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Abstract. In this paper, we give several simple methods for drawing a whole rational
surface (without base points) as several Bézier patches. The first two methods apply to
surfaces specified by triangular control nets and partition the real projective plane RP

2

into four and six triangles respectively. The third method applies to surfaces specified by
rectangular control nets and partitions the torus RP

1 × RP
1 into four rectangular regions.

In all cases, the new control nets are obtained by sign flipping and permutation of indices
from the original control net. The proofs that these formulae are correct involve very little
computations and instead exploit the geometry of the parameter space (RP

2 or RP
1 ×RP

1).
We illustrate our method on some classical examples. We also propose a new method for
resolving base points using a simple “blowing up” technique involving the computation of
“resolved” control nets.
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1 Introduction

In this paper, we consider the problem of drawing a whole rational surface. For example,
consider the sphere F specified by the fractions

x(u, v) =
2u

u2 + v2 + 1
, y(u, v) =

2v

u2 + v2 + 1
, z(u, v) =

u2 + v2 − 1

u2 + v2 + 1
.

The problem is that no matter how large the interval [r, s] is, the trace F ([r, s] × [r, s]) of
F over [r, s] × [r, s] is not the trace of the entire surface. In this particular example, we
could take advantage of symmetries, but in general, this may not be possible. We could
use any of the bijections from ] − 1, 1[ to R to reduce the parameter domain to the square
[−1, 1]× [−1, 1], but since these maps are at least quadratic, this could triple the total degree
of the surface, leading to an impractical method. For example, using the map

t �→ t

1 − t2

the fraction
1

u2 + uv
becomes

(1 − u2)2(1 − v2)

(1 − v2)u2 + (1 − u2)uv
.

Recomputing the control net after substitution would also be quite expensive. Indeed, one
of the reasons why the problem is not trivial is that in most CAGD applications, the surface
is given in terms of control points rather than parametrically (in terms of polynomials).

Thus, the problem is to cope with the situation in which u or v become infinite. But what
do we mean exactly by that? To deal with this situation rigorously, we can “go projective”,
that is, homogenize the polynomials. However, this can be done in two different ways. The
first method is to homogenize with respect to the total degree, replacing u by u/t and v by
v/t, getting

x =
2ut

u2 + v2 + t2
, y =

2vt

u2 + v2 + t2
, z =

u2 + v2 − t2

u2 + v2 + t2
.

The parameter domain is now the real projective plane RP
2. Points at infinity are the points

of homogeneous coordinates (u, v, 0) (i.e., when t = 0). Observe that all these point at
infinity yield the north pole (0, 0, 1) on the sphere.

The second method is to homogenize separately in u and v, replacing u by u/t1 and v by
v/t2, getting

x =
2ut1t

2
2

u2t22 + v2t21 + t21t
2
2

, y =
2vt21t2

u2t22 + v2t21 + t21t
2
2

, z =
u2t22 + v2t21 − t21t

2
2

u2t22 + v2t21 + t21t
2
2

.

This time, the parameter domain is the product space RP
1 × RP

1, where RP
1 is the real

projective line. The domain RP
1 × RP

1 is homeomorphic to a torus, and it is not homeo-
morphic to RP

2. Observe that when t1 = t2 = 0, all the numerators and the denominator
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vanish simultaneously. We have what is called a base point . This is annoying but not terribly
surprising, since a sphere is not of the same topological type as a torus. It should be noted
that there are also rational surfaces (such as the torus) that do not have base points when
treated as surfaces with domain RP

1 × RP
1 but have base points when treated as having

domain RP
2 (see Section 6), and vice versa.

In summary, there are two ways to deal with infinite values of the parameters. We can
homogenize with respect to the total degree m (replacing u by u/t and v by v/t). This leads
to rational surfaces specified by triangular control nets, as we will see more precisely in the
next section. The other method is to homogenize with respect to u and the maximum degree
p in u (replacing u by u/t1) and with respect to v and the maximum degree q in v (replacing
v by v/t2). This leads to rational surfaces specified by rectangular control nets, as we will
see more precisely in the next section.

The problem of drawing a rational surface reduces to the problem of partitioning the
parameter domain into simple connected regions Ri such as triangles or rectangles, in such a
way that there is some prespecified region R0 and some projectivities such that every other
region is the image of the region R0 under one of the projectivities. Furthermore, if the
patch associated with the region R0 is given by a control net N0, we want the control net
Ni associated with the region Ri to be computable very quickly from N0.

In the case of the real projective plane RP
2, we can use the fact that RP

2 is obtained
as the quotient of the sphere S2 after identification of antipodal points. The real projective
plane can be partitioned by projecting any polyhedron inscribed in the sphere S2 on a plane.
This way of dividing the real projective plane into regions is discussed quite extensively in
Hilbert and Cohn-Vossen [14] (see Chapter III). As noted by Hilbert, it is better to use
polyhedra with central symmetry, so that the projective plane is covered only once since
vertices come in pairs of antipodal points. In particular, we can use the four Platonic solids
other than the tetrahedron, but if we want rectangular or triangular regions, only the cube,
the octahedron, and the icosahedron can be used. Indeed, projection of the dodecahedron
yields pentagonal regions (see Hilbert and Cohn-Vossen [14], page 147-150).

If we project the cube onto one of its faces from its center, we get three rectangular
regions (see Section 3). It is easy to find the projectivities that map the central region onto
the other two. Since we are dealing with the projective plane, it is better to use triangular
control nets to avoid base points, and it is necessary to split the central rectangle into two
triangles. Thus, the trace of the rational surface is the union of six patches over various
triangles. It is shown in Section 3 how the control nets of the other four patches are easily
(and cheaply) obtained from the control nets of the two central triangles.

If we project the octahedron onto one of its faces from its center, we get four triangular
regions (see Section 4). This time, it is a little harder to write down the projectivities that
map the central triangle rst to the other three triangles R,S, T . However it is not necessary
to find explicit formulae for these projectivities, and using a geometric argument, we can find
very simple formulae to compute the control nets associated with the other three triangles
from the control net associated with the central triangle, as shown in Section 4.
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Projecting the icosahedron onto one of its faces from its center yields ten triangular
regions, but we haven’t found formulae to compute control nets of the other regions from the
central triangle. We leave the discovery of such formulae as an open and possibly challenging
problem.

Let us now consider the problem of partitioning RP
1×RP

1 into simple regions. Since the
projective line RP

1 is topologically a circle, a very simple method is to inscribe a rectangle
(or a square) in the circle and then project it. One way to do so leads to a partition of RP

1

into [−1, 1] and RP
1−] − 1, 1[. The corresponding projectivity is t �→ 1

t
. Other projections

lead to a partition of RP
1 into [r, s] and RP

1−]r, s[ for any affine frame (r, s). In all cases, the
torus is split into four rectangular regions, and there are very simple formulae for computing
the control nets of the other three rectangular nets from the control net associated with the
patch over [−1, 1] × [−1, 1] (or more generally, [r1, s1] × [r2, s2]), as explained in Section 5.

It should be stressed that it is not necessary to compute explicitly the various projec-
tivities, and that in each case, a simple geometric argument yields the desired formulae for
the new control nets. Other methods for drawing rational surfaces were also investigated by
Bajaj and Royappa [2, 3] and DeRose [5] and will be discussed in Section 4 and Section 5.

There is a problem with our methods when all the numerators and the denominator
vanish simultaneously. In this case, we have what is called a base point . In Section 6, we
give a new method for resolving base points (in the case of a rational surface specified by a
triangular control net), using a simple “blowing-up” technique based on an idea of Warren
[18]. What is new is that we give formulae for computing “resolved” control nets.

