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Chapter 8
An Introduction to Discrete Probability

8.1 Sample Space, Outcomes, Events, Probability

Roughly speaking, probability theory deals with experiments whose outcome are
not predictable with certainty. We often call such experiments random experiments.
They are subject to chance. Using a mathematical theory of probability, we may be
able to calculate the likelihood of some event.

In the introduction to his classical book [1] (first published in 1888), Joseph
Bertrand (1822–1900) writes (translated from French to English):

“How dare we talk about the laws of chance (in French: le hasard)? Isn’t chance
the antithesis of any law? In rejecting this definition, I will not propose any
alternative. On a vaguely defined subject, one can reason with authority. ...”

Of course, Bertrand’s words are supposed to provoke the reader. But it does seem
paradoxical that anyone could claim to have a precise theory about chance! It is not
my intention to engage in a philosophical discussion about the nature of chance.
Instead, I will try to explain how it is possible to build some mathematical tools that
can be used to reason rigorously about phenomema that are subject to chance. These
tools belong to probability theory. These days, many fields in computer science
such as machine learning, cryptography, computational linguistics, computer vision,
robotics, and of course algorithms, rely a lot on probability theory. These fields are
also a great source of new problems that stimulate the discovery of new methods
and new theories in probability theory.

Although this is an oversimplification that ignores many important contributors,
one might say that the development of probability theory has gone through four eras
whose key figures are: Pierre de Fermat and Blaise Pascal, Pierre–Simon Laplace,
and Andrey Kolmogorov. Of course, Gauss should be added to the list; he made
major contributions to nearly every area of mathematics and physics during his life-
time. To be fair, Jacob Bernoulli, Abraham de Moivre, Pafnuty Chebyshev, Alek-
sandr Lyapunov, Andrei Markov, Emile Borel, and Paul Lévy should also be added
to the list.

329



330 8 An Introduction to Discrete Probability

Fig. 8.1 Pierre de Fermat (1601–1665) (left), Blaise Pascal (1623–1662) (middle left), Pierre–
Simon Laplace (1749–1827) (middle right), Andrey Nikolaevich Kolmogorov (1903–1987) (right).

Before Kolmogorov, probability theory was a subject that still lacked precise def-
initions. In 1933, Kolmogorov provided a precise axiomatic approach to probability
theory which made it into a rigorous branch of mathematics with even more appli-
cations than before!

The first basic assumption of probability theory is that even if the outcome of an
experiment is not known in advance, the set of all possible outcomes of an experi-
ment is known. This set is called the sample space or probability space. Let us begin
with a few examples.

Example 8.1. If the experiment consists of flipping a coin twice, then the sample
space consists of all four strings

W = {HH,HT,TH,TT},

where H stands for heads and T stands for tails.
If the experiment consists in flipping a coin five times, then the sample space

W is the set of all strings of length five over the alphabet {H,T}, a set of 25 = 32
strings,

W = {HHHHH,THHHH,HTHHH,TTHHH, . . . ,TTTTT}.

Example 8.2. If the experiment consists in rolling a pair of dice, then the sample
space W consists of the 36 pairs in the set

W = D⇥D,

with
D = {1,2,3,4,5,6},

where the integer i 2 D corresponds to the number (indicated by dots) on the face of
the dice facing up, as shown in Figure 8.2. Here we assume that one dice is rolled
first and then another dice is rolled second.

Example 8.3. In the game of bridge, the deck has 52 cards and each player receives
a hand of 13 cards. Let W be the sample space of all possible hands. This time it is
not possible to enumerate the sample space explicitly. Indeed, there are
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Fig. 8.2 Two dice.

✓
52
13

◆
=

52!
13! ·39!

=
52 ·51 ·50 · · ·40
13 ·12 · · · ·2 ·1

= 635,013,559,600

different hands, a huge number.

Each member of a sample space is called an outcome or an elementary event.
Typically, we are interested in experiments consisting of a set of outcomes. For
example, in Example 8.1 where we flip a coin five times, the event that exactly one
of the coins shows heads is

A = {HTTTT,THTTT,TTHTT,TTTHT,TTTTH}.

The event A consists of five outcomes. In Example 8.2, the event that we get “dou-
bles” when we roll two dice, namely that each dice shows the same value is,

B = {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)},

an event consisting of 6 outcomes.
The second basic assumption of probability theory is that every outcome w of

a sample space W is assigned some probability Pr(w). Intuitively, Pr(w) is the
probabilty that the outcome w may occur. It is convenient to normalize probabilites,
so we require that

0  Pr(w)  1.

If W is finite, we also require that

Â
w2W

Pr(w) = 1.

The function Pr is often called a probability measure or probability distribution on
W . Indeed, it distributes the probability of 1 among the outcomes w .

In many cases, we assume that the probably distribution is uniform, which means
that every outcome has the same probability.

Example 8.4. For example, if we assume that our coins are “fair,” then when we flip
a coin five times as in Example 8.1, since each outcome in W is equally likely, the
probability of each outcome w 2 W is

Pr(w) =
1

32
.
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If we assume in Example 8.2, that our dice are “fair,” namely that each of the six
possibilities for a particular dice has probability 1/6 , then each of the 36 rolls w 2 W
has probability

Pr(w) =
1

36
.

Example 8.5. We can also consider “loaded dice” in which there is a different dis-
tribution of probabilities. For example, let

Pr1(1) = Pr1(6) =
1
4

Pr1(2) = Pr1(3) = Pr1(4) = Pr1(5) =
1
8
.

These probabilities add up to 1, so Pr1 is a probability distribution on D. We can
assign probabilities to the elements of W = D⇥D by the rule

Pr11(d,d0) = Pr1(d)Pr1(d0).

We can easily check that
Â

w2W
Pr11(w) = 1,

so Pr11 is indeed a probability distribution on W . For example, we get

Pr11(6,3) = Pr1(6)Pr1(3) =
1
4

· 1
8
=

1
32

.

Let us summarize all this with the following definition.

Definition 8.1. A finite discrete probability space (or finite discrete sample space)
is a finite set W of outcomes or elementary events w 2 W , together with a function
Pr : W ! R, called probability measure (or probability distribution) satisfying the
following properties:

0  Pr(w)  1, for all w 2 W .

Â
w2W

Pr(w) = 1.

The uniform probability distribution on W is the probability measure given by
Pr(w) = 1/|W | for all w 2 W . An event is any subset A of W . The probability of an
event A is defined as

Pr(A) = Â
w2A

Pr(w).

Definition 8.1 immediately implies that

Pr( /0) = 0
Pr(W) = 1.
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The event W is called the certain event. In general there are other events A such that
Pr(A) = 1.

Remark: Even though the term probability distribution is commonly used, this is
not a good practice because there is also a notion of (cumulative) distribution func-
tion of a random variable (see Section 8.3, Definition 8.6), and this is a very different
object (the domain of the distribution function of a random variable is R, not W ).

Example 8.6. For another example, if we consider the event

A = {HTTTT,THTTT,TTHTT,TTTHT,TTTTH}

that in flipping a coin five times, heads turns up exactly once, the probability of this
event is

Pr(A) =
5

32
.

If we use the probability measure Pr on the sample space W of pairs of dice, the
probability of the event of having doubles

B = {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)},

is
Pr(B) = 6 · 1

36
=

1
6
.

However, using the probability measure Pr11, we obtain

Pr11(B) =
1

16
+

1
64

+
1

64
+

1
64

+
1
64

+
1
16

=
3
16

>
1
6
.

Loading the dice makes the event “having doubles” more probable.

It should be noted that a definition slightly more general than Definition 8.1 is
needed if we want to allow W to be infinite. In this case, the following definition is
used.

