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Abstract

We study deterministic finite automata (DFA) with recursive calls, that is, finite sequences of component DFAs that
each other recursively. DFAs with recursive calls are akin to recursive state machines and unrestricted hierarchic state
We show that they are language equivalent to deterministic pushdown automata (DPDA).
 2003 Elsevier B.V. All rights reserved.
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Finite automata are a very intuitive and wide
studied formalism. They are a natural framework
modeling and studying finite state systems. Desc
tions using automata are useful to represent the
trol flow of a computer program, and in general t
behavior of a digital system. This makes them s
able for formal analysis via well-founded techno
gies, such as model checking. In the simplest sett
a finite automaton consists of a labeled graph wh
vertices correspond to system states and edges c
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In this paper, we study an extension of the conc

of a DFA by allowing certain transitions to be “calls
to other DFAs. The automata we define are sim
to restricted types of augmented transition netwo
(ATN) used in natural language processing [18], an
other hierarchic state machine models that have b
proposed in different contexts where the need fo
nesting capability is either natural or convenient. Su
machines have been studied in the context of in
procedural dataflow analysis. They can model cont
flow graphs of procedures in programming langua
such as C. Our model is also related to the strict de
ministic grammars of Harrison and Havel [11]. In [1
a class of nondeterministic finite automata with rec
sive calls is proved to correspond to the unambigu
context-free languages. In the design and verifica

.
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of large systems the use of hierarchic paradigms has
been advocated by many authors both to have succinct

re-
re-

tic)
eo-
is-
gu-
au-
an-
as

call
an-
m

po-
-
te
n-
ve
w

ss
he
ove
istic

8].
istic
ith

ing
ith
can

istic
if
ry
nor
ges
uage
n
alls
f a
lls

ns to
can
the
y to

guess whether the current symbol is the last symbol of
w or not, and only in the second case, a recursive call
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descriptions and exploit modularity [9,4,1]. Recent
sults have been concerned with the verification of
cursive finite state machines [3,2].

Here, we are interested in recursive (determinis
finite state machines from a formal languages th
retic perspective. It is well known that (determin
tic) finite automata define exactly the class of re
lar languages. Our aim is to extend this class of
tomata to capture the deterministic context-free l
guages. We define a DFA with recursive calls
a finite sequence of component DFAs that can
each other recursively. There are three kinds of tr
sitions: ordinary transitions, calls and returns (fro
calls). A call corresponds to entering another com
nent DFA, and a return to exiting it. The main lim
itation we place on the model is that if from a sta
q there is a call to a DFA then this is the only tra
sition from q . This restriction is needed to preser
the determinism of the model. For any call we allo
multiple return points, i.e.,multiple exitsin the com-
ponent DFAs.

The main result of this paper is that the cla
of DFAs with recursive calls defines exactly t
class of deterministic context-free languages. To pr
that this class of automata accepts only determin
context-free languages, we use theatomic normal
formof deterministic pushdown automata given in [
The completeness result, that is, each determin
context-free language has an equivalent DFA w
recursive calls accepting it, is shown by translat
an infinite tree of a recursion scheme to a DFA w
recursive calls and using the fact that such trees
be used to characterize the class of determin
context-free languages [8]. It is worth noticing that
in our model we allow nondeterminism on ordina
transitions (i.e., transitions that are neither calls
returns), also nondeterministic context-free langua
can be accepted. For example, consider the lang
L= {wwR |w ∈Σ}, whereΣ is an alphabet. We ca
define an automaton with deterministic recursive c
that acceptsL, as follows. The automaton consists o
single component that can call itself recursively. Ca
are used to push symbols onto the stack and retur
pop symbols from the stack. The top of the stack
be stored in the state of the current activation of
component. Thus, nondeterminism is needed onl
is made after this symbol is read.
The equivalence problem for deterministic pus

down automata has been recently shown to be de
able [15]. Another proof of this result can be fou
in [17]. Besides the importance of such a result
DPDA equivalence problem has a number of imp
tant implications which have been discussed in [1
By our results, we derive from the decidability of th
DPDA equivalence problem also the decidability
the equivalence problem for DFAs with recursive ca
If we see the DFAs with recursive calls as recurs
program schemes, we have also that a certain kin
strong equivalence is decidable (we might call it “flo
equivalence”).

Unwinding the recursion in a DFA with recursiv
calls we obtain a deterministic automaton whose tr
sition graph is an infinite graph (infinite automaton).
It is possible to prove that this infinite automaton
the “initial fixpoint” (in the sense of Lehmann [13
of a “substitution functor” induced by the set of DFA
with recursive calls. In fact, such automaton turns
to be the colimit of a sequence of finite approximat
DFAs.

