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Abstract

We study deterministic finite automata (DFA) with recursive calls, that is, finite sequences of component DFAs that can call
each other recursively. DFAs with recursive calls are akin to recursive state machines and unrestricted hierarchic state machines
We show that they are language equivalent to deterministic pushdown automata (DPDA).
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1. Introduction spond to system transitions. To describe complex sys-
tems using finite automata, several extensions are use-
Finite automata are a very intuitive and widely ful.
studied formalism. They are a natural framework for In this paper, we study an extension of the concept
modeling and studying finite state systems. Descrip- of a DFA by allowing certain transitions to be “calls”
tions using automata are useful to represent the con-to other DFAs. The automata we define are similar
trol flow of a computer program, and in general the to restricted types of augmented transition networks
behavior of a digital system. This makes them suit- (ATN) used in natural language processing [18], and to
able for formal analysis via well-founded technolo- other hierarchic state machine models that have been
gies, such as model checking. In the simplest setting, proposed in different contexts where the need for a
a finite automaton consists of a labeled graph whose nesting capability is either natural or convenient. Such
vertices correspond to system states and edges corrémachines have been studied in the context of inter-
procedural dataflow analysis. They can model control-
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of large systems the use of hierarchic paradigms hasguess whether the current symbol is the last symbol of
been advocated by many authors both to have succinctw or not, and only in the second case, a recursive call

descriptions and exploit modularity [9,4,1]. Recent re-
sults have been concerned with the verification of re-
cursive finite state machines [3,2].

Here, we are interested in recursive (deterministic)
finite state machines from a formal languages theo-
retic perspective. It is well known that (determinis-
tic) finite automata define exactly the class of regu-
lar languages. Our aim is to extend this class of au-
tomata to capture the deterministic context-free lan-
guages. We define a DFA with recursive calls as
a finite sequence of component DFAs that can call
each other recursively. There are three kinds of tran-
sitions: ordinary transitions, calls and returns (from
calls). A call corresponds to entering another compo-
nent DFA, and a return to exiting it. The main lim-
itation we place on the model is that if from a state
q there is a call to a DFA then this is the only tran-
sition from ¢g. This restriction is needed to preserve
the determinism of the model. For any call we allow
multiple return points, i.emultiple exitsin the com-
ponent DFAs.

The main result of this paper is that the class
of DFAs with recursive calls defines exactly the

class of deterministic context-free languages. To prove

that this class of automata accepts only deterministic
context-free languages, we use thtomic normal
form of deterministic pushdown automata given in [8].

is made after this symbol is read.

The equivalence problem for deterministic push-
down automata has been recently shown to be decid-
able [15]. Another proof of this result can be found
in [17]. Besides the importance of such a result the
DPDA equivalence problem has a number of impor-
tant implications which have been discussed in [16].
By our results, we derive from the decidability of the
DPDA equivalence problem also the decidability of
the equivalence problem for DFAs with recursive calls.
If we see the DFAs with recursive calls as recursive
program schemes, we have also that a certain kind of
strong equivalence is decidable (we might call it “flow
equivalence”).

Unwinding the recursion in a DFA with recursive
calls we obtain a deterministic automaton whose tran-
sition graph is an infinite graphnfinite automatoh
It is possible to prove that this infinite automaton is
the “initial fixpoint” (in the sense of Lehmann [13])
of a “substitution functor” induced by the set of DFAs
with recursive calls. In fact, such automaton turns out
to be the colimit of a sequence of finite approximating
DFAs.

The rest of the paper is organized as follows.
In Section 2 we introduce the model and recall the
main definitions. In Section 3 we prove that DFAs
with recursive calls characterize exactly the class of

The completeness result, that is, each deterministic deterministic context-free languages. We conclude in

context-free language has an equivalent DFA with
recursive calls accepting it, is shown by translating
an infinite tree of a recursion scheme to a DFA with

Section 4 with further remarks.

recursive calls and using the fact that such trees can2. The model

be used to characterize the class of deterministic

context-free languages [8]. It is worth noticing that if
in our model we allow nondeterminism on ordinary
transitions (i.e., transitions that are neither calls nor

In this section we introduce the notion of determin-
istic finite automata with recursive calls.