Definition 8.2. A discrete probability space (or discrete sample space) is a triple
(W ,F ,Pr) consisting of:

1. A nonempty countably infinite set W of outcomes or elementary events.
2. The set F of all subsets of W , called the set of events.
3. A function Pr : F !R, called probability measure (or probability distribution)

satisfying the following properties:

a. (positivity)
0  Pr(A)  1, for all A 2 F .

b. (normalization)
Pr(W) = 1.
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c. (additivity and continuity)
For any sequence of pairwise disjoint events E1,E2, . . . ,Ei, . . . in F (which
means that Ei \E j = /0 for all i 6= j), we have

Pr

 
•[

i=1
Ei

!
=

•

Â
i=1

Pr(Ei).

The main thing to observe is that Pr is now defined directly on events, since
events may be infinite. The third axiom of a probability measure implies that

Pr( /0) = 0,

because Pr( /0) = Pr( /0\ /0) = Pr( /0)+Pr( /0).
The notion of a discrete probability space is sufficient to deal with most problems

that a computer scientist or an engineer will ever encounter. However, there are
certain problems for which it is necessary to assume that the family F of events
is a proper subset of the power set of W . In this case, F is called the family of
measurable events, and F has certain closure properties that make it a s -algebra
(also called a s -field). Some problems even require W to be uncountably infinite. In
this case, we drop the word discrete from discrete probability space.

Remark: A s -algebra is a nonempty family F of subsets of W satisfying the fol-
lowing properties:

1. /0 2 F .
2. For every subset A ✓ W , if A 2 F then A 2 F .
3. For every countable family (Ai)i�1 of subsets Ai 2 F , we have

S
i�1 Ai 2 F .

Note that every s -algebra is a Boolean algebra (see Section 5.6, Definition 5.12),
but the closure property (3) is very strong and adds spice to the story.

In this chapter we deal mostly with finite discrete probability spaces, and occa-
sionally with discrete probability spaces with a countably infinite sample space. In
this latter case, we always assume that F = 2W , and for notational simplicity we
omit F (that is, we write (W ,Pr) instead of (W ,F ,Pr)).

Because events are subsets of the sample space W , they can be combined using
the set operations, union, intersection, and complementation. If the sample space
W is finite, the definition for the probability Pr(A) of an event A ✓ W given in
Definition 8.1 shows that if A,B are two disjoint events (this means that A\B = /0),
then

Pr(A[B) = Pr(A)+Pr(B).

More generally, if A1, . . . ,An are any pairwise disjoint events, then

Pr(A1 [ · · ·[An) = Pr(A1)+ · · ·+Pr(An).

It is natural to ask whether the probabilities Pr(A[B), Pr(A\B) and Pr(A) can
be expressed in terms of Pr(A) and Pr(B), for any two events A,B 2 W . In the first
and the third case, we have the following simple answer.
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Proposition 8.1. Given any (finite) discrete probability space (W ,Pr), for any two
events A,B ✓ W , we have

Pr(A[B) = Pr(A)+Pr(B)�Pr(A\B)

Pr(A) = 1�Pr(A).

Furthermore, if A ✓ B, then Pr(A)  Pr(B).

Proof. Observe that we can write A [ B as the following union of pairwise disjoint
subsets:

A[B = (A\B)[ (A�B)[ (B�A).

Then using the observation made just before Proposition 8.1, since we have the dis-
joint unions A = (A\B)[ (A�B) and B = (A\B)[ (B�A), using the disjointness
of the various subsets, we have

Pr(A[B) = Pr(A\B)+Pr(A�B)+Pr(B�A)
Pr(A) = Pr(A\B)+Pr(A�B)
Pr(B) = Pr(A\B)+Pr(B�A),

and from these we obtain

Pr(A[B) = Pr(A)+Pr(B)�Pr(A\B).

The equation Pr(A) = 1�Pr(A) follows from the fact that A\A = /0 and A[A = W ,
so

1 = Pr(W) = Pr(A)+Pr(A).

If A ✓ B, then A \ B = A, so B = (A \ B)[ (B � A) = A [ (B � A), and since A and
B�A are disjoint, we get

Pr(B) = Pr(A)+Pr(B�A).

Since probabilities are nonegative, the above implies that Pr(A)  Pr(B). ut

Remark: Proposition 8.1 still holds when W is infinite as a consequence of axioms
(a)–(c) of a probability measure. Also, the equation

Pr(A[B) = Pr(A)+Pr(B)�Pr(A\B)

can be generalized to any sequence of n events. In fact, we already showed this as
the Principle of Inclusion–Exclusion, Version 2 (Theorem 6.3).

The following proposition expresses a certain form of continuity of the function
Pr.

Proposition 8.2. Given any probability space (W ,F ,Pr) (discrete or not), for any
sequence of events (Ai)i�1, if Ai ✓ Ai+1 for all i � 1, then
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Pr

✓ •[

i=1
Ai

◆
= lim

n7!•
Pr(An).

Proof. The trick is to express
S•

i=1 Ai as a union of pairwise disjoint events. Indeed,
we have

•[

i=1
Ai = A1 [ (A2 �A1)[ (A3 �A2)[ · · ·[ (Ai+1 �Ai)[ · · · ,

so by property (c) of a probability measure, since we have a disjoint union Ai+1 =
Ai [ (Ai+1 �Ai),

Pr(Ai+1) = Pr(Ai [ (Ai+1 �Ai)) = Pr(Ai)+Pr(Ai+1 �Ai),

so
Pr(Ai+1 �Ai) = Pr(Ai+1)�Pr(A),

and then

Pr

✓ •[

i=1
Ai

◆
= Pr

✓
A1 [

•[

i=1
(Ai+1 �Ai)

◆

= Pr(A1)+
•

Â
i=1

Pr(Ai+1 �Ai)

= Pr(A1)+ lim
n7!•

n�1

Â
i=1

Pr(Ai+1 �Ai)

= Pr(A1)+ lim
n7!•

n�1

Â
i=1

(Pr(Ai+1)�Pr(Ai))

= lim
n7!•

Pr(An),

as claimed.

We leave it as an exercise to prove that if Ai+1 ✓ Ai for all i � 1, then

Pr

✓ •\

i=1
Ai

◆
= lim

n7!•
Pr(An).

In general, the probability Pr(A\B) of the event A\B cannot be expressed in a
simple way in terms of Pr(A) and Pr(B). However, in many cases we observe that
Pr(A\B) = Pr(A)Pr(B). If this holds, we say that A and B are independent.

Definition 8.3. Given a discrete probability space (W ,Pr), two events A and B are
independent if

Pr(A\B) = Pr(A)Pr(B).

Two events are dependent if they are not independent.
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For example, in the sample space of 5 coin flips, we have the events

A = {HHw | w 2 {H,T}3}[{HTw | w 2 {H,T}3},

the event in which the first flip is H, and

B = {HHw | w 2 {H,T}3}[{THw | w 2 {H,T}3},

the event in which the second flip is H. Since A and B contain 16 outcomes, we have

Pr(A) = Pr(B) =
16
32

=
1
2
.

The intersection of A and B is

A\B = {HHw | w 2 {H,T}3},

the event in which the first two flips are H, and since A\B contains 8 outcomes, we
have

Pr(A\B) =
8

32
=

1
4
.

Since
Pr(A\B) =

1
4

and
Pr(A)Pr(B) =

1
2

· 1
2
=

1
4
,

we see that A and B are independent events. On the other hand, if we consider the
events

A = {TTTTT,HHTTT}

and
B = {TTTTT,HTTTT},

we have
Pr(A) = Pr(B) =

2
32

=
1

16
,

and since
A\B = {TTTTT},

we have
Pr(A\B) =

1
32

.

It follows that
Pr(A)Pr(B) =

1
16

· 1
16

=
1

256
,

but
Pr(A\B) =

1
32

,
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so A and B are not independent.