It turns out that to give rigorous proofs of our formulae, it is necessary to view rational
surfaces as surfaces defined in a suitable projective space in terms of multiprojective maps.
We will summarize how to do this in Section 2. The proofs that our formulae are correct
involve very little computations and instead exploit the geometry of the parameter space
(RP

2 or RP
1 × RP

1). For the sake of brevity, we do not review how polynomial surfaces
are defined in terms of control points. The deep reason why polynomial triangular surface
patches can be effectively handled in terms of control points is that multivariate polynomials
arise from multiaffine symmetric maps (see Ramshaw [17], Farin [7, 6], Hoschek and Lasser
[15], or Gallier [11]).

2 Rational Surfaces and Control Points

Denoting the affine plane R
2 as P, a rational surface F : P → R

n of degree m is specified by
some fractions

x1(u, v) =
F1(u, v)

Fn+1(u, v)
, . . . , xn(u, v) =

Fn(u, v)

Fn+1(u, v)
,

where F1(u, v), . . . , Fn+1(u, v) are polynomials of total degree ≤ m. In order to handle ra-
tional surfaces in terms of control points, it turns out that it is necessary to view rational
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surfaces as surfaces in some projective space. Roughly, this means that we have to homog-
enize the polynomials F1(u, v), . . . , Fn+1(u, v). However, the polar forms of homogeneous
polynomials are multilinear, and thus we must deal with multilinear maps rather than mul-
tiaffine maps. Fortunately, there is a construction to embed an affine space into a vector
space, in such a way that multiaffine maps extend uniquely to multilinear maps. This con-
struction is described in Berger [4] and is at the heart of the presentation of rational surfaces
in Fiorot and Jeannin [8, 9]. However, Fiorot and Jeannin do not use polar forms. We have
adapted their approach in the framework of polar forms in Gallier [12]. In this paper, we
simply review the facts needed to understand the proof of our theorems. Given a vector
space E, we denote the projective space induced by E as P(E) (see Berger [4] or Gallier

[12]). Given an affine space E with associated vector space
−→
E , a vector space Ê can be con-

structed, such that E is embedded as an affine hyperplane in Ê via an affine map j : E → Ê,

and
−→
E as a hyperplane.

��

�

�

Ω

〈a, 1〉 = a

〈a, λ〉

i(
−→
E ) = ω−1(0)

j(E) = ω−1(1)

−→u

Figure 1: Embedding an affine space (E,
−→
E ) into a vector space Ê

Both hyperplanes are defined by some linear form ω : Ê → R. The previous diagram
illustrates the embedding of the affine space E into the vector space Ê: Roughly, the vector

space Ê has the property that for any vector space
−→
F and any affine map f : E → −→

F , there

is a unique linear map f̂ : Ê → −→
F extending f : E → −→

F . As a consequence, given two affine
spaces E and F , every affine map f : E → F extends uniquely to a linear map f̂ : Ê → F̂ .

A pair 〈a, λ〉 where a ∈ E and λ �= 0 is called a weighted point . Vectors in Ê of the form
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〈a, 1〉 are identified with points a in E. It is easily shown that for every a ∈ E, we have

Ê =
−→
E ⊕ Ra.

We have the following important result whose proof can be found in Gallier [12], or
inferred from Ramshaw [17].

Lemma 2.1 Given any two affine spaces E and F and a multiaffine map f : Em → F , there
is a unique multilinear map f̂ : (Ê)m → F̂ extending f as in the diagram below:

Em
f ��

j×···×j
��

F

j

��
(Ê)m

bf

�� F̂ .

Given an affine space E, the projective space P(Ê) induced by Ê is denoted as Ẽ, and

it is called the projective completion of E. Observe that R̃ = RP
1 and P̃ = RP

2.

The upshot of the above considerations is that a rational surface can be defined in terms
of multilinear maps. Let E be some ambiant affine space in which our surfaces live, in most
cases R

3. If we first homogenize the polynomials Fi(u, v) with respect to the total degree m
(replacing u by u/z and v by v/z), we can view a rational surface as a map

F : P̃ → Ẽ
(where P = R

2 is the affine plane) induced by some symmetric multilinear map

f : (P̂)m → Ê
such that

F ([u, v, z]) = P(f)((u, v, z), . . . , (u, v, z)︸ ︷︷ ︸
m

),

for all homogeneous coordinates (u, v, z) ∈ R
3. We call such surfaces rational total degree

surfaces , or triangular rational surfaces. Furthermore, for any affine frame ∆rst, the trian-
gular control net N = (θi, j, k)(i,j,k)∈∆m (in Ê) w.r.t. ∆rst defining the triangular surface F is
given by the formulae

θi, j, k = f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

), where i+ j + k = m.

On the other hand, if we first homogenize the polynomials Fi(u, v) with respect to u
and the maximum degree p in u (replacing u by u/t1) and second with respect to v and the
maximum degree q in v (replacing v by v/t2), we can view a rational surface as a map

F : R̃ × R̃ → Ẽ
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induced by some multilinear map

f : (R̂)p × (R̂)q → Ê
which is symmetric in its first p arguments and in its last q arguments, and such that

F ([u, t1], [v, t2]) = P(f)((u, t1), . . . , (u, t1)︸ ︷︷ ︸
p

, (v, t2), . . . , (v, t2)︸ ︷︷ ︸
q

),

for all homogeneous coordinates (u, t1), (v, t2) ∈ R
2. We call such surfaces rational surfaces

of bidegree 〈p, q〉, or rectangular rational surfaces. Furthermore, given any two affine frames
(r1, s1) and (r2, s2) for the affine line R, the rectangular control net N = (θi, j)0≤i≤p, 0≤j≤q (in

Ê) w.r.t. (r1, s1) and (r2, s2) defining the rectangular surface F is given by the formulae

θi, j = f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

, r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

).

A base point of a rational surface F specified by a multilinear map f is any point a ∈ R
3

such that f(a, . . . , a︸ ︷︷ ︸
m

) =
−→
0 , or any point (u, v) ∈ R

2 such that f(u, . . . , u︸ ︷︷ ︸
p

, v, . . . , v︸ ︷︷ ︸
q

) =
−→
0 .

3 Splitting Triangular Rational Surfaces Into Six Tri-

angular Patches

As we explained in Section 1, if we project a cube onto one of its faces from its center, we
obtain a partition of the projective plane RP

2 into three rectangular regions, in such a way
that there exist simple projectivities ϕ and ψ between the square [−1, 1] × [−1, 1] and the
other two regions.

F
u

Fϕ

Fψ

v

Figure 2: Dividing the projective plane into 3 rectangular regions
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The projectivity ϕ is induced by the linear isomorphism of R
3 given by

(u, v, w) �→ (v, w, u).

Choosing the line at infinity w = 0, the restriction of this map to the affine plane P (cor-

responding to w = 1) is the map (u, v, 1) �→ (v, 1, u). This is the map from P to P̃ such
that (u, v) �→ (v/u, 1/u) if u �= 0, and (0, v) �→ (v, 1, 0) when u = 0. The projectivity ψ is
induced by the linear isomorphism of R

3 given by

(u, v, w) �→ (w, u, v).

Choosing the line at infinity w = 0, the restriction of this map to the affine plane P (corre-

sponding to w = 1) is the map (u, v, 1) �→ (1, u, v). This is the map from P to P̃ such that
(u, v) �→ (1/v, u/v) if v �= 0, and (u, 0) �→ (1, u, 0) when v = 0.