The rest of the paper is organized as follow
In Section 2 we introduce the model and recall
main definitions. In Section 3 we prove that DFA
with recursive calls characterize exactly the class
deterministic context-free languages. We conclud
Section 4 with further remarks.

2. The model

In this section we introduce the notion of determ
istic finite automata with recursive calls.

LetΣ be a finite alphabet and letΦ = {F1, . . . ,FN }
be a set of function symbols, each having arityr(Fi) �
0. Let M = max{r(Fi) | 1 � i � N} and let [1,M]
denote the set{1, . . . ,M} (with [1,0] = ∅). The
symbols ofΦ will be called nonterminals, while th
symbol inΣ will be called terminals. The elements
Φ can be considered as procedure names.

A deterministic finite automaton with recursiv
calls is a set of component DFAs that can call e
other recursively. Calls and returns are modeled
special transitions that do not read input symb
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Moreover, if from a stateq there exists a call transition
then this is the only transition leaving fromq . If p
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• δ :Q×Σ ∪Φ ∪ [1,M]→Q is a partial function
called the transition function and satisfies the
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is the state reached after a call, it can have only
entering transition, and the transitions exitingp are
exactly the returns from this call and each of th
corresponds to an exit of the called component. Th
exists a one-to-one correspondence between the
of a called component and the returns of the call
component. For any call we allow multiple retu
points, i.e.,multiple exitsin the component DFAs.

Formally, adeterministic finite automaton with re
cursive callsconsists of a finite sequenceD = 〈F1⇐
D1, . . . ,FN ⇐ DN 〉 of DFA definitions, whereDi

is a DFA which can issue callsF1, . . . ,FN respec-
tively to any of the component DFAsD1, . . . ,DN .
The first definitionF1⇐ D1 is considered to be th
“main definition”. Given anFi ∈Φ, a DFA definition
Fi ⇐ Di for Fi of arity m is a 6-tuple〈Q,Σ ∪ Φ ∪
[1,M], δ, in,OUT,FINAL〉 where:

• Q is a finite set of states.
• in ∈Q is the entry state.
• FINAL⊆Q is the set of final states.
• OUT :Q → [1,m] is a partial function whose

domain is denoted asdom(OUT); each statep
for whichOUT(p)= j is called an exit state with
indexj .
following conditions:
(1) For everyp ∈Q andFj ∈Φ, if q = δ(p,Fj )

is defined, thenδ(p,α) is not defined for any
otherα ∈Σ ∪Φ ∪ [1,M], that is,δ(p,Fj ) is
the only transition defined fromp.

(2) If δ(p,Fj ) = q then δ(q, k) is defined only
for k such that 1� k � r(Fj ), andδ(q,α) is
not defined for anyα ∈Σ ∪Φ.

(3) If defined,δ(p,Fj ) is not a final state and ha
no other incoming edges.

Furthermore, the entry statein has no incoming
transitions, every state indom(OUT) has no out-
going transitions and every state lies on a p
from in to some exit state.

As an example of a DFA with recursive call
consider the automatonD given by the tuple of
definitions 〈F1 ⇐ D1,F2 ⇐ D2,F3 ⇐ D3〉, where
{F1,F2,F3} is a set of nonterminals withr(F1) = 0,
r(F2) = 1, andr(F3) = 2. The details on the DFA
D1, D2 andD3 are shown in Fig. 1. The alphabet
terminal symbols isΣ = {a, b, c, d}, the entry states
areini for eachFi for i = 1,2,3, OUT(out2)= 1, and
OUT(outi3)= i for i = 1,2.
Fig. 1. Graphical representation of the DFAsD1 (a),D2 (b), andD3 (c).
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Fig. 2. Recursive callFi .

For the sake of simplicity, in the following for an
DFA with recursive callsD = 〈F1⇐ D1, . . . ,FN ⇐
DN 〉, we assume thatQi ∩Qj = ∅ wheneveri �= j .

We define the languageL(D) accepted by a DFA
with recursive callsD by defining the notion of a com
putation. For that, we viewD = 〈F1⇐D1, . . . ,FN ⇐
DN 〉 as a context-free graph grammar with start sy
bol F1. If D is a DFA with calls from the se
{F1, . . . ,FN } we say thatR rewrites toS in one step
using productions inD, denoted asR⇒D S (or R⇒
S whenD is understood), ifS is obtained fromR by
substitutingDi for some occurrence of a callFi to Di

in R. More precisely, if the occurrence ofFi in R is as
indicated in Fig. 2, the graphDi is substituted in such
a way that the entry ofDi is identified withp, and
each exit state indexed withj (1 � j � m) is identi-
fied with qj . Note that the nodeq always disappear
together with all edges adjacent to it. The result of s
stitutingDi for Fi atq in R is denoted asR[q→Di].