Example 8.7. We close this section with a classical problem in probability known as
the birthday problem. Consider n < 365 individuals and assume for simplicity that
nobody was born on February 29. In this problem, the sample space is the set of
all 365n possible choices of birthdays for n individuals, and let us assume that they
are all equally likely. This is equivalent to assuming that each of the 365 days of
the year is an equally likely birthday for each individual, and that the assignments
of birthdays to distinct people are independent. Note that this does not take twins
into account! What is the probability that two (or more) individuals have the same
birthday?

To solve this problem, it is easier to compute the probability that no two individ-
uals have the same birthday. We can choose n distinct birthdays in

�365
n
�

ways, and
these can be assigned to n people in n! ways, so there are

✓
365

n

◆
n! = 365 ·364 · · ·(365�n+1)

configurations where no two people have the same birthday. There are 365n possible
choices of birthdays, so the probabilty that no two people have the same birthday is

q =
365 ·364 · · ·(365�n+1)

365n =

✓
1� 1

365

◆✓
1� 2

365

◆
· · ·
✓

1� n�1
365

◆
,

and thus, the probability that two people have the same birthday is

p = 1�q = 1�
✓

1� 1
365

◆✓
1� 2

365

◆
· · ·
✓

1� n�1
365

◆
.

In the proof of Proposition 6.15, we showed that x  ex�1 for all x 2 R, so by
substituting 1 � x for x we get 1 � x  e�x for all x 2 R, and we can bound q as
follows:

q =
n�1

’
i=1

✓
1� i

365

◆

q 
n�1

’
i=1

e�i/365

= e�Ân�1
i=1

i
365

e� n(n�1)
2·365 .

If we want the probability q that no two people have the same birthday to be at most
1/2, it suffices to require

e� n(n�1)
2·365  1

2
,

that is, �n(n�1)/(2 ·365)  ln(1/2), which can be written as
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n(n�1) � 2 ·365ln2.

The roots of the quadratic equation

n2 �n�2 ·365ln2 = 0

are

m =
1±

p
1+8 ·365ln2

2
,

and we find that the positive root is approximately m = 23. In fact, we find that if
n = 23, then p = 50.7%. If n = 30, we calculate that p ⇡ 71%.

What if we want at least three people to share the same birthday? Then n = 88
does it, but this is harder to prove! See Ross [13], Section 3.4.

8.2 Conditional Probability and Independence

In general, the occurrence of some event B changes the probability that another
event A occurs. It is then natural to consider the probability denoted Pr(A | B) that
if an event B occurs, then A occurs. As in logic, if B does not occur not much can be
said, so we assume that Pr(B) 6= 0.

Definition 8.4. Given a discrete probability space (W ,Pr), for any two events A and
B, if Pr(B) 6= 0, then we define the conditional probability Pr(A | B) that A occurs
given that B occurs as

Pr(A | B) =
Pr(A\B)
Pr(B)

.

Example 8.8. Suppose we roll two fair dice. What is the conditional probability that
the sum of the numbers on the dice exceeds 6, given that the first shows 3? To solve
this problem, let

B = {(3, j) | 1  j  6}

be the event that the first dice shows 3, and

A = {(i, j) | i+ j � 7,1  i, j  6}

be the event that the total exceeds 6. We have

A\B = {(3,4),(3,5),(3,6)},

so we get

Pr(A | B) =
Pr(A\B)
Pr(B)

=
3
36

�
6

36
=

1
2
.

The next example is perhaps a little more surprising.
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Example 8.9. A family has two children. What is the probability that both are boys,
given at least one is a boy?

There are four possible combinations of sexes, so the sample space is

W = {GG,GB,BG,BB},

and we assume a uniform probability measure (each outcome has probability 1/4).
Introduce the events

B = {GB,BG,BB}

of having at least one boy, and
A = {BB}

of having two boys. We get
A\B = {BB},

and so
Pr(A | B) =

Pr(A\B)
Pr(B)

=
1
4

�
3
4
=

1
3
.

Contrary to the popular belief that Pr(A | B) = 1/2, it is actually equal to 1/3. Now,
consider the question: what is the probability that both are boys given that the first
child is a boy? The answer to this question is indeed 1/2.

The next example is known as the “Monty Hall Problem,” a standard example of
every introduction to probability theory.

Example 8.10. On the television game Let’s Make a Deal, a contestant is presented
with a choice of three (closed) doors. Behind exactly one door is a terrific prize. The
other doors conceal cheap items. First, the contestant is asked to choose a door. Then
the host of the show (Monty Hall) shows the contestant one of the worthless prizes
behind one of the other doors. At this point, there are two closed doors, and the
contestant is given the opportunity to switch from his original choice to the other
closed door. The question is, is it better for the contestant to stick to his original
choice or to switch doors?

We can analyze this problem using conditional probabilities. Without loss of gen-
erality, assume that the contestant chooses door 1. If the prize is actually behind door
1, then the host will show door 2 or door 3 with equal probability 1/2. However, if
the prize is behind door 2, then the host will open door 3 with probability 1, and if
the prize is behind door 3, then the host will open door 2 with probability 1. Write
Pi for “the prize is behind door i,” with i = 1,2,3, and D j for “the host opens door
D j, ” for j = 2,3. Here it is not necessary to consider the choice D1 since a sensible
host will never open door 1. We can represent the sequences of choices occurring in
the game by a tree known as probability tree or tree of possibilities, shown in Figure
8.3.

Every leaf corresponds to a path associated with an outcome, so the sample space
is

W = {P1;D2,P1;D3,P2;D3,P3;D2}.
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P1

P2

P3

D2

D3

D3

D2

1/3

1/3

1/3

1/2

1/2

1

1

Pr(P1; D2) = 1/6

Pr(P1; D3) = 1/6

Pr(P2; D3) = 1/3

Pr(P3; D2) = 1/3

Fig. 8.3 The tree of possibilities in the Monty Hall problem.

The probability of an outcome is obtained by multiplying the probabilities along the
corresponding path, so we have

Pr(P1;D2) =
1
6

Pr(P1;D3) =
1
6

Pr(P2;D3) =
1
3

Pr(P3;D2) =
1
3
.

Suppose that the host reveals door 2. What should the contestant do?
The events of interest are:

1. The prize is behind door 1; that is, A = {P1;D2,P1;D3}.
2. The prize is behind door 3; that is, B = {P3;D2}.
3. The host reveals door 2; that is, C = {P1;D2,P3;D2}.

Whether or not the contestant should switch doors depends on the values of the
conditional probabilities

1. Pr(A | C): the prize is behind door 1, given that the host reveals door 2.
2. Pr(B | C): the prize is behind door 3, given that the host reveals door 2.

We have A\C = {P1;D2}, so

Pr(A\C) = 1/6,

and
Pr(C) = Pr({P1;D2,P3;D2}) = 1

6
+

1
3
=

1
2
,

so
Pr(A | C) =

Pr(A\C)

Pr(C)
=

1
6

�
1
2
=

1
3
.



342 8 An Introduction to Discrete Probability

We also have B\C = {P3;D2}, so

Pr(B\C) = 1/3,

and
Pr(B | C) =

Pr(B\C)

Pr(C)
=

1
3

�
1
2
=

2
3
.

Since 2/3 > 1/3, the contestant has a greater chance (twice as big) to win the bigger
prize by switching doors. The same probabilities are derived if the host had revealed
door 3.

A careful analysis showed that the contestant has a greater chance (twice as large)
of winning big if she/he decides to switch doors. Most people say “on intuition” that
it is preferable to stick to the original choice, because once one door is revealed,
the probability that the valuable prize is behind either of two remaining doors is
1/2. This is incorrect because the door the host opens depends on which door the
contestant orginally chose.

Let us conclude by stressing that probability trees (trees of possibilities) are very
useful in analyzing problems in which sequences of choices involving various prob-
abilities are made.

The next proposition shows various useful formulae due to Bayes.

Proposition 8.3. (Bayes’ Rules) For any two events A,B with Pr(A)> 0 and Pr(B)>
0, we have the following formulae:

1. (Bayes’ rule of retrodiction)

Pr(B | A) =
Pr(A | B)Pr(B)

Pr(A)
.