Actually, it turns out that the method of this section holds for any region defined by a
nondegenerate quadrilateral (a, b, c, d), i.e. when (a, b, c, d) is a projective frame. However,
the details are a bit messy, and for simplicity, we restrict out attention to a rectangular region
[r1, s1]× [r2, s2]. Since we are dealing with triangular surfaces, it will be necessary to split the
rectangle [r1, s1] × [r2, s2] into two triangles, and thus, we will obtain the trace of a rational
surface as the union of 6 patches over various triangles in the rectangle [r1, s1] × [r2, s2].
Letting a, b, c, d be the vertices of the rectangle [r1, s1] × [r2, s2] defined such that

a = (s1, s2), b = (r1, s2), c = (r1, r2), d = (s1, r2),

as shown below

��

ab

c d

u

v

Figure 3: Some affine frames associated with the rectangle (a, b, c, d)
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we will consider the following affine frames

∆bca = ((r1, s2), (r1, r2), (s1, s2)),

∆dac = ((s1, r2), (s1, s2), (r1, r2)),

∆bad = ((r1, s2), (s1, s2), (s1, r2)).

In particular, a rectangular surface patch defined over the rectangle [r1, s1] × [r2, s2] will
be treated as the union of two triangular surface patches defined over the triangles ∆bca and
∆dac. It is somewhat unfortunate that a control net over the third frame ∆bad needs to be
computed, but that is what the proof of lemma 3.2 shows. In any case, such a control net
can be computed very cheaply from a control net over ∆bca (or ∆dac).

There is simple geometric explanation of the partitioning method in terms of the usual
model of the real projective plane P̃ = RP

2 in R
3. Recall that in this model, the real projec-

tive plane RP
2 consists of the points in the plane z = 1 corresponding to the lines through

the origin not in the plane z = 0, and of the points at infinity corresponding to the lines
through the origin in the plane z = 0. We view the vertices of the rectangle (a, b, c, d) defined
above as points in the plane z = 1, in which case their coordinates are (s1, s2, 1), (r1, s2, 1),
(r1, r2, 1), and (s1, r2, 1). Then, we have the parallelepiped (a, b, c, d,−a,−b,−c,−d). There
is a unique projectivity P(ϕ) such that

P(ϕ)(a) = a, P(ϕ)(b) = c, P(ϕ)(c) = d, P(ϕ)(d) = b.

For instance, it is induced by the unique linear map ϕ such that

ϕ(a) = a, ϕ(b) = −c, ϕ(c) = −d.

Since d = −b+ a+ c, we get

ϕ(d) = −ϕ(b) + ϕ(a) + ϕ(c) = c+ a− d = (r1, s2, 1) = b.

The linear map ϕ transforms the top face (a, b, c, d) of the parallelepiped to the back face
(a,−c,−d, b). When a line L through the origin and passing through a point of the face
(a,−c,−d, b) varies, the intersection of L with the plane z = 1 varies in ϕ([r1, s1] × [r2, s2]).
We can define a rhombus (a, e, f, g,−a,−e,−f,−g) inscribed in the sphere of center O =
(0, 0, 0) and of radius R =

√
s2
1 + s2

2 + 1 passing through a, as follows: the points e, f, g
are on the upper half-sphere and they are determined by the intersection of the lines (O, b),
(O, c) and (O, d) with the sphere. Then, it is obvious that under the central projection of
center O onto the plane z = 1, the top face (a, e, f, g) of the rhombus projects onto the face
(a, b, c, d) of the parallelepiped, and that the projection of the rhombus onto the plane z = 1
yields the desired partitioning of RP

2.

Similarly, there is a unique projectivity P(ψ) such that

P(ψ)(a) = a, P(ψ)(b) = d, P(ψ)(c) = b, P(ψ)(d) = c.
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It is induced by the unique linear map ψ such that

ψ(a) = a, ψ(b) = d, ψ(c) = −b.
Since d = −b+ a+ c, we get

ψ(d) = −ψ(b) + ψ(a) + ψ(c) = −d+ a− b = (−r1,−r2,−1) = −c.
The linear map ψ transforms the top face (a, b, c, d) of the parallelepiped to the right face
(a, d,−b,−c). When a line L through the origin and passing through a point of the face
(a, d,−b,−c) varies, the intersection of L with the plane z = 1 varies in ψ([r1, s1] × [r2, s2]).
Again, it is obvious that under the central projection of center O onto the plane z = 1,
the top face (a, e, f, g) of the rhombus projects onto the face (a, b, c, d) of the parallelepiped,
and that the projection of the rhombus onto the plane z = 1 yields the desired partition-
ing of RP

2. Figure 4 shows the parallelepiped (a, b, c, d,−a,−b,−c,−d) and the rhombus
(a, e, f, g,−a,−e,−f,−g).

a

-a

b

-b

c

-c

d

-d

e

-e

f

-f
g

-g

Figure 4: Parallelepiped and rhombus associated with (a, b, c, d)

We will now use the maps ϕ and ψ to show how the trace of a rational surface F
can be obtained as the union of the traces of three rational surfaces over the rectangle
[r1, s1] × [r2, s2].

1 The first of these surfaces is F itself, and the two other rational surfaces

1While reading Appell’s Treatise of Rational Mechanics, we stumbled on the fact that the change of
variable (u, v) �→ (1/v, u/v) was used by Appell in his solution to a problem of Bertrand (see [1], Tome I,
Part III, Chapter XI, page 422-423). Appell explains that he found this “homographic transformation” in
1889. The problem of Bertrand is to find all central force laws depending only on the position of a moving
particle, so that the trajectory of the particle is a conic for every choice of initial conditions.
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Fϕ and Fψ are easily obtained from F . However, depending on the multilinear map f defining
F , the surface F (and thus, Fϕ and Fψ) may have base points , that is, we may have

f((u, v, z), . . . , (u, v, z)︸ ︷︷ ︸
m

) =
−→
0

for some (u, v, z) �= (0, 0, 0). We will show how to deal with this situation later on.

In order to render the trace of F , we will use the fact that it is the union of the six traces
F (∆bca), F (∆dac), F (ϕ(∆bca)), F (ϕ(∆dac)), F (ψ(∆bca)), and F (ψ(∆dac)). Furthermore,
the last four traces are also obtained as traces of Fϕ and Fψ over some appropriate choice of
affine frames among ∆bca, ∆dac, and ∆bad.

We now show how Fϕ and Fψ are defined, and how their control points can be computed
very simply from the control points of F (computed with respect to the affine frames ∆bca,

∆dac, and ∆bad). We will assume that the homogenization P̂ of the affine plane P is

identified with the direct sum R
2 ⊕ RO, where O = (0, 0). Then, every element of P̂ is of

the form (u, v, z) ∈ R
3.

Definition 3.1 Given an affine space E of dimension ≥ 3, for every rational surface F : P̃ →
Ẽ of degree m specified by some symmetric multilinear map f : (P̂)m → Ê , the symmetric

multilinear maps fϕ : (P̂)m → Ê and fψ : (P̂)m → Ê are defined such that

fϕ((u1, v1, w1), . . . , (um, vm, wm)) = f(ϕ(u1, v1, w1), . . . , ϕ(um, vm, wm)),

fψ((u1, v1, w1), . . . , (um, vm, wm)) = f(ψ(u1, v1, w1), . . . , ψ(um, vm, wm)).