Let X be afinite alphabetand lét = {Fy, ..., Fn}

returns), also nondeterministic context-free languages be a set of function symbols, each having arity;) >
can be accepted. For example, consider the languaged. Let M = max{r(F;) | 1 <i < N} and let[1, M]

L ={ww® |w e X}, whereX is an alphabet. We can
define an automaton with deterministic recursive calls

denote the sefl,..., M} (with [1,0] = @). The
symbols of® will be called nonterminals, while the

that acceptd., as follows. The automaton consists ofa symbol in X will be called terminals. The elements of
single component that can call itself recursively. Calls @ can be considered as procedure names.

are used to push symbols onto the stack and returnsto A deterministic finite automaton with recursive
pop symbols from the stack. The top of the stack can calls is a set of component DFAs that can call each
be stored in the state of the current activation of the other recursively. Calls and returns are modeled as
component. Thus, nondeterminism is needed only to special transitions that do not read input symbols.
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Moreover, if from a statg there exists a call transition
then this is the only transition leaving from If p

is the state reached after a call, it can have only an

entering transition, and the transitions exitipgare

exactly the returns from this call and each of them
corresponds to an exit of the called component. There

e 5:0xXUDU[L M]— Q is a partial function
called the transition function and satisfies the
following conditions:

(1) Foreverype Q andF; e @,if g =48(p, F;)
is defined, thed (p, «) is not defined for any
othera € ¥ U@ U[1, M], thatis,s(p, F)) is

exists a one-to-one correspondence between the exits the only transition defined from.

of a called component and the returns of the calling
component. For any call we allow multiple return

points, i.e.multiple exitsn the component DFAs.

Formally, adeterministic finite automaton with re-
cursive callsconsists of a finite sequende= (F1 <
D1,...,Fy &« Dy) of DFA definitions, whereD;
is a DFA which can issue callgy, ..., Fy respec-
tively to any of the component DFA®;, ..., Dy.
The first definitionF, < D1 is considered to be the
“main definition”. Given anF; € ¢, a DFA definition
F; < D; for F; of arity m is a 6-tuple(Q, ¥ U @ U
[1, M1, 8, in, OUT, FINAL) where:

0 is a finite set of states.

in € Q is the entry state.

FINAL C Q is the set of final states.

OUT: Q — [1,m] is a partial function whose
domain is denoted adomOUT); each statep
for whichOUT(p) = j is called an exit state with
index .

a

Fo

1

F3
@ 2
()

b

(a) (b)

(2) If 6(p, Fj) = q thend(q, k) is defined only
for k such that 1< k <r(F;), andé(g, @) is
not defined for ang € X U @.
(3) Ifdefined,é(p, F;) is not a final state and has
no other incoming edges.
Furthermore, the entry state has no incoming
transitions, every state idom(OUT) has no out-
going transitions and every state lies on a path
fromin to some exit state.

As an example of a DFA with recursive calls,
consider the automato® given by the tuple of
definitions (Fy <= D1, F» < Dy, F3 < D3), where
{F1, F», F3} is a set of nonterminals with(F71) = 0,
r(F2) =1, andr(F3) = 2. The details on the DFAs
D1, D> and D3 are shown in Fig. 1. The alphabet of
terminal symbols is¥ = {a, b, ¢, d}, the entry states
arein; for eachfF; fori =1, 2,3,0UT(outz) =1, and
OUT(outy) =i fori =1,2.

C a
& @

F3

b

(e)

Fig. 1. Graphical representation of the DFAg (a), D> (b), andD3 (c).
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Fig. 2. Recursive calF;.

For the sake of simplicity, in the following for any
DFA with recursive callsD = (Fy < D1, ..., Fy
Dy), we assume tha®; N Q; =¥ whenever # ;.

We define the languagk(D) accepted by a DFA
with recursive call® by defining the notion of a com-
putation. For that, we viewd = (F1 < D1, ..., Fy &
Dy) as a context-free graph grammar with start sym-
bol Fi. If D is a DFA with calls from the set
{F1,..., FN} we say thatR rewrites tosS in one step
using productions irD, denoted aR® =p S (or R =
S when D is understood), ifS is obtained fromR by
substitutingD; for some occurrence of a cdi} to D;
in R. More precisely, if the occurrence &f in R is as
indicated in Fig. 2, the grapb; is substituted in such
a way that the entry oD; is identified with p, and
each exit state indexed with (1 < j < m) is identi-
fied with ¢;. Note that the nodg always disappears
together with all edges adjacent to it. The result of sub-
stituting D; for F; atq in R is denoted a®[g — D;].