2. (Bayes’ rule of exclusive and exhaustive clauses) If we also have Pr(A)< 1 and
Pr(B)< 1, then

Pr(A) = Pr(A | B)Pr(B)+Pr(A | B)Pr(B).

More generally, if B1, . . . ,Bn form a partition of W with Pr(Bi)> 0 (n � 2), then

Pr(A) =
n

Â
i=1

Pr(A | Bi)Pr(Bi).

3. (Bayes’ sequential formula) For any sequence of events A1, . . . ,An, we have

Pr

 
n\

i=1
Ai

!
= Pr(A1)Pr(A2 | A1)Pr(A3 | A1 \A2) · · ·Pr

 
An |

n�1\

i=1
Ai

!
.

4. (Bayes’ law)
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Pr(B | A) =
Pr(A | B)Pr(B)

Pr(A | B)Pr(B)+Pr(A | B)Pr(B)
.

Proof. By definition of a conditional probability we have

Pr(A | B)Pr(B) = Pr(A\B) = Pr(B\A) = Pr(B | A)Pr(A),

which shows the first formula. For the second formula, observe that we have the
disjoint union

A = (A\B)[ (A\B),

so

Pr(A) = Pr(A\B)[Pr(A\B)

= Pr(A | B)Pr(B)[Pr(A | B)Pr(B).

We leave the more general rule as an exercise, and the third rule follows by unfolding
definitions. The fourth rule is obtained by combining (1) and (2). ut

Bayes’ rule of retrodiction is at the heart of the so-called Bayesian framework. In
this framework, one thinks of B as an event describing some state (such as having
a certain disease) and of A an an event describing some measurement or test (such
as having high blood pressure). One wishes to infer the a posteriori probability
Pr(B | A) of the state B given the test A, in terms of the prior probability Pr(B) and
the likelihood function Pr(A | B). The likelihood function Pr(A | B) is a measure of
the likelihood of the test A given that we know the state B, and Pr(B) is a measure
of our prior knowledge about the state; for example, having a certain disease. The
probability Pr(A) is usually obtained using Bayes’s second rule because we also
know Pr(A | B).

Example 8.11. Doctors apply a medical test for a certain rare disease that has the
property that if the patient is affected by the disease, then the test is positive in 99%
of the cases. However, it happens in 2% of the cases that a healthy patient tests
positive. Statistical data shows that one person out of 1000 has the disease. What is
the probability for a patient with a positive test to be affected by the disease?

Let S be the event that the patient has the disease, and + and � the events that
the test is positive or negative. We know that

Pr(S) = 0.001
Pr(+ | S) = 0.99

Pr(+ | S) = 0.02,

and we have to compute Pr(S | +). We use the rule

Pr(S | +) =
Pr(+ | S)Pr(S)

Pr(+)
.

We also have
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Pr(+) = Pr(+ | S)Pr(S)+Pr(+ | S)Pr(S),

so we obtain

Pr(S | +) =
0.99⇥0.001

0.99⇥0.001+0.02⇥0.999
⇡ 1

20
= 5%.

Since this probability is small, one is led to question the reliability of the test! The
solution is to apply a better test, but only to all positive patients. Only a small portion
of the population will be given that second test because

Pr(+) = 0.99⇥0.001+0.02⇥0.999 ⇡ 0.003.

Redo the calculations with the new data

Pr(S) = 0.00001
Pr(+ | S) = 0.99

Pr(+ | S) = 0.01.

You will find that the probability Pr(S |+) is approximately 0.000099, so the chance
of being sick is rather small, and it is more likely that the test was incorrect.

Recall that in Definition 8.3, we defined two events as being independent if

Pr(A\B) = Pr(A)Pr(B).

Asuming that Pr(A) 6= 0 and Pr(B) 6= 0, we have

Pr(A\B) = Pr(A | B)Pr(B) = Pr(B | A)Pr(A),

so we get the following proposition.

Proposition 8.4. For any two events A,B such that Pr(A) 6= 0 and Pr(B) 6= 0, the
following statements are equivalent:

1. Pr(A\B) = Pr(A)Pr(B); that is, A and B are independent.
2. Pr(B | A) = Pr(B).
3. Pr(A | B) = Pr(A).

Remark: For a fixed event B with Pr(B) > 0, the function A 7! Pr(A | B) satisfies
the axioms of a probability measure stated in Definition 8.2. This is shown in Ross
[12] (Section 3.5), among other references.

The examples where we flip a coin n times or roll two dice n times are examples
of independent repeated trials. They suggest the following definition.

Definition 8.5. Given two discrete probability spaces (W1,Pr1) and (W2,Pr2), we
define their product space as the probability space (W1 ⇥W2,Pr), where Pr is given
by
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Pr(w1,w2) = Pr1(w1)Pr2(W2), w1 2 W1,w2 2 W2.

There is an obvious generalization for n discrete probability spaces. In particular, for
any discrete probability space (W ,Pr) and any integer n � 1, we define the product
space (W n,Pr), with

Pr(w1, . . . ,wn) = Pr(w1) · · ·Pr(wn), wi 2 W , i = 1, . . . ,n.

The fact that the probability measure on the product space is defined as a prod-
uct of the probability measures of its components captures the independence of the
trials.

Remark: The product of two probability spaces (W1,F1,Pr1) and (W2,F2,Pr2)
can also be defined, but F1 ⇥ F2 is not a s -algebra in general, so some serious
work needs to be done.

Next, we define what is perhaps the most important concept in probability: that
of a random variable.

8.3 Random Variables and their Distributions

In many situations, given some probability space (W ,Pr), we are more interested
in the behavior of functions X : W ! R defined on the sample space W than in the
probability space itself. Such functions are traditionally called random variables, a
somewhat unfortunate terminology since these are functions. Now, given any real
number a, the inverse image of a

X�1(a) = {w 2 W | X(w) = a},

is a subset of W , thus an event, so we may consider the probability Pr(X�1(a)),
denoted (somewhat improperly) by

Pr(X = a).

This function of a is of great interest, and in many cases it is the function that we
wish to study. Let us give a few examples.

Example 8.12. Consider the sample space of 5 coin flips, with the uniform proba-
bility measure (every outcome has the same probability 1/32). Then the number of
times X(w) that H appears in the sequence w is a random variable. We determine
that

Pr(X = 0) =
1

32
Pr(X = 1) =

5
32

Pr(X = 2) =
10
32

Pr(X = 3) =
10
32

Pr(X = 4) =
5

32
Pr(X = 5) =

1
32

.
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The function defined Y such that Y (w) = 1 iff H appears in w , and Y (w) = 0
otherwise, is a random variable. We have

Pr(Y = 0) =
1
32

Pr(Y = 1) =
31
32

.

Example 8.13. Let W = D ⇥ D be the sample space of dice rolls, with the uniform
probability measure Pr (every outcome has the same probability 1/36). The sum
S(w) of the numbers on the two dice is a random variable. For example,

S(2,5) = 7.

The value of S is any integer between 2 and 12, and if we compute Pr(S = s) for
s = 2, . . . ,12, we find the following table.

s 2 3 4 5 6 7 8 9 10 11 12
Pr(S = s) 1

36
2

36
3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Here is a “real” example from computer science.

Example 8.14. Our goal is to sort of a sequence S = (x1, . . . ,xn) of n distinct real
numbers in increasing order. We use a recursive method known as quicksort which
proceeds as follows:

1. If S has one or zero elements return S.
2. Pick some element x = xi in S called the pivot.
3. Reorder S in such a way that for every number x j 6= x in S, if x j < x, then x j is

moved to a list S1, else if x j > x then x j is moved to a list S2.
4. Apply this algorithm recursively to the list of elements in S1 and to the list of

elements in S2.
5. Return the sorted list S1,x,S2.