Let Fϕ : P̃ → Ẽ be the rational surface specified by fϕ : (P̂)m → Ê , and let Fψ : P̃ → Ẽ be

the rational surface specified by fψ : (P̂)m → Ê .

Observe that the base points of Fϕ, if any, have coordinates (u, v, w) �= (0, 0, 0) such that

f(ϕ(u, v, w), . . . , ϕ(u, v, w)) =
−→
0 ,

and that the base points of Fψ, if any, have coordinates (u, v, w) �= (0, 0, 0) such that

f(ψ(u, v, w), . . . , ψ(u, v, w)) =
−→
0 .

Lemma 3.2 Given an affine space E of dimension ≥ 3, for every rational surface F : P̃ → Ẽ
of degree m specified by some symmetric multilinear map f : (P̂)m → Ê, if fϕ and fψ are
the symmetric multilinear maps of definition 3.1, except for base points, F , Fϕ and Fψ have
the same trace. The trace of Fϕ over ∆bca is the trace of F over ϕ(∆bca), the trace of Fϕ
over ∆dac is the trace of F over ϕ(∆dac), the trace of Fψ over ∆bca is the trace of F over
ψ(∆bca), and the trace of Fψ over ∆dac is the trace of F over ψ(∆dac). Furthermore, if
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the control nets (in Ê) of the surface F w.r.t. the affine frames ∆bca, ∆dac, and ∆bad, are
respectively

α = (αi, j, k)(i,j,k)∈∆m ,

β = (βi, j, k)(i,j,k)∈∆m ,

γ = (γi, j, k)(i,j,k)∈∆m ,

the control nets θ1 and θ2 (in Ê) of the surface Fϕ w.r.t. the affine frames ∆bca and ∆dac,

and the control nets ρ1 and ρ2 (in Ê) of the surface Fψ w.r.t. the affine frame ∆bca and
∆dac, are given by the equations

θ1
i, j, k = (−1)i+j βj, k, i,

θ2
i, j, k = (−1)k γi, j, k,

ρ1
i, j, k = (−1)j γj, k, i,

ρ2
i, j, k = (−1)i+k αk, i, j.

Proof . We have

fϕ((u1, v1, w1), . . . , (um, vm, wm)) = f(ϕ(u1, v1, w1), . . . , ϕ(um, vm, wm)),

and thus

P(fϕ)([u1, v1, w1], . . . , [um, vm, wm]) = P(f)([ϕ(u1, v1, w1)], . . . , [ϕ(um, vm, wm)]).

In view of the properties of ϕ, it is clear that F and Fϕ have the same trace (except for base
points), and that the trace of Fϕ over ∆bca is the trace of F over ϕ(∆bca), and the trace
of Fϕ over ∆dac is the trace of F over ϕ(∆dac). A similar argument applies to F and Fψ.
The formulae for computing the control points of Fϕ w.r.t. the triangle ∆bca are obtained
by computing

fϕ(b, . . . , b︸ ︷︷ ︸
i

, c, . . . , c︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

).

Since

fϕ((u1, v1, w1), . . . , (um, vm, wm)) = f(ϕ(u1, v1, w1), . . . , ϕ(um, vm, wm)),

ϕ(b) = −c, ϕ(c) = −d, and ϕ(a) = a, we have

fϕ(b, . . . , b︸ ︷︷ ︸
i

, c, . . . , c︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

) = f(−c, . . . ,−c︸ ︷︷ ︸
i

,−d, . . . ,−d︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

),

that is
fϕ(b, . . . , b︸ ︷︷ ︸

i

, c, . . . , c︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

) = (−1)i+jf(c, . . . , c︸ ︷︷ ︸
i

, d, . . . , d︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

),
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and since the control points βi, j, k are computed w.r.t. the triangle ∆dac, we get

θ1
i, j, k = (−1)i+j βj, k, i.

The formulae for computing the control points of Fϕ w.r.t. the triangle ∆dac are obtained
by computing

fϕ(d, . . . , d︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

).

Since

fϕ((u1, v1, w1), . . . , (um, vm, wm)) = f(ϕ(u1, v1, w1), . . . , ϕ(um, vm, wm)),

ϕ(d) = b, ϕ(c) = −d, and ϕ(a) = a, we have

fϕ(d, . . . , d︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

) = f(b, . . . , b︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

,−d, . . . ,−d︸ ︷︷ ︸
k

),

that is
fϕ(d, . . . , d︸ ︷︷ ︸

i

, a, . . . , a︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

) = (−1)kf(b, . . . , b︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, d, . . . , d︸ ︷︷ ︸
k

),

and since the control points γi, j, k are computed w.r.t. the triangle ∆bad, we get

θ2
i, j, k = (−1)k γi, j, k.

The formulae for computing the control points of Fψ w.r.t. the triangle ∆bca are obtained
by computing

fψ(b, . . . , b︸ ︷︷ ︸
i

, c, . . . , c︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

).

Since

fψ((u1, v1, w1), . . . , (um, vm, wm)) = f(ψ(u1, v1, w1), . . . , ψ(um, vm, wm)),

ψ(b) = d, ψ(c) = −b, and ψ(a) = a, we have

fψ(b, . . . , b︸ ︷︷ ︸
i

, c, . . . , c︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

) = f(d, . . . , d︸ ︷︷ ︸
i

,−b, . . . ,−b︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

),

that is
fψ(b, . . . , b︸ ︷︷ ︸

i

, c, . . . , c︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

) = (−1)jf(d, . . . , d︸ ︷︷ ︸
i

, b, . . . , b︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

),

and since the control points γi, j, k are computed w.r.t. the triangle ∆bad, we get

ρ1
i, j, k = (−1)j γj, k, i.
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Finally, the formulae for computing the control points of Fψ w.r.t. the triangle ∆dac are
obtained by computing

fψ(d, . . . , d︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

).

Since

fψ((u1, v1, w1), . . . , (um, vm, wm)) = f(ψ(u1, v1, w1), . . . , ψ(um, vm, wm)),

ψ(d) = −c, ψ(c) = −b, and ψ(a) = a, we have

fψ(d, . . . , d︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

) = f(−c, . . . ,−c︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

,−b, . . . ,−b︸ ︷︷ ︸
k

),

that is
fψ(d, . . . , d︸ ︷︷ ︸

i

, a, . . . , a︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

) = (−1)i+kf(c, . . . , c︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, b, . . . , b︸ ︷︷ ︸
k

),

and since the control points αi, j, k are computed w.r.t. the triangle ∆bca, we get

ρ2
i, j, k = (−1)i+k αk, i, j.

The above calculations show that ϕ and ψ can be defined as above provided that d =
−b + a + c, or equivalently b + d = a + c, which means that (a, b, c, d) is a parallelogram.
Actually, lemma 3.2 also holds in the more general situation where (a, b, c, d) is a projective
frame, i.e. a quadrilateral whose vertices are in general position. However, the definition of
the linear maps ϕ and ψ is a little more messy. As before, we identify a, b, c, d with points in
the plane z = 1, and we let a = (a1, a2, 1), b = (b1, b2, 1), c = (c1, c2, 1), and d = (d1, d2, 1).
To find a linear map ϕ inducing the unique projectivity P(ϕ) such that

P(ϕ)(a) = a, P(ϕ)(b) = c, P(ϕ)(c) = d, P(ϕ)(d) = b,

we let d = λa+ µb+ νc and b = λ′a+ µ′c + ν ′d, where λ+ µ+ ν = 1 and λ′ + µ′ + ν ′ = 1,
and ϕ is the unique linear map such that

ϕ(λa) = λ′a, ϕ(µb) = µ′c, ϕ(νc) = ν ′d.