Let =™ be the transitive closure b and="* be
its reflexive and transitive closure. Anstantaneous
description(ID) is a triple (R, p,u), whereR is a
graph derivable fronD1 (D1 =* R), p is a state in
R andu is the remaining input. Acomputationis a
sequence of ID’s such that given two consecutive IDs
ID; andID», wherelD1 = (R, p, u), we have that:

(1) fu=av,a € X andg =5(p, a) is defined, then
ID2 =(R, q, v).

(2) If g =38(p, F;) is defined thenDy = (R[g «
D;],in;,u). This corresponds to a cali; to D;.
In this move, D; is substituted forf; in R, and
control is passed to the entry 6§, no input being
read.
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Note that there is no need for computation steps
3(q, k) because substitution has been defined in such
a way that these edges are deleted.

The languageL(D) accepted by a DFA with
recursive callsD is the set of all stringa such that
there exists a computation frofDy,ing, u) to an
accepting configuratiofR, f, ), where f is a final
state and withe we denote as usual the empty string.
It is easy to verify that the DFA with recursive calls
D in Fig. 1 accepts the languade= {a"cb" | n >
1} U {a"db? | n > 1.

3. Equivalence of DPDAs and DFAswith
recursivecalls

We assume that the reader is familiar with push-
down automata. A formal definition can be found in
[10]. We recall a result from [8] that gives a character-
ization of deterministic pushdown automataaitomic
normal form

A DPDA M is in atomic normal form if it has the
following structure:

(1) The set of states is partitioned into three disjoint
subsetsKyead» Kpush and Kpop (States without
outgoing transitions are consideredKiag)-

(2) Transitions are of the form:

(a) read movebeing in a read staté/ reads the
next input regardless of the symbol on the
top of the stack and changes its state without
changing the stack. This is the only move
advancing the input.

(b) push movebeing in a push statéd/ on ane-
move pushes the current state on top of the
stack and changes its state (regardless of the
top of the stack).

(c) pop movebeing in a pop statey on ane-
move pops the top of stack and changes its
state.

(3) A pop move never follows immediately a push
move.

(4) Every accepting state is a read state.

The following theorem holds.

Theorem 1[8]. Every DPDA is equivalent to a DPDA
in atomic normal form.
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pop (1,1)
read c
push push
read b

read d

pop iny ~~ read b Q

outs,z 3,2 4,2
>’ &
pop (1,3)

Fig. 3. A DPDA in atomic normal form equivalent to the DFA with recursive calls from Fig. 1.

In the rest of this section we prove that DFAs with As an example of the above construction, we give
recursive calls characterize exactly the deterministic in Fig. 3 the deterministic pushdown automaton in
context-free languages. We start by showing that any atomic normal form corresponding to the DFA with
language accepted by a DFA with recursive calls recursive calls shown in Fig. 1.
can be accepted also by a deterministic pushdown  To prove the converse, that is, each deterministic

automaton, then we prove the converse. context-free language is recognized by a DFA with
recursive calls, we appeal to a result proved in [8].

Lemma 1. Given a DFA with recursive calld = Before stating this result we need to introduce some

(F1 < D1, ..., Fy < Dy), the languageL(D) is definitions.

acceptedby final statg by a pushdown automata, A ranked alphabet is a set together with a rank

which can be constructed effectively fram functionrank: A — N, whereN is the set of natural

numbers. Every symbqg} of rank(g) = n is said to

Proof. By Theorem 1 it is sufficient to construct havearity n. Let A be a ranked alphabet of function

a deterministic pushdown automatdd in atomic ~ SYMPOIS, andl” = {G1,.... Gy} be a finite set of
normal form that acceptd.(D). We defineM as nonterminals. Atree domainDoM is a hon empty
follows. The set of states aff is the union of the  Set of strings ovelN, (the set of positive integers)
sets of states of each; for i = 1,..., N. The tape Satisfying the following conditions:

alphabet, the initial state, and the accepting states of

M are the same as fdp. The stack symbols are the ~ ® For eachu in Dom, every prefixv of u is also in

states from which a function symbol can be read®in Dowm.