Let us run the algorithm on the input list

S = (1,5,9,2,3,8,7,14,12,10).

We can represent the choice of pivots and the steps of the algorithm by an ordered
binary tree as shown in Figure 8.4. Except for the root node, every node corresponds
to the choice of a pivot, say x. The list S1 is shown as a label on the left of node x,
and the list S2 is shown as a label on the right of node x. A leaf node is a node such
that |S1|  1 and |S2|  1. If |S1| � 2, then x has a left child, and if |S2| � 2, then x
has a right child. Let us call such a tree a computation tree. Observe that except for
minor cosmetic differences, it is a binary search tree. The sorted list can be retrieved
using an inorder tree traversal (left subtree, root, right subtree) of the computation
tree and is

(1,2,3,5,7,8,9,10,12,14).
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3

1 8

7 10

12

1/10

1/2 1/7

1/2 1/4

1/2

(1, 5, 9, 2, 3, 8, 7, 14, 12, 10)

(5, 9, 8, 7, 14, 12, 10)(1, 2)

(2)() (9, 14, 12, 10)(5, 7)

()(5) (14, 12)(9)

(14)()

Fig. 8.4 A tree representation of a run of quicksort.

If you run this algorithm on a few more examples, you will realize that the choice
of pivots greatly influences how many comparisons are needed. If the pivot is chosen
at each step so that the size of the lists S1 and S2 is roughly the same, then the number
of comparisons is small compared to n, in fact O(n lnn). On the other hand, with a
poor choice of pivot, the number of comparisons can be as bad as n(n�1)/2.

In order to have a good “average performance,” one can randomize this algorithm
by assuming that each pivot is chosen at random. What this means is that whenever
it is necessary to pick a pivot from some list Y , some procedure is called and this
procedure returns some element chosen at random from Y . How exactly this done is
an interesting topic in itself but we will not go into this. Let us just say that the pivot
can be produced by a random number generator, or by spinning a wheel containing
the numbers in Y on it, or by rolling a dice with as many faces as the numbers in Y .
What we do assume is that the probability measure that a number is chosen from a
list Y is uniform, and that successive choices of pivots are independent. How do we
model this as a probability space?

Here is a way to do it. Use the computation trees defined above! Simply add
to every edge the probability that one of the element of the corresponding list, say
Y , was chosen uniformly, namely 1/|Y |. So given an input list S of length n, the
sample space W is the set of all computation trees T with root label S. We assign a
probability to the trees T in W as follows: If n= 0,1, then there is a single tree and its
probability is 1. If n � 2, for every leaf of T , multiply the probabilities along the path
from the root to that leaf and then add up the probabilities assigned to these leaves.
This is Pr(T ). For example, leaf 1 has probability 1/20, leaf 7 has probability 1/40,
and leaf 12 has probability 1/560, and Pr(T ) = 1/20+ 1/40+ 1/560. We leave it
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as an exercise to prove that the sum of the probabilities of all the trees in W is equal
to 1.

A random variable of great interest on (W ,Pr) is the number X of comparisons
performed by the algorithm. To analyze the average running time of this algorithm,
it is necessary to determine when the first (or the last) element of a sequence

Y = (yi, . . . ,y j)

is chosen as a pivot. To carry out the analysis further requires the notion of expecta-
tion that has not yet been defined. See Example 8.28 for a complete analysis.

Let us now give an official definition of a random variable.

Definition 8.6. Given a (finite) discrete probability space (W ,Pr), a random vari-
able is any function X : W !R. For any real numbers a,b 2R, we define Pr(X = a)
as the probability

Pr(X = a) = Pr(X�1(a)) = Pr({w 2 W | X(w) = a}),

and Pr(X  a), Pr(X � a), Pr(b � X � a), as the probabilities

Pr(X  a) = Pr(X�1((�•,a])) = Pr({w 2 W | X(w)  a})
Pr(X � a) = Pr(X�1([a,+•))) = Pr({w 2 W | X(w) � a})

Pr(b � X � a) = Pr(X�1([a,b])) = Pr({w 2 W | b � X(w) � a}).

The function f : R ! [0,1] given by

f (a) = Pr(X = a), a 2 R

is the probability mass function of X , and the function F : R ! [0,1] given by

F(a) = Pr(X  a), a 2 R

is the cumulative distribution function of X .

The term probability mass function is abbreviated as p.m.f , and cumulative dis-
tribution function is abbreviated as c.d.f . It is unfortunate and confusing that both
the probability mass function and the cumulative distribution function are often ab-
breviated as distribution function.

The probability mass function f for the sum S of the numbers on two dice from
Example 8.13 is shown in Figure 8.5, and the corresponding cumulative distribution
function F is shown in Figure 8.6.

If W is finite, then f only takes finitely many nonzero values; it is very discontin-
uous! The c.d.f F of S shown in Figure 8.6 has jumps (steps). Observe that the size
of the jump at every value a is equal to f (a) = Pr(S = a).

The cumulative distribution function F has the following properties:
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Fig. 8.5 The probability mass function for the sum of the numbers on two dice.
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Fig. 8.6 The cumulative distribution function for the sum of the numbers on two dice.

1. We have
lim

x 7!�•
F(x) = 0, lim

x 7!•
F(x) = 1.

2. It is monotonic nondecreasing, which means that if a  b, then F(a)  F(b).
3. It is piecewise constant with jumps, but it is right-continuous, which means that

limh>0,h7!0 F(a+h) = F(a).

For any a 2 R, because F is nondecreasing, we can define F(a�) by

F(a�) = lim
h#0

F(a�h) = lim
h>0,h7!0

F(a�h).
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These properties are clearly illustrated by the c.d.f on Figure 8.6.
The functions f and F determine each other, because given the probability mass

function f , the function F is defined by

F(a) = Â
xa

f (x),

and given the cumulative distribution function F , the function f is defined by

f (a) = F(a)�F(a�).

If the sample space W is countably infinite, then f and F are still defined as above
but in

F(a) = Â
xa

f (x),

the expression on the righthand side is the limit of an infinite sum (of positive terms).

Remark: If W is not countably infinite, then we are dealing with a probability
space (W ,F ,Pr) where F may be a proper subset of 2W , and in Definition 8.6, we
need the extra condition that a random variable is a function X : W ! R such that
X�1�(�•,a]

�
= {w 2 W | X(w)  a} 2 F for all a 2 R. (The function X needs to

be F -measurable.) In particular, we have {w 2 W | X(w)  a} 2 F . In this more
general situation, it is still true that

f (a) = Pr(X = a) = F(a)�F(a�),

but F cannot generally be recovered from f .
If the c.d.f F of a random variable X can be expressed as

F(x) =
Z x

�•
f (y)dy,

for some nonnegative (Lebesgue) integrable function f , then we say that F and X
are absolutely continuous (please, don’t ask me what type of integral!). The function
f is called a probability density function of X (for short, p.d.f ).

In this case, F is continuous, but more is true. The function F is uniformly con-
tinuous, and it is differentiable almost everywhere, which means that the set of input
values for which it is not differentiable is a set of (Lebesgue) measure zero. Further-
more, F 0 = f almost everywhere.

Random variables whose distributions can be expressed as above in terms of a
density function are often called continuous random variables. In contrast with the
discrete case, if X is a continuous random variable, then

Pr(X = x) = 0 for all x 2 R.

As a consequence, some of the definitions given in the discrete case in terms of the
probabilities Pr(X = x), for example Definition 8.7, become trivial. These defini-
tions need to be modifed; replacing Pr(X = x) by Pr(X  x) usually works.
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In the general case where the cdf F of a random variable X has discontinuities,
we say that X is a discrete random variable if X(w) 6= 0 for at most countably many
w 2 W . Equivalently, the image of X is finite or countably infinite. In this case, the
mass function of X is well defined, and it can be viewed as a discrete version of a
density function.