Then, ϕ(d) = b, as desired. The linear map ψ can be defined in a similar way. The proof
still goes through since the maps involved are multilinear, and thus not disturbed by scalar
multiples.

Lemma 3.2 shows that in order to render a rational surface, provided that it does not
have base points, we just need to compute the control nets α, β, γ for the surface F w.r.t.
the affine frames ∆bca, ∆dac, and ∆bad, since then, the control nets θ1 and θ2 (in Ê) of the
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surface Fϕ w.r.t. the affine frames ∆bca and ∆dac, and the control nets ρ1 and ρ2 (in Ê) of
the surface Fψ w.r.t. the affine frame ∆bca and ∆dac, are obtained at trivial cost.

Remark: It should be noted that the surface patches associated with the control nets α,
β, θ1, θ2, ρ1, and ρ2, may overlap in more than boundaries. In fact, there are examples
where α and β determine the entire surface, and other examples in which θ1, θ2, ρ1, and ρ2,
determine the entire surface.

It is fairly easy to implement this method in Mathematica. The interested reader will
find such an implementation in Gallier [12]. In the interest of brevity, we content ourselves
with some examples.

Example 1. The algorithm is illustrated by the following example of an ellipsoid defined by
the fractions

x(u, v) =
2c1u

u2 + v2 + 1
, y(u, v) =

2c2v

u2 + v2 + 1
, z(u, v) =

c3(u
2 + v2 − 1)

u2 + v2 + 1
.

It is easily verified that this representation of the ellipsoid is derived from the stereo-
graphic projection from the north pole onto the plane z = 0. The coordinates of a point on
the sphere are the coordinates of the image of a point (u, v) the xOy plane, under the inverse
of stereographic projection. We leave as an exercise to show that the following triangular
control net for c1 = 4, c2 = 3, c3 = 2, is obtained:

net = {{0, 0, -2, 1}, {0, 3, -2, 1}, {0, 3, 0, 2},

{4, 0, -2, 1}, {4, 3, -2, 1}, {4, 0, 0, 2}}

The following picture shows the result of iterating the subdivision algorithm 3 times on
the nets net1 and net2:
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Figure 5: Patches 1, 2, of an ellipsoid

Iterating the subdivision algorithm 3 times on the nets theta1 and theta2 yields:
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Figure 6: Patches 3, 4, of an ellipsoid
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Iterating the subdivision algorithm 3 times on the nets rho1 and rho2 yields:
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Figure 7: Patches 5, 6, of an ellipsoid

The result of putting all these patches together is the entire ellipsoid:

-4

-2

0

2

4

x -2

0

2

y

-2

-1

0

1

2

z

-4

-2

0

2

4

x -2

0

2

y

-2

-1

0

1

2

Figure 8: An entire ellipsoid
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Of course, we could have taken advantage of symmetries, and our point is to illustrate
the algorithm.

Example 2. The Steiner roman surface is the surface of implicit equation

x2y2 + y2z2 + x2z2 = 2xyz.

It is easily verified that the following parameterization works:

x(u, v) =
2v

u2 + v2 + 1
, y(u, v) =

2u

u2 + v2 + 1
, z(u, v) =

2uv

u2 + v2 + 1
.

It can be shown that this surface is contained inside the tetrahedron defined by the planes

−x+ y + z = 1, x− y + z = 1, x+ y − z = 1, −x− y − z = 1,

with −1 ≤ x, y, z ≤ 1. The surface touches these four planes along ellipses, and at the
middle of the six edges of the tetrahedron, it has sharp edges. Furthermore, the surface is self-
intersecting along the axes, and is has four closed chambers. A more extensive discussion can
be found in Hilbert and Cohn-Vossen [14], in particular, its relationship to the heptahedron.
A triangular control net is easily obtained:

stein1 = {{0, 0, 0, 1}, {1, 0, 0, 1}, {1, 0, 0, 2},

{0, 1, 0, 1}, {1, 1, 1, 1}, {0, 1, 0, 2}};

We can display the entire surface using the method described in this section. Indeed,
all six patches are needed to obtain the entire surface. One view of the surface obtained by
subdividing 3 times is shown below (see Figure 9). Patches 1 and 2 are colored blue, patches
3 and 4 are colored red, and patches 5 and 6 are colored green. A closer look reveals that
the three colored patches are identical under appropriate rigid motions, and fit perfectly.
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Figure 9: The Steiner roman surface
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Figure 10: A cut of the Steiner roman surface

Another revealing view (see Figure 10) is obtained by cutting off a top portion of the
surface. This way, it is clear that the surface has chambers.

4 Splitting Triangular Rational Surfaces Into Four Tri-

angular Patches

As explained in Section 1, we obtain a partition of the real projective plane RP
2 into four

triangles if we project an octahedron onto one of its faces from its center. We sketch such a
method, leaving the simple details to the reader.
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Figure 11: Splitting RP
2 into four triangles

We let r, s, t be the vertices of the central triangle. The four triangles defined by the
lines 〈r, s〉, 〈s, t〉, and 〈r, t〉 are denoted as rst, R, S, and T , where R,S, T contain points
at infinity. It is easy to find three projectivities ϕi : RP

2 → RP
2, i = 1, 2, 3, such that

ϕ1(rst) = R, ϕ2(rst) = S, and ϕ3(rst) = T . Then, we get some rational surfaces Fi = F ◦ϕi,
i = 1, 2, 3. Indeed, if we use the model of RP

2 in R
3 where the points r, s, t are considered

as being in the plane z = 1, it is immediately verified that the linear maps

(r, s, t) �→ (−r, s, t),
(r, s, t) �→ (r,−s, t),
(r, s, t) �→ (r, s,−t),

induce ϕ1, ϕ2, ϕ3. Furthermore, if the control net (in Ê) of the triangular surface F w.r.t.
the affine frame ∆rst is α = (αi, j, k)(i,j,k)∈∆m , it can be shown that the control nets θ1, θ2,
and θ3 of the surfaces F1, F2, F3 w.r.t. ∆rts are given by the formulae

θ1
i, j, k = (−1)iαi, j, k,

θ2
i, j, k = (−1)jαi, j, k,

θ3
i, j, k = (−1)kαi, j, k.

Provided that there are no base points, the traces of F, F1, F2, F3 over ∆rst cover the
entire trace of F (over RP

2). The upshot is that in order to draw a whole rational surface
given by a triangular net α over ∆rst, we simply have to draw the four patches specified by
α, θ1, θ2, and θ3, over ∆rst.
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For example, we can apply the above method to the Steiner roman surface specified by the
triangular net given in Example 2. It turns out that the patch F3 is quite distorted. Applying
the method to a net over a bigger triangle helps reduce the distorsion. In particular, we can
send r and s to infinity, in which case the method ends up being equivalent to a method due
to Bajaj and Royappa [2, 3]. Their method is based on the observation that the four maps

(u, v) �→
(

σ1u

1 − u− v
,

σ2v

1 − u− v

)
,

where σi ∈ {−1, 1} for i = 1, 2, map the triangle ((1, 0), (0, 1), (0, 0)) bijectively onto the four
quadrants of the plane respectively. However, they do not consider the problem of computing
the control nets of the surfaces

F

(
σ1u

1 − u− v
,

σ2v

1 − u− v

)
.