To complete the construction we need to give the read, ® For eachu in Dowm, for every positive integerr, if
push and pop moves. For any transitip, o) = ¢, ui is in Dom, then for everyj, 1< j <i, uj is
i=1,...,N,whereoc € ¥, we add a read move an also in Dom.

from p tog in M. For any call toF; from a statep, we

add a push move from to the entry state ob;, and Let {x1,...,x,} be a set of variables (considered as
a pop move from any exit state to the corresponding symbols of arity 0). A tree oved U I" U {x1, ..., xm}
state ofD;. It can be shown that the language accepted is a mapping :DoM — AU I" U {x1, ..., x,} such

by M, by final state, id.(D). O that the following conditions hold:
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e DOM is atree domain.

e For everyu in Dowm, if n = |{i e Ny | ui €
Dowm}|, then rank(t (1)) = n (the arity of the
symbol labeling:).

The set of all trees overr U I" U {x1,...,xm} IS
denoted byT ur ({x1,...,xn}). Given a treet, its
domain is denoted bylom(). The elements of the
domain are calledodesor tree addressesind a node
uis aleafif|{i € Ny | ui € Dom}| = 0. Atree isfinite,
if its domain is finite, andnfinite, otherwise.

A recursion scheme = (a1, ..., ay) iSasequence
of definitionsG; < «;, whereq; is a tree in the free
algebraTaur({x1,...,xm,;}), m; being the arity of
G;. It is well known that a recursion schemaecan
be unfolded into aN-tuple &V of infinite trees in
Ta({x1,...,xn}) [6,8,14].

In [8] it has been shown that every deterministic

J.H. Gallier et al. / Information Processing Letters 87 (2003) 187-193

Fig. 4. Translation of a recursion scheme to a DFA with recursive
calls.

4. Discussion

In this paper we have shown that DFAs with re-
cursive calls accept exactly the deterministic context-

context-free language is the set of tree-addresses in arfree languages. Together with the celebrated result by

infinite tree obtained by unfolding a (tree) recursion
scheme. We recall this result in the following theorem.

Theorem 2. Given a DPDAM with alphabet{1, N],
one can construct a recursion schemever a ranked
alphabetA = {4, ¢} where rankf) = rank(c) = N,
such that the language(M) accepted by is equal

to the set of all tree addresses labeled witlin the
infinite treealv, the first component of the unfoldment
of a.

We can now conclude that every deterministic
context-free language is accepted by a DFA with
recursive calls. There is a simple way of translating
a recursion scheme= (1, ..., ay) into a DFA with
calls. All we have to do is to disregard the labgBnd
¢ and modify the trees; in the following way:

(1) For every part of the tree of the form shown in
Fig. 4(a), wheres; labels a node, change it to the
graph shown in Fig. 4(b), whei labels an edge.

(2) Change every variabheto an exit state of indei

(3) For every node, théth outgoing edge is labeled
with inputa; .

Hence we prove the following result.

Theorem 3. Every deterministic context-free language
is accepted by a DFA with recursive calls.

Sénizergues [15] on the DPDA equivalence problem,
this gives a decidability result also for the equivalence
problem for DFAs with recursive calls.

The unfolding of the recursion in a DFA with
recursive calls yields an infinite graph. It is possible
to show that this infinite graph is the colimit of a
sequence of finite approximating DFAs. We can also
prove that any infinite graph obtained from a DFA with
recursive calls is representable by a simple equational
graph [7]. There is an ongoing research aimed at
characterizing the Chomsky hierarchy by classes of
infinite graphs (see, for example, [5]).

An interesting feature of our formalism is the inti-
mate connection with DFAs. For several problems, it
is possible to obtain algorithms by adapting algorithms
given for the corresponding problems on DFAs. This is
true, for example, for the emptiness problem, where an
efficient algorithm can be obtained by combining the
algorithm for checking the emptiness on DFAs with a
depth-first search of the DFA with recursive calls.

If we focus on DFAs with recursive calls sharing
the same “recursion structure” this connection is also
more evident. Given a DFA with recursive call3
and denoting byDs,..., D, the sequence of its
component DFAs, we define thmll graph of D as
a di-graph where each vertax corresponds taD;,
eachv; is labeled with the number of exits d;
and there exists an edge fram to v; if and only if
there exists a call td; from D;. By applying the
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