In the discrete setting where the sample space W is finite, it is usually more
convenient to use the probability mass function f , and to abuse language and call it
the distribution of X .

Example 8.15. Suppose we flip a coin n times, but this time, the coin is not neces-
sarily fair, so the probability of landing heads is p and the probability of landing
tails is 1 � p. The sample space W is the set of strings of length n over the alpha-
bet {H,T}. Assume that the coin flips are independent, so that the probability of an
event w 2 W is obtained by replacing H by p and T by 1� p in w . Then let X be the
random variable defined such that X(w) is the number of heads in w . For any i with
0  i  n, since there are

�n
i
�

subsets with i elements, and since the probability of a
sequence w with i occurrences of H is pi(1 � p)n�i, we see that the distribution of
X (mass function) is given by

f (i) =
✓

n
i

◆
pi(1� p)n�i, i = 0, . . . ,n,

and 0 otherwise. This is an example of a binomial distribution.

Example 8.16. As in Example 8.15, assume that we flip a biased coin, where the
probability of landing heads is p and the probability of landing tails is 1� p. How-
ever, this time, we flip our coin any finite number of times (not a fixed number), and
we are interested in the event that heads first turns up. The sample space W is the
infinite set of strings over the alphabet {H,T} of the form

W = {H,TH,TTH, . . . , TnH, . . . ,}.

Assume that the coin flips are independent, so that the probability of an event w 2 W
is obtained by replacing H by p and T by 1 � p in w . Then let X be the random
variable defined such that X(w) = n iff |w| = n, else 0. In other words, X is the
number of trials until we obtain a success. Then it is clear that

f (n) = (1� p)n�1 p, n � 1.

and 0 otherwise. This is an example of a geometric distribution.

The process in which we flip a coin n times is an example of a process in which
we perform n independent trials, each of which results in success or failure (such
trials that result exactly two outcomes, success or failure, are known as Bernoulli tri-
als). Such processes are named after Jacob Bernoulli, a very significant contributor
to probability theory after Fermat and Pascal.
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Fig. 8.7 Jacob (Jacques) Bernoulli (1654–1705).

Example 8.17. Let us go back to Example 8.15, but assume that n is large and that
the probability p of success is small, which means that we can write np = l with l
of “moderate” size. Let us show that we can approximate the distribution f of X in
an interesting way. Indeed, for every nonnegative integer i, we can write

f (i) =
✓

n
i

◆
pi(1� p)n�i

=
n!

i!(n� i)!

✓
l
n

◆i ✓
1� l

n

◆n�i

=
n(n�1) · · ·(n� i+1)

ni
l i

i!

✓
1� l

n

◆n✓
1� l

n

◆�i

.

Now for n large and l moderate, we have
✓

1� l
n

◆n

⇡ e�l ,

✓
1� l

n

◆�i

⇡ 1,
n(n�1) · · ·(n� i+1)

ni ⇡ 1,

so we obtain

f (i) ⇡ e�l l i

i!
, i 2 N.

The above is called a Poisson distribution with parameter l . It is named after the
French mathematician Simeon Denis Poisson.

Fig. 8.8 Siméon Denis Poisson (1781–1840).
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It turns out that quite a few random variables occurring in real life obey the
Poisson probability law (by this, we mean that their distribution is the Poisson dis-
tribution). Here are a few examples:

1. The number of misprints on a page (or a group of pages) in a book.
2. The number of people in a community whose age is over a hundred.
3. The number of wrong telephone numbers that are dialed in a day.
4. The number of customers entering a post office each day.
5. The number of vacancies occurring in a year in the federal judicial system.

As we will see later on, the Poisson distribution has some nice mathematical
properties, and the so-called Poisson paradigm which consists in approximating the
distribution of some process by a Poisson distribution is quite useful.

The notion of independence also applies to random variables.

8.4 Independence of Random Variables

Given two random variables X and Y on the same (discrete) probability space, it is
useful to consider their joint distribution (really joint mass function) fX ,Y given by

fX ,Y (a,b) = Pr(X = a and Y = b) = Pr({w 2 W | (X(w) = a)^ (Y (w) = b)}),

for any two reals a,b 2 R.

Definition 8.7. Two random variables X and Y defined on the same discrete proba-
bility space are independent if

Pr(X = a and Y = b) = Pr(X = a)Pr(Y = b), for all a,b 2 R.

Remark: If X and Y are two continuous random variables, we say that X and Y are
independent if

Pr(X  a and Y  b) = Pr(X  a)Pr(Y  b), for all a,b 2 R.

It is easy to verify that if X and Y are discrete random variables, then the above
condition is equivalent to the condition of Definition 8.7.

Example 8.18. If we consider the probability space of Example 8.2 (rolling two
dice), then we can define two random variables S1 and S2, where S1 is the value
on the first dice and S2 is the value on the second dice. Then the total of the two
values is the random variable S = S1 +S2 of Example 8.13. Since

Pr(S1 = a and S2 = b) =
1

36
=

1
6

· 1
6
= Pr(S1 = a)Pr(S2 = b),

the random variables S1 and S2 are independent.
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Example 8.19. Suppose we flip a biased coin (with probability p of success) once.
Let X be the number of heads observed and let Y be the number of tails observed.
The variables X and Y are not independent. For example

Pr(X = 1 and Y = 1) = 0,

yet
Pr(X = 1)Pr(Y = 1) = p(1� p).

Now, if we flip the coin N times, where N has the Poisson distribution with parame-
ter l , it is remarkable that X and Y are independent; see Grimmett and Stirzaker [7]
(Section 3.2).

The following characterization of independence for two random variables is left
as an exercise.

Proposition 8.5. If X and Y are two random variables on a discrete probability
space (W ,Pr) and if fX ,Y is the joint distribution (mass function) of X and Y , fX is
the distribution (mass function) of X and fY is the distribution (mass function) of Y ,
then X and Y are independent iff

fX ,Y (x,y) = fX (x) fY (y), for all x,y 2 R.

Given the joint mass function fX ,Y of two random variables X and Y , the mass
functions fX of X and fY of Y are called marginal mass functions, and they are
obtained from fX ,Y by the formulae

fX (x) = Â
y

fX ,Y (x,y), fY (y) = Â
x

fX ,Y (x,y).

Remark: To deal with the continuous case, it is useful to consider the joint distri-
bution FX ,Y of X and Y given by

FX ,Y (a,b) = Pr(X  a and Y  b) = Pr({w 2 W | (X(w)  a)^ (Y (w)  b)}),

for any two reals a,b 2 R. We say that X and Y are jointly continuous with joint
density function fX ,Y if

FX ,Y (x,y) =
Z x

�•

Z y

�•
fX ,Y (u,v)dudv, for all x,y 2 R,

for some nonnegative integrable function fX ,Y . The marginal density functions fX
of X and fY of Y are defined by

fX (x) =
Z •

�•
fX ,Y (x,y)dy, fY (y) =

Z •

�•
fX ,Y (x,y)dx.

They correspond to the marginal distribution functions FX of X and FY of Y given
by
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FX (x) = Pr(X  x) = FX ,Y (x,•), FY (y) = Pr(Y  y) = FX ,Y (•,y).

For example, if X and Y are two random variables with joint density function
fX ,Y given by

fX ,Y (x,y) =
1
y

e�y� x
y , 0 < x,y < •,

then the marginal density function fY of Y is given by

fY (y) =
Z +•

�•
fX ,Y (x,y)dx =

Z •

0

1
y

e�y� x
y dx = e�y, y > 0.

It can be shown that X and Y are independent iff

FX ,Y (x,y) = FX (x)FY (y), for all x,y 2 R,

which, for continuous variables, is equivalent to

fX ,Y (x,y) = fX (x) fY (y), for all x,y 2 R.

We now turn to one of the most important concepts about random variables, their
mean (or expectation).