Another method for drawing triangular rational surfaces was also investigated by DeRose
[5] who credits Patterson [16] for the original idea behind the method. Basically, the method
consists in using the homogeneous Bernstein polynomials

(
m
i j k

)
uivjwk, where i+ j+ k = m,

and to view a triangular rational surface as a rational map from the real projective plane.
Then, by using any 3D model of the projective plane, it is possible to draw whole rational
surface in one piece. For example, DeRose suggests to use an octahedron. However, the
problem of finding efficient ways of computing control points is not addressed.

5 Splitting Rectangular Rational Surfaces Into Four

Rectangular Patches

In this section, we show that every rectangular rational surface can be obtained as the union
of four rectangular patches, and that the control nets for these patches can be computed
very easily from the original control net. The idea is simple: we partition RP

1 × RP
1 into

the four regions associated with the partitioning of RP
1 into [−1, 1] and RP

1 − [−1, 1]. Let
ϕ be the projectivity of RP

1 defined such that

ϕ(u, t) = (t, u).

We also define the following rectangular surfaces.

Definition 5.1 Given an affine space E of dimension ≥ 3, for every rectangular rational
surface F : R̃ × R̃ → Ẽ of bidegree 〈p, q〉 specified by some 〈p, q〉-symmetric multilinear map

f : (R̂)p× (R̂)q → Ê , define the three 〈p, q〉-symmetric multilinear maps fi : (R̂)p× (R̂)q → Ê ,
i = 1, 2, 3, such that

f1((u1, t1), . . . , (up, tp), (v1, s1), . . . , (vq, sq)) = f(ϕ(u1, t1), . . . , ϕ(up, tp), (v1, s1), . . . , (vq, sq)),

f2((u1, t1), . . . , (up, tp), (v1, s1), . . . , (vq, sq)) = f((u1, t1), . . . , (up, tp), ϕ(v1, s1), . . . , ϕ(vq, sq)),

f3((u1, t1), . . . , (up, tp), (v1, s1), . . . , (vq, sq)) = f(ϕ(u1, t1), . . . , ϕ(up, tp), ϕ(v1, s1), . . . , ϕ(vq, sq)).
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The following lemma shows that provided that there are no base points, a rectangular
rational surface is the union of four rectangular patches, and that given a rectangular net α
w.r.t. (−1, 1) × (−1, 1), the other three nets can be obtained very easily from α.

Lemma 5.2 Given an affine space E of dimension ≥ 3, for every rectangular rational surface
F : R̃×R̃ → Ẽ of bidegree 〈p, q〉 specified by some 〈p, q〉-symmetric multilinear map f : (R̂)p×
(R̂)q → Ê, if f1, f2, f3 are the 〈p, q〉-symmetric multilinear maps of definition 5.1, except for
the base points (if any), the trace F1([−1, 1] × [−1, 1]) is the trace of F over ϕ([−1, 1]) ×
[−1, 1], the trace F2([−1, 1]× [−1, 1]) is the trace of F over [−1, 1]×ϕ([−1, 1]), and the trace
F3([−1, 1]× [−1, 1]) is the trace of F over ϕ([−1, 1])×ϕ([−1, 1]). Furthermore, if the control

net (in Ê) of the rectangular surface F w.r.t. (−1, 1) × (−1, 1) is

α = (αi, j)0≤i≤p, 0≤j≤q,

the control nets θ1, θ2, and θ3 (in Ê) of the rectangular surfaces F1, F2, F3 w.r.t. (−1, 1) ×
(−1, 1) is are given by the equations

θ1
i, j = (−1)p−i αi, j,

θ2
i, j = (−1)q−j αi, j,

θ3
i, j = (−1)p+q−i−j αi, j.

The proof is quite simple and left as an exercise. Actually, the same result applies to
surfaces specified by a rectangular net over [r1, s1]× [r2, s2] for any affine frames (r1, s1) and
(r2, s2), since we can use the projectivity

ϕ(t) =
(s+ r)t− 2rs

2t− (s+ r)

that maps [r, s] onto RP
1−]r, s[. The upshot is that in order to draw a whole rational

surface specified by a rectangular net α w.r.t. (r1, s1) × (r2, s2), we simply have to compute
the nets θ1, θ2, θ3, which is very cheap, and draw the corresponding rectangular patches. For
example, a torus can be defined by the following rectangular net of bidegree 〈2, 2〉 w.r.t.
(−1, 1) × (−1, 1):

tornet4 = {{0, -(a + b), 0, 4}, {0, 0, 4c, 0}, {0, (-a + b), 0, 4},

{4(a + b), 0, 0, 0}, {0, 0, 0, 0}, {4(a - b), 0, 0, 0},

{0, a + b, 0, 4}, {0, 0, 4c, 0}, {0, a - b, 0, 4}}

For a = 2, b = 1, c = 1, we get

tornet4 = {{0, -3, 0, 4}, {0, 0, 4, 0}, {0, -1, 0, 4},

{12, 0, 0, 0}, {0, 0, 0, 0}, {4, 0, 0, 0},

{0, 3, 0, 4}, {0, 0, 4, 0}, {0, 1, 0, 4}}
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The result of subdividing the patches associated with F , F1, F2 and F3 is shown below.
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Figure 12: A torus

On the other hand, the method applied to a rectangular net of bidegree 〈2, 2〉 for an
ellipsoid yields base points. For example, it can be shown that a control net of bidegree
〈2, 2〉 w.r.t. (−1, 1) × (−1, 1) for an ellipsoid is given by:

recelnet3 = {{-8/3, -2, 2/3, 3}, {-8, 0, -2, 1}, {-8/3, 2, 2/3, 3},

{0, -6, -2, 1}, {0, 0, 6, -1}, {0, 6, -2, 1},

{8/3, -2, 2/3, 3}, {8, 0, -2, 1}, {8/3, 2, 2/3, 3}}

Unfortunately, the patch corresponding to F3 has a base point. The same thing happens
for the Steiner roman surface. This is not surprising since neither the sphere nor the real
projective plane are of the same topological type as the torus. It can be shown that a control
net of bidegree 〈2, 2〉 w.r.t. (−1, 1) × (−1, 1) for the Steiner roman surface is given by:

sqstein3 = {{-2/3, -2/3, 2/3, 3}, {0, -2, 0, 1}, {2/3, -2/3, -2/3, 3},

{-2, 0, 0, 1}, {0, 0, 0, -1}, {2, 0, 0, 1},

{-2/3, 2/3, -2/3, 3}, {0, 2, 0, 1}, {2/3, 2/3, 2/3, 3}};

Again, the the patch corresponding to F3 has base points.

Another method for drawing rectangular rational surfaces was investigated by DeRose
[5] who credits Patterson [16] for the original idea behind the method. Basically, the method
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consists in using the homogeneous Bernstein polynomials
(
p
i

)(
q
j

)
uitp−i1 vjtq−j2 , and to view a

rectangular rational surface as a rational map from RP
1 × RP

1. Then, by using any 2D
model of the projective line, it is possible to draw a whole rational surface in one piece.

In general, it is not easy to remove base points. This involves a technique from algebraic
geometry known as “blowing-up” (see Fulton [10] or Harris [13]). In the next section, we
will present a method for resolving base points in the case of triangular rational surfaces.
However, we have not worked out the resolution of base points in the case of rectangular
rational surfaces. We leave this problem as an interesting challenge to the reader.

6 Resolving Base Points

We now consider the case in which Fϕ and Fψ (as defined in Section 3) have base points. An
example for which this happens is the torus.