Let⇒+ be the transitive closure of⇒ and⇒∗ be
its reflexive and transitive closure. Aninstantaneous
description(ID) is a triple 〈R,p,u〉, whereR is a
graph derivable fromD1 (D1⇒∗ R), p is a state in
R andu is the remaining input. Acomputationis a
sequence of ID’s such that given two consecutive
ID1 andID2, whereID1= 〈R,p,u〉, we have that:

(1) If u= av, a ∈Σ andq = δ(p, a) is defined, then
ID2= 〈R,q, v〉.

(2) If q = δ(p,Fi ) is defined thenID2 = 〈R[q ←
Di], ini , u〉. This corresponds to a callFi to Di .
In this move,Di is substituted forFi in R, and
control is passed to the entry ofDi , no input being
read.
a way that these edges are deleted.
The languageL(D) accepted by a DFA with

recursive callsD is the set of all stringsu such that
there exists a computation from〈D1, in1, u〉 to an
accepting configuration〈R,f, ε〉, wheref is a final
state and withε we denote as usual the empty strin
It is easy to verify that the DFA with recursive ca
D in Fig. 1 accepts the languageL = {ancbn | n �
1} ∪ {andb2n | n � 1}.

3. Equivalence of DPDAs and DFAs with
recursive calls

We assume that the reader is familiar with pu
down automata. A formal definition can be found
[10]. We recall a result from [8] that gives a charact
ization of deterministic pushdown automata inatomic
normal form.

A DPDA M is in atomic normal form if it has the
following structure:

(1) The set of states is partitioned into three disjo
subsetsKread, Kpush and Kpop (states without
outgoing transitions are considered inKread).

(2) Transitions are of the form:
(a) read move: being in a read state,M reads the

next input regardless of the symbol on t
top of the stack and changes its state with
changing the stack. This is the only mo
advancing the input.

(b) push move: being in a push state,M on anε-
move pushes the current state on top of
stack and changes its state (regardless of
top of the stack).

(c) pop move: being in a pop state,M on anε-
move pops the top of stack and changes
state.

(3) A pop move never follows immediately a pu
move.

(4) Every accepting state is a read state.

The following theorem holds.

Theorem 1 [8]. Every DPDA is equivalent to a DPD
in atomic normal form.
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ive
Fig. 3. A DPDA in atomic normal form equivalent to the DFA with recursive calls from Fig. 1.
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context-free languages. We start by showing that
language accepted by a DFA with recursive ca
can be accepted also by a deterministic pushd
automaton, then we prove the converse.

Lemma 1. Given a DFA with recursive callsD =
〈F1 ⇐ D1, . . . ,FN ⇐ DN 〉, the languageL(D) is
accepted(by final state) by a pushdown automatonM,
which can be constructed effectively fromD.

Proof. By Theorem 1 it is sufficient to constru
a deterministic pushdown automatonM in atomic
normal form that acceptsL(D). We defineM as
follows. The set of states ofM is the union of the
sets of states of eachDi for i = 1, . . . ,N . The tape
alphabet, the initial state, and the accepting state
M are the same as forD. The stack symbols are th
states from which a function symbol can be read inD.
To complete the construction we need to give the re
push and pop moves. For any transitionδi(p,σ )= q ,
i = 1, . . . ,N , whereσ ∈Σ , we add a read move onσ
fromp to q in M. For any call toFi from a statep, we
add a push move fromp to the entry state ofDi , and
a pop move from any exit state to the correspond
state ofDi . It can be shown that the language accep
by M, by final state, isL(D). ✷
atomic normal form corresponding to the DFA wi
recursive calls shown in Fig. 1.

To prove the converse, that is, each determini
context-free language is recognized by a DFA w
recursive calls, we appeal to a result proved in
Before stating this result we need to introduce so
definitions.

A ranked alphabet is a set∆ together with a rank
function rank:∆→ N, whereN is the set of natura
numbers. Every symbolg of rank(g) = n is said to
havearity n. Let ∆ be a ranked alphabet of functio
symbols, andΓ = {G1, . . . ,GN } be a finite set of
nonterminals. Atree domainDOM is a non empty
set of strings overN+ (the set of positive integers
satisfying the following conditions:

• For eachu in DOM, every prefixv of u is also in
DOM.
• For eachu in DOM, for every positive integeri, if

ui is in DOM, then for everyj , 1 � j � i, uj is
also in DOM.

Let {x1, . . . , xm} be a set of variables (considered
symbols of arity 0). A tree over∆∪ Γ ∪ {x1, . . . , xm}
is a mappingt : DOM→ ∆ ∪ Γ ∪ {x1, . . . , xm} such
that the following conditions hold:
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• DOM is a tree domain.
• For every u in DOM, if n = |{i ∈ N+ | ui ∈
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DOM}|, then rank(t (u)) = n (the arity of the
symbol labelingu).