8.5 Expectation of a Random Variable

In order to understand the behavior of a random variable, we may want to look at
its “average” value. But the notion of average is ambiguous, as there are different
kinds of averages that we might want to consider. Among these, we have

1. the mean: the sum of the values divided by the number of values.
2. the median: the middle value (numerically).
3. the mode: the value that occurs most often.

For example, the mean of the sequence (3,1,4,1,5) is 2.8; the median is 3, and the
mode is 1.

Given a random variable X , if we consider a sequence of values X(w1),X(w2), . . .,
X(wn), each value X(w j) = a j has a certain probability Pr(X = a j) of occurring
which may differ depending on j, so the usual mean

X(w1)+X(w2)+ · · ·+X(wn)

n
=

a1 + · · ·+an

n

may not capture well the “average” of the random variable X . A better solution is to
use a weighted average, where the weights are probabilities. If we write a j = X(w j),
we can define the mean of X as the quantity

a1Pr(X = a1)+a2Pr(X = a2)+ · · ·+anPr(X = an).
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Definition 8.8. Given a finite discrete probability space (W ,Pr), for any random
variable X , the mean value or expected value or expectation1 of X is the number
E(X) defined as

E(X) = Â
x2X(W)

x ·Pr(X = x) = Â
x| f (x)>0

x f (x),

where X(W) denotes the image of the function X and where f is the probability
mass function of X . Because W is finite, we can also write

E(X) = Â
w2W

X(w)Pr(w).

In this setting, the median of X is defined as the set of elements x 2 X(W) such
that

Pr(X  x) � 1
2

and Pr(X � x) � 1
2
.

Remark: If W is countably infinite, then the expectation E(X), if it exists, is given
by

E(X) = Â
x| f (x)>0

x f (x),

provided that the above sum converges absolutely (that is, the partial sums of abso-
lute values converge). If we have a probability space (X ,F ,Pr) with W uncountable
and if X is absolutely continuous so that it has a density function f , then the expec-
tation of X is given by the integral

E(X) =
Z +•

�•
x f (x)dx.

It is even possible to define the expectation of a random variable that is not neces-
sarily absolutely continuous using its cumulative density function F as

E(X) =
Z +•

�•
xdF(x),

where the above integral is the Lebesgue–Stieljes integal, but this is way beyond the
scope of this book.

Example 8.20. Observe that if X is a constant random variable (that is, X(w) = c for
all w 2 W for some constant c), then

E(X) = Â
w2W

X(w)Pr(w) = c Â
w2W

Pr(w) = cPr(W) = c,

since Pr(W) = 1. The mean of a constant random variable is itself (as it should be!).

1 It is amusing that in French, the word for expectation is espérance mathématique. There is hope
for mathematics!
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Example 8.21. Consider the sum S of the values on the dice from Example 8.13. The
expectation of S is

E(S) = 2 · 1
36

+3 · 2
36

+ · · ·+6 · 5
36

+7 · 6
36

+8 · 5
36

+ · · ·+12 · 1
36

= 7.

Example 8.22. Suppose we flip a biased coin once (with probability p of landing
heads). If X is the random variable given by X(H) = 1 and X(T) = 0, the expectation
of X is

E(X) = 1 ·Pr(X = 1)+0 ·Pr(X = 0) = 1 · p+0 · (1� p) = p.

Example 8.23. Consider the binomial distribution of Example 8.15, where the ran-
dom variable X counts the number of heads (success) in a sequence of n trials. Let
us compute E(X). Since the mass function is given by

f (i) =
✓

n
i

◆
pi(1� p)n�i, i = 0, . . . ,n,

we have

E(X) =
n

Â
i=0

i f (i) =
n

Â
i=0

i
✓

n
i

◆
pi(1� p)n�i.

We use a trick from analysis to compute this sum. Recall from the binomial theorem
that

(1+ x)n =
n

Â
i=0

✓
n
i

◆
xi.

If we take derivatives on both sides, we get

n(1+ x)n�1 =
n

Â
i=0

i
✓

n
i

◆
xi�1,

and by multiplying both sides by x,

nx(1+ x)n�1 =
n

Â
i=0

i
✓

n
i

◆
xi. (⇤)

Let q = 1� p. Now if we set x = p/q, since p+q = 1, we have

x(1+ x)n�1 =
p
q

✓
1+

p
q

◆n�1
=

p
q

✓
p+q

q

◆n�1
=

p
qn ,

so (⇤) becomes
np
qn =

n

Â
i=0

i
✓

n
i

◆
pi

qi ,

and multiplying both sides by qn and using the fact that q = 1� p, we get
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n

Â
i=0

i
✓

n
i

◆
pi(1� p)n�i = np,

and so
E(X) = np.

We record this important result below.

Proposition 8.6. The expectation E(X) of a random variable X with the binomial
distribution of Example 8.15 is given by

E(X) = np.

It should be observed that the expectation of a random variable may be infinite.
For example, if X is a random variable whose probability mass function f is given
by

f (k) =
1

k(k+1)
, k = 1,2, . . . ,

then Âk2N�{0} f (k) = 1, since

•

Â
k=1

1
k(k+1)

=
•

Â
k=1

✓
1
k

� 1
k+1

◆
= lim

k 7!•

✓
1� 1

k+1

◆
= 1,

but
E(X) = Â

k2N�{0}
k f (k) = Â

k2N�{0}

1
k+1

= •.

Example 8.23 illustrates the fact that computing the expectation of a random
variable X can be quite difficult due the complicated nature of the mass function f .
Therefore it is desirable to know about properties of the expectation that make its
computation simpler. A crucial property of expectation that often allows simplifica-
tions in computing the expectation of a random variable is its linearity.

Proposition 8.7. (Linearity of Expectation) Given two random variables on a dis-
crete probability space, for any real number l , we have

E(X +Y ) = E(X)+E(Y )
E(lX) = lE(X).

Proof. We have
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E(X +Y ) = Â
z

z ·Pr(X +Y = z)

= Â
x

Â
y
(x+ y) ·Pr(X = x and Y = y)

= Â
x

Â
y

x ·Pr(X = x and Y = y)+Â
x

Â
y

y ·Pr(X = x and Y = y)

= Â
x

Â
y

x ·Pr(X = x and Y = y)+Â
y

Â
x

y ·Pr(X = x and Y = y)

= Â
x

xÂ
y
Pr(X = x and Y = y)+Â

y
yÂ

x
Pr(X = x and Y = y).

Now the events Ax = {x | X = x} form a partition of W , which implies that

Â
y
Pr(X = x and Y = y) = Pr(X = x).

Similarly the events By = {y | Y = y} form a partition of W , which implies that

Â
x
Pr(X = x and Y = y) = Pr(Y = y).

By substitution, we obtain

E(X +Y ) = Â
x

x ·Pr(X = x)+Â
y

y ·Pr(Y = y),

proving that E(X +Y ) = E(X)+E(Y ). When W is countably infinite, we can per-
mute the indices x and y due to absolute convergence.

For the second equation, if l 6= 0, we have

E(lX) = Â
x

x ·Pr(lX = x)

= l Â
x

x
l

·Pr(X = x/l )

= l Â
y

y ·Pr(X = y)

= lE(X).

as claimed. If l = 0, the equation is trivial. ut

By a trivial induction, we obtain that for any finite number of random variables
X1, . . . ,Xn, we have

E

✓ n

Â
I=1

Xi

◆
=

n

Â
I=1

E(Xi).

It is also important to realize that the above equation holds even if the Xi are not
independent.
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Here is an example showing how the linearity of expectation can simplify calcu-
lations.

Example 8.24. Let us go back to Example 8.23. Define n random variables X1, . . . ,Xn
such that Xi(w) = 1 iff the ith flip yields heads, otherwise Xi(w) = 0. Clearly, the
number X of heads in the sequence is

X = X1 + · · ·+Xn.