Example 3. An elliptic torus can be defined parametrically as follows:

x = (a− b sinϕ) cos θ,

y = (a− b sinϕ) sin θ,

z = c cosϕ.

As usual, we obtain a rational parameterization by expressing cos t and sin t in terms of
tan(t/2), and we get the fractions

x =
(1 − u2)(a(1 + v2) − 2bv)

(1 + u2)(1 + v2)
,

y =
2u(a(1 + v2) − 2bv)

(1 + u2)(1 + v2)
,

z =
c(1 − v2)

1 + v2
.

Thus, the torus as a rational surface F is defined by

x(u, v) = (1 − u2)(a(1 + v2) − 2bv),

y(u, v) = 2u(a(1 + v2) − 2bv),

z(u, v) = c(1 + u2)(1 − v2),

w(u, v) = (1 + u2)(1 + v2).

Rendering F over [−1, 1] × [−1, 1] yields one fourth of the torus, specifically, the front
half of the upper half. Performing the change of variables

(u, v) �→
(
v

u
,
1

u

)
,
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the rational surface Fϕ is defined by

x(u, v) = (u2 − v2)(a(1 + u2) − 2bu),

y(u, v) = 2uv(a(1 + u2) − 2bu),

z(u, v) = c(u2 − 1)(u2 + v2),

w(u, v) = (u2 + v2)(u2 + 1).

Unfortunately, x(0, 0) = y(0, 0) = z(0, 0) = w(0, 0) = 0, and (0, 0) is a base point of Fϕ.

Performing the change of variables

(u, v) �→
(

1

v
,
u

v

)
,

the rational surface Fψ is defined by

x(u, v) = (v2 − 1)(a(u2 + v2) − 2buv),

y(u, v) = 2v(a(u2 + v2) − 2buv),

z(u, v) = c(v2 − u2)(v2 + 1),

w(u, v) = (u2 + v2)(v2 + 1).

Unfortunately, we also have x(0, 0) = y(0, 0) = z(0, 0) = w(0, 0) = 0, and (0, 0) is a base
point of Fψ.

If we try to render the rational surfaces Fϕ and Fψ over [−1, 1]× [−1, 1], we discover that
some regions of these surfaces are not drawn properly. In these regions, there are holes and
many lines segments shooting in all directions! The problem is that (0, 0) is a discontinuity
point for both surfaces, and that the limit reached when u and v approach 0 depends very
much on the ratio v/u. One way to understand what happens is to let v = ku, simplify the
fractions, and see what is the limit when u approaches 0. For Fϕ, after calculations, we find
that the limit when u approaches 0 is(

a(1 − k2)

1 + k2
,

2ak

1 + k2
, −c

)
,

which corresponds to the circle of radius a in the plane z = −c. For Fψ, after calculations,
we find that the limit when u approaches 0 is(

−a+
2bk

1 + k2
, 0, −c(1 − k2)

1 + k2

)
,

which corresponds to an ellipse in the plane y = 0, centered at the point (−a, 0, 0). It is
indeed in the neighborhood of these two curves on the torus that Fϕ and Fψ are not drawn
properly.
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We now propose a method to resolve the singularities caused by base points. The method
is inspired by a technique in algebraic geometry known as “blowing-up” (see Fulton [10] or
Harris [13]). What is new is that we give formulae for computing “resolved” control nets.

In most cases, base points occur during a subdivision step in which a triangular net with
a corner of zeros appears. Using a change of base triangle if necessary, it can be assumed
without loss of generality that the corner of zeros has t as one of its vertices. If we display
control nets (in Ê) with F (r) at the top corner, F (s) as the rightmost lower corner, and F (t)
as the leftmost lower corner, a control net θ = (θi, j, k)(i,j,k)∈∆m of degree m has the following
shape:

×
××
. . .

× × . . .× ×
−→
0 × × . . .× ×

−→
0

−→
0 × × . . .× ×

. . .
−→
0 . . .

−→
0 × × . . .× ×

−→
0

−→
0 . . .

−→
0

−→
0︸ ︷︷ ︸

n

× × . . .× ×︸ ︷︷ ︸
m+1−n

It is assumed that all entries designated as × are nonzero. The more general case can be
treated, but it is computationally too expensive to be practical.

Given an affine frame ∆rst in the plane, recall that a rational surface F of degree m
defined by the control net θ = (θi, j, k)(i,j,k)∈∆m is the projection onto Ẽ of the polynomial

surface G in Ê defined by θ. Also, we have

G(u, v) =
∑

i+j+k=m

θi, j, k
m!

i!j!k!
uivj(1 − u− v)k,

for all u, v ∈ R. It will be convenient to assume that if θi, j, k ∈ Ê is a weighted point, then
its weight is denoted as wi,j,k, and if θi, j, k is a control vector, then we assign it the weight
wi,j,k = 0. If we define w(u, v) as

w(u, v) =
∑

i+j+k=m

wi,j,k
m!

i!j!k!
uivj(1 − u− v)k,

whenever w(u, v) �= 0, we have

F (u, v) =
∑

i+j+k=m

θi, j, k
m!

i!j!k!

uivj(1 − u− v)k

w(u, v)
,

26



for all u, v ∈ R.

The “blowing-up” method used here relies on the following observation based on an idea
of Warren [18]. Given the polynomial surface G in E (and w), we define the polynomial
surface Gb and wb as follows:

Gb(α, β) = G(α(1 − β), αβ),

wb(α, β) = w(α(1 − β), αβ).

Since α(1 − β) + αβ = α, we get

Gb(α, β) =
∑

i+j+k=m

θi, j, k
m!

i!j!k!
αi+j(1 − α)kβj(1 − β)i,

and

wb(α, β) =
∑

i+j+k=m

wi,j,k
m!

i!j!k!
αi+j(1 − α)kβj(1 − β)i.

Now, if θi, j, k =
−→
0 for i + j < n (with i + j + k = m), we note that both Gb(α, β) and

wb(α, β) are divisible by αn. If we define the polynomial surface G̃ (and w̃), such that

G̃(α, β) =
Gb(α, β)

αn

and

w̃(α, β) =
wb(α, β)

αn
,

then we have
Gb(α, β)

wb(α, β)
=
G̃(α, β)

w̃(α, β)
,

for all α �= 0. Furthermore when α = 0, we have

G̃(0, β) =
∑
i+j=n

θi, j,m−n
m!

i!j!(m− n)!
βj(1 − β)i,

and

w̃(0, β) =
∑
i+j=n

wi,j,m−n
m!

i!j!(m− n)!
βj(1 − β)i.

Thus, for all β for which G̃(0, β) and w̃(0, β) are not simultaneously null,

G̃(0, β)

w̃(0, β)
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is defined, and the polynomial surface G̃ defines the rational surface F̃ such that

F̃ (α, β) =
G̃(α, β)

w̃(α, β)
.

Thus, what happens is that the triangular patch F over ∆rst is really a four-sided patch,
the point F (t) being “blown up” into the rational curve of degree n whose control points are

(θi, j,m−n)i+j=n.

If this rational curve has no base points, then the rational surface patch F̃ defined by the
polynomial surface G̃ has no base point, and it extends the surface patch F over ∆rst. If
it has base points, they are common zeros of some polynomials in β, and by simplifying by
common factors and using continuity, we could eliminate these base points. For simplicity,
we will assume that the boundary curve has no base points.

