera calibration), efficient communication, error correcting codes, and cryptog-
raphy (see Section 5.13). As applications of Euclidean geometry, we mention mo-
tion interpolation, various normal forms of matrices including QR-decomposition
in terms of Householder transformations and SVD, least squares problems (see Sec-
tion 14.1), and the minimization of quadratic functions using Lagrange multipliers
(see Section 15.1). Lie groups and Lie algebras have applications in robot kine-
matics, motion interpolation, and optimal control. They also have applications in
physics. As applications of the differential geometry of curves and surfaces, we
mention geometric continuity for splines, and variational curve and surface design
(see Section 19.11 and Section 20.13). Finally, as applications of Voronoi diagrams
and Delaunay triangulations, we mention the nearest neighbors problem, the largest
empty circle problem, the minimum spanning tree problem, and motion planning
(see Section 10.5). Of course, rational curves and surfaces have many applications
to computer-aided geometric design (CAGD), manufacturing, computer graphics,
and robotics.

Many Algorithms and Their Implementation
Although one of our main concerns is to be mathematically rigorous, which implies
that we give precise definitions and prove almost all of the results in this book, we
are primarily interested in the representation and the implementation of concepts
and tools used to solve geometric problems. Thus, we devote a great deal of efforts
to the development and implemention of algorithms to manipulate curves, surfaces,
triangulations, etc. As a matter of fact, we provide Mathematica code for most of
the geometric algorithms presented in this book. We also urge the reader to write his
own algorithms, and we propose many challenging programming projects.

Open Problems
Not only do we present standard material (although sometimes from a fresh point of
view), but whenever possible, we state some open problems, thus taking the reader
to the cutting edge of the field. For example, we describe very clearly the problem
of resolving base points of rectangular rational surfaces (this material is on the web
site, see http://www.cis.upenn.edu/˜jean/gbooks/geom2.html).
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What’s Not Covered in This Book
Since this book is already quite long, we have omitted solid modeling techniques,
methods for rendering implicit curves and surfaces, the finite elements method, and
wavelets. The first two topics are nicely covered in Hoffman [32], and the finite el-
ement method is the subject of so many books that we will not attempt to mention
any references besides Strang and Fix [47]. As to wavelets, we highly recommend
the classics by Daubechies [12], and Strang and Truong [49], among the many texts
on this subject. It would also have been nice to include chapters on the algebraic ge-
ometry of curves and surfaces. However, this is a very difficult subject that requires
a lot of algebraic machinery. Interested readers may consult Fulton [23] or Harris
[30].

How to Use This Book for a Course
This books covers three complementary but fairly disjoint topics:

(1) Projective geometry and its applications to rational curves and surfaces (Chapter
5, and on the web page, Chapters 18, 19, 21, 22, 23, 24);

(2) Euclidean geometry, Voronoi diagrams, and Delaunay triangulations, Hermitian
geometry, basics of Hilbert spaces, spectral theorems for special kinds of linear
maps, SVD, polar form, and basics of Lie groups and Lie algebras (Chapters 6,
8, 9, 10, 11, 12, 13, 14, 18);

(3) Basics of the differential geometry of curves and surfaces (Chapters 19 and 20).

Chapter 21 is an appendix consisting of background material and should be used
only as needed.

Our experience is that there is too much material to cover in a one–semester
course. The ideal situation is to teach the material in the entire book in two
semesters. Otherwise, a more algebraically inclined teacher should teach the first
or second topic, whereas a more differential-geometrically inclined teacher should
teach the third topic. In either case, Chapter 2 on affine geometry should be covered.
Chapter 4 is required for the first topic, but not for the second.

Problems are found at the end of each chapter. They range from routine to very
difficult. Some programming assignments have been included. They are often quite
open-ended, and may require a considerable amount of work. The end of a proof is
indicated by a square box ( ). The word iff is an abbreviation for if and only if . Ref-
erences to the web page http://www.cis.upenn.edu/˜jean/gbooks/
geom2.html will be abbreviated as web page.

Hermann Weyl made the following comment in the preface (1938) of his beauti-
ful book [60]:

The gods have imposed upon my writing the yoke of a foreign tongue that was not sung at
my cradle . . . . Nobody is more aware than myself of the attendant loss in vigor, ease and
lucidity of expression.

Being in a similar position, I hope that I was at least successful in conveying my
enthusiasm and passion for geometry, and that I have inspired my readers to study
some of the books that I respect and admire.
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