The set of all trees over∆ ∪ Γ ∪ {x1, . . . , xm} is
denoted byT∆∪Γ ({x1, . . . , xm}). Given a treet , its
domain is denoted bydom(t). The elements of the
domain are callednodesor tree addresses, and a node
u is a leaf if|{i ∈N+ | ui ∈ DOM}| = 0. A tree isfinite,
if its domain is finite, andinfinite, otherwise.

A recursion schemeα = 〈α1, . . . , αN 〉 is a sequence
of definitionsGi ⇐ αi , whereαi is a tree in the free
algebraT∆∪Γ ({x1, . . . , xmi }), mi being the arity of
Gi . It is well known that a recursion schemeα can
be unfolded into aN -tuple α∇ of infinite trees in
T∆({x1, . . . , xm}) [6,8,14].

In [8] it has been shown that every determinis
context-free language is the set of tree-addresses
infinite tree obtained by unfolding a (tree) recursi
scheme. We recall this result in the following theore

Theorem 2. Given a DPDAM with alphabet[1,N],
one can construct a recursion schemeα over a ranked
alphabet∆ = {+, c} where rank(+) = rank(c) = N ,
such that the languageL(M) accepted byM is equal
to the set of all tree addresses labeled with+ in the
infinite treeα∇1 , the first component of the unfoldme
of α.

We can now conclude that every determinis
context-free language is accepted by a DFA w
recursive calls. There is a simple way of translat
a recursion schemeα = 〈α1, . . . , αN 〉 into a DFA with
calls. All we have to do is to disregard the labels+ and
c and modify the treesαi in the following way:

(1) For every part of the tree of the form shown
Fig. 4(a), whereGi labels a node, change it to th
graph shown in Fig. 4(b), whereFi labels an edge

(2) Change every variablex to an exit state of indexi.
(3) For every node, theith outgoing edge is labele

with inputai .

Hence we prove the following result.

Theorem 3. Every deterministic context-free langua
is accepted by a DFA with recursive calls.
Fig. 4. Translation of a recursion scheme to a DFA with recurs
calls.

4. Discussion

In this paper we have shown that DFAs with r
cursive calls accept exactly the deterministic conte
free languages. Together with the celebrated resu
Sénizergues [15] on the DPDA equivalence proble
this gives a decidability result also for the equivalen
problem for DFAs with recursive calls.

The unfolding of the recursion in a DFA wit
recursive calls yields an infinite graph. It is possi
to show that this infinite graph is the colimit of
sequence of finite approximating DFAs. We can a
prove that any infinite graph obtained from a DFA w
recursive calls is representable by a simple equati
graph [7]. There is an ongoing research aimed
characterizing the Chomsky hierarchy by classes
infinite graphs (see, for example, [5]).

An interesting feature of our formalism is the in
mate connection with DFAs. For several problems
is possible to obtain algorithms by adapting algorith
given for the corresponding problems on DFAs. Thi
true, for example, for the emptiness problem, where
efficient algorithm can be obtained by combining t
algorithm for checking the emptiness on DFAs with
depth-first search of the DFA with recursive calls.

If we focus on DFAs with recursive calls sharin
the same “recursion structure” this connection is a
more evident. Given a DFA with recursive callsD
and denoting byD1, . . . ,Dn the sequence of it
component DFAs, we define thecall graph of D as
a di-graph where each vertexvi corresponds toDi ,
eachvi is labeled with the number of exits ofDi

and there exists an edge fromvi to vj if and only if
there exists a call toDj from Di . By applying the
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DFA minimization algorithm locally to each DFADi ,
we can construct a minimal DFA with recursive calls
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which has the same call graph asD and such that the
language accepted byD is preserved.

Finally, we remark that our model is similar
a paradigm that has been recently introduced in
context of verification [2,3]. Analogies with thes
papers end at this point, in fact we depart from th
on both the results we obtain and the techniques
use. In [2], the authors solve the reachability and cy
detection problems on recursive finite state mach
by reducing them to evaluating datalog program
Benedikt et al. [3] consider model checking wi
respect to temporal logic specifications, and also s
that, for every recursive finite state machineM, one
can construct in linear time a pushdown automatoA
such that the Kripke structures generated byM and
A are bisimilar. From this result, we can only inf
that the languages accepted by recursive finite s
machines are context free. In both papers, the fo
is on verification problems and thus determinism
not addressed. Here we have characterized the
of deterministic context-free languages, and for t
purpose we have placed suitable restrictions on
model.
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