Viewing G̃ as a bipolynomial surface, note that G̃ has bidegree 〈m−n,m〉. Also observe
that the function

(α, β) �→ (α(1 − β), αβ)

maps the unit square with vertices

(0, 0), (0, 1), (1, 1), (1, 0)

onto the triangle ∆rst = ((0, 1), (1, 0), (0, 0)), in such a way that the edge ((0, 0), (0, 1)) is
mapped onto t, the vertex (1, 1) is mapped onto s, and the vertex (1, 0) is mapped onto r.
Furthermore, if u = α(1 − β) and v = αβ, we get

α = u+ v

and
β =

v

u+ v
and thus, the map is invertible except on the line u + v = 0. Thus, we can think of the
inverse map as “blowing up” the affine frame ∆rst into the unit square. Specifically, the
point t is “blown up” into the edge ((0, 0), (0, 1)).

(0, 0)

(0, 1)

(1, 0)

(1, 1)

t

s

r

Figure 13: Blowing up a triangle into a square
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The only remaining problem is that the above method yields a rational square patch
not given by a control net, and that we often need to map the unit square to an arbitrary
base triangle. The second problem is easily solved. Assume that the affine frame ∆rst has
coordinates ((r1, r2), (s1, s2), (t1, t2)). It is easily seen that the map defined such that

u = (s1 − r1)αβ + (r1 − t1)β + t1,

v = (s2 − r2)αβ + (r2 − t2)β + t2,

maps the unit square to the triangle ∆rst, in such a way that the edge ((0, 0), (0, 1)) is
mapped onto t, the vertex (1, 1) is mapped onto s, and the vertex (1, 0) is mapped onto r.
Some simple calculations show that

α =
(s2 − r2)(u− t1) − (s1 − r1)(v − t2)

(r1 − t1)(s2 − r2) − (r2 − t2)(s1 − r1)
,

β =
(r1 − t1)(v − t2) − (r2 − t2)(u− t1)

(s2 − r2)(u− t1) − (s1 − r1)(v − t2)
,

and thus, the map is only invertible outside the line of equation

(s2 − r2)(u− t1) − (s1 − r1)(v − t2) = 0,

the parallel to the vector (s1 − r1, s2 − r2) through t.

Now, if g : (P)m → Ê is the polar form associated with G, we can compute the polar

form gb : (P)m × (P)m → Ê associated with the bipolynomial surface Gb as follows:

gb(u1, . . . , um, v1, . . . , vm) =
1

m!

∑
σ∈Sm

g((u1(1 − vσ(1)), u1vσ(1)), . . . , (um(1 − vσ(m)), umvσ(m))),

where Sm denotes the group of permutations on {1, . . . ,m}. The above formula corresponds
to the case of the simple mapping u = α(1 − β), v = αβ, and it is obvious how to adapt it
to the more general map

u = (s1 − r1)αβ + (r1 − t1)β + t1,

v = (s2 − r2)αβ + (r2 − t2)β + t2,

Now, over the affine basis (0, 1), the square control net θ = (θ i,j)0≤i,j≤m associated
with gb is defined such that

θ i,j = gb(0, . . . , 0︸ ︷︷ ︸
m−i

, 1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
m−j

, 1, . . . , 1︸ ︷︷ ︸
j

).

However, if θi, j, k = 0 for i + j < n, with i + j + k = m, then θ i,j = 0 for i < n, and thus

we obtain the rectangular net θ̃ of degree (m− n,m) associated with g̃, given by

θ̃ = (θ i,j)n≤i≤m, 0≤j≤m,
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which corresponds to the rational surface defined by G̃.

Thus, we know how to compute a rectangular net for the blown-up version G̃ of G. A
triangular net of degree 2m − n can easily be obtained. Indeed, there is a simple way for
converting the polar form g : (P)p× (P)q → Ê of a bipolynomial surface of degree (p, q) into

a symmetric multilinear polar form g∆ : (P)p+q → Ê , using the following formula: letting
m = p+ q, we have

g∆((u1, v1), . . . , (um, vm)) =
1(
m
p

) ∑
I∪J={1,...,m}

I∩J=∅
|I|=p, |J |=q

g(
∏
i∈I

ui,
∏
j∈J

vj),

where
g(

∏
i∈I

ui,
∏
j∈J

vj) = g(ui1 , . . . , uip , vj1 , . . . , vjq),

with I = {i1, . . . , ip}, and J = {j1, . . . , jq}.
Note that it is also possible to convert the polar form f∆ : (P)m → Ê of a surface of

degree m into a symmetric (m,m)-multilinear polar form g : (P)m × (P)m → Ê , using the
following formula:

g(u1, . . . , um, v1, . . . , vm) =
1

m!

∑
σ∈Sm

f((u1, vσ(1)), . . . , (um, vσ(m))),

where Sm denotes the group of permutations on {1, . . . ,m}.
Thus, we have a method for blowing up a control net θ of degree m with a corner of zeros

of size n, into a triangular net θ̃ of degree 2m − n, by first blowing up the triangular net θ
into a rectangular net θ̃ , and then converting θ̃ into a triangular net θ̃.

Again, it is fairly easy to implement the above method in Mathematica (see Gallier [12]).
In the interest of brevity, we content ouselves with some examples.

Going back to Example 3 of this section, a torus, it turns out that in subdividing the nets
theta1, theta2, rho1, and rho2, degenerate nets with a corner of zeros are encountered.
In fact, these corners have two rows of zeros. and thus, the blowing up method yields nets
of degree 6. For example, the net corresponding to theta1 is resolved to a triangular net,
which after 3 iterations of subdivision, yields the following picture:
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Figure 14: A blow up of patch 3 of a torus

The net corresponding to theta2 is resolved to a triangular net, which after 3 iterations
of subdivision, yields the following picture:
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Figure 15: A blow up of patch 4 of a torus
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Displaying these two pictures together, we get a shape reminicent of a horse-shoe crab!
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Figure 16: A blow up of patches 4,3 of a torus

Similarly, blowing up the nets rho1 and rho2 yields:
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Figure 17: A blow up of patches 5,6 of a torus
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Together with the two patches associated with the square [−1, 1] × [−1, 1], we get the
entire torus. Of course, we could have taken advantage of symmetries, and our point is to
illustrate the algorithm.

7 Conclusion

We have presented several methods for drawing whole rational surfaces, defined paramet-
rically or in terms of weighted control points. These methods rely on simple regular sub-
divisions of the real projective plane or of the torus, and on versions of the de Casteljau
algorithm. The main novelty is that the new control nets are obtained very cheaply from
the original control net by sign flipping and permutation of indices. One of the advantages
of our method is that it is incremental. Indeed, the algorithm produces an approximation
of the surface as a sequence of control nets. Thus, if we wish to get better accuracy, we can
subdivide each control net in the list. We can also achieve a zooming effect by selectively
subdividing some subsequences of control nets. Bajaj and Royappa [2, 3] and DeRose [5]
have also investigated methods for drawing whole rational surfaces. However, none of these
papers address the problem of computing control nets. A weakness of our method is that it
only applies to rational surfaces. On the other hand, although restricted to rational surfaces,
our method is efficient, at least when there are no base points. We have also proposed a new
method for resolving base points, by computing some refined control nets. Unfortunately,
the present version of the method is exponential, and not practical as soon as the degree
becomes greater than 4. Part of the problem is that our method first computes a rectan-
gular control net which is then converted to a triangular net, and this conversion process is
exponential. It would be interesting to compute directly a triangular net.

Acknowledgement : We wish to thank Doug de Carlo for some very helpful comments.
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[4] Marcel Berger. Géométrie 1. Nathan, 1990. English edition: Geometry 1, Universitext,
Springer Verlag.

33
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