However, we saw in Example 8.22 that E(Xi) = p, and since

E(X) = E(X1)+ · · ·+E(Xn),

we get
E(X) = np.

The above example suggests the definition of indicator function, which turns out
to be quite handy.

Definition 8.9. Given a discrete probability space with sample space W , for any
event A, the indicator function (or indicator variable) of A is the random variable IA
defined such that

IA(w) =

⇢
1, if w 2 A
0, if w /2 A.

Here is the main property of the indicator function.

Proposition 8.8. The expectation E(IA) of the indicator function IA is equal to the
probabilty Pr(A) of the event A.

Proof. We have

E(IA) = Â
w2W

IA(w)Pr(w) = Â
w2A

Pr(w) = Pr(A),

as claimed ut

This fact along with the linearity of expectation is often used to compute the
expectation of a random variable, by expressing it as a sum of indicator variables.
We will see how this method is used to compute the expectation of the number of
comparisons in quicksort. But first, we use this method to find the expected number
of fixed points of a random permutation.

Example 8.25. For any integer n � 1, let W be the set of all n! permutations of
{1, . . . ,n}, and give W the uniform probabilty measure; that is, for every permutation
p , let

Pr(p) = 1
n!
.

We say that these are random permutations. A fixed point of a permutation p is any
integer k such that p(k) = k. Let X be the random variable such that X(p) is the
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number of fixed points of the permutation p . Let us find the expectation of X . To do
this, for every k, let Xk be the random variable defined so that Xk(p) = 1 iff p(k) = k,
and 0 otherwise. Clearly,

X = X1 + · · ·+Xn,

and since
E(X) = E(X1)+ · · ·+E(Xn),

we just have to compute E(Xk). But, Xk is an indicator variable, so

E(Xk) = Pr(Xk = 1).

Now there are (n�1)! permutations that leave k fixed, so Pr(X = 1) = 1/n. There-
fore,

E(X) = E(X1)+ · · ·+E(Xn) = n · 1
n
= 1.

On average, a random permutation has one fixed point.

Definition 8.10. If X is a random variable on a discrete probability space W (pos-
sibly countably infinite), for any function g : R ! R, the composition g � X is a
random variable defined by

(g�X)(w) = g(X(w)), w 2 W .

This random variable is usually denoted by g(X).

Given two random variables X and Y , if j and y are two functions, we leave it
as an exercise to prove that if X and Y are independent, then so are j(X) and y(Y ).

Although computing the mass function of g in terms of the mass function f of X
can be very difficult, there is a nice way to compute its expectation. Here is a second
tool that makes it easier to compute an expectation.

Proposition 8.9. If X is a random variable on a discrete probability space W , for
any function g : R ! R, the expectation E(g(X)) of g(X) (if it exists) is given by

E(g(X)) = Â
x

g(x) f (x),

where f is the mass function of X.

Proof. We have
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E(g(X)) = Â
y

y ·Pr(g�X = y)

= Â
y

y ·Pr({w 2 W | g(X(w)) = y})

= Â
y

yÂ
x
Pr({w 2 W | g(x) = y X(w) = x})

= Â
y

Â
x,g(x)=y

y ·Pr({w 2 W , | X(w) = x})

= Â
y

Â
x,g(x)=y

g(x) ·Pr(X = x)

= Â
x

g(x) ·Pr(X = x)

= Â
x

g(x) f (x),

as claimed. ut

Given two random variables X and Y on a discrete probability space W , for any
function g : R⇥R ! R, the function g(X ,Y ) is a random variable and it is easy to
show that E(g(X ,Y )) (if it exists) is given by

E(g(X ,Y )) = Â
x,y

g(x,y) fX ,Y (x,y),

where fX ,Y is the joint mass function of X and Y .
The cases g(X) = Xk, g(X) = zX , and g(X) = etX (for some given reals z and t)

are of particular interest.

Example 8.26. Consider the random variable X of Example 8.23 counting the num-
ber of heads in a sequence of coin flips of length n, but this time, let us try to compute
E(Xk), for k � 2. By Proposition 8.9, we have

E(Xk) =
n

Â
i=0

ik f (i)

=
n

Â
i=0

ik
✓

n
i

◆
pi(1� p)n�i

=
n

Â
i=1

ik
✓

n
i

◆
pi(1� p)n�i.

Recall that
i
✓

n
i

◆
= n
✓

n�1
i�1

◆
.

Using this, we get
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E(Xk) =
n

Â
i=1

ik
✓

n
i

◆
pi(1� p)n�i

= np
n

Â
i=1

ik�1
✓

n�1
i�1

◆
pi�1(1� p)n�i (let j = i�1)

= np
n�1

Â
j=0

( j+1)k�1
✓

n�1
j

◆
p j(1� p)n�1� j

= npE((Y +1)k�1)

using Proposition 8.9 to establish the last equation, where Y is a random variable
with binomial distribution on sequences of length n�1 and with the same probabil-
ity p of success. Thus, we obtain an inductive method to compute E(Xk). For k = 2,
by Proposition 8.6, we get

E(X2) = npE(Y +1) = np((n�1)p+1).

Here is a third tool to compute expectation. If X only takes nonnegative integer
values, then the following result may be useful for computing E(X).

Proposition 8.10. If X is a random variable that takes on only nonnegative integers,
then its expectation E(X) (if it exists) is given by

E(X) =
•

Â
i=1

Pr(X � i).

Proof. For any integer n � 1, we have

n

Â
j=1

jPr(X = j) =
n

Â
j=1

j

Â
i=1

Pr(X = j) =
n

Â
i=1

n

Â
j=i

Pr(X = j) =
n

Â
i=1

Pr(n � X � i).

Then if we let n go to infinity, we get

•

Â
i=1

Pr(X � i) =
•

Â
i=1

•

Â
j=i

Pr(X = j) =
•

Â
j=1

j

Â
i=1

Pr(X = j) =
•

Â
j=1

jPr(X = j) = E(X),

as claimed. ut

Proposition 8.10 has the following intuitive geometric interpretation: E(X) is the
area above the graph of the cumulative distribution function F(i) = Pr(X  i) of X
and below the horizontal line F = 1. Here is an application of Proposition 8.10.

Example 8.27. In Example 8.16, we consider finite sequences of flips of a biased
coin, and the random variable of interest is the first occurrence of tails (success).
The distribution of this random variable is the geometric distribution,

f (n) = (1� p)n�1 p, n � 1.
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To compute its expectation, let us use Proposition 8.10. We have

Pr(X � i) =
•

Â
j=i

(1� p)i�1 p

= p(1� p)i�1
•

Â
j=0

(1� p) j

= p(1� p)i�1 1
1� (1� p)

= (1� p)i�1.

Then we have

E(X) =
•

Â
i=1

Pr(X � i)

=
•

Â
i=1

(1� p)i�1.

=
1

1� (1� p)
=

1
p
.

Therefore,

E(X) =
1
p
.

Proposition 8.11. The expectation of the random variable X associated with the
first occurrence of tails when flipping a biased coin (heads with probability p) is

E(X) =
1
p
,

which means that on the average, it takes 1/p flips until heads turns up.

Let us now compute E(X2). By Proposition 8.9, we have

E(X2) =
•

Â
i=1

i2(1� p)i�1 p

=
•

Â
i=1

(i�1+1)2(1� p)i�1 p

=
•

Â
i=1

(i�1)2(1� p)i�1 p+
•

Â
i=1

2(i�1)(1� p)i�1 p+
•

Â
i=1

(1� p)i�1 p

=
•

Â
j=0

j2(1� p) j p+2
•

Â
j=1

j(1� p) j p+1 (let j = i�1)

= (1� p)E(X2)+2(1� p)E(X)+1.

Since E(X) = 1/p, we obtain
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pE(X2) =
2(1� p)

p
+1

=
2� p

p
,

so
E(X2) =

2� p
p2 .

By the way, the trick of writing i = i � 1+ 1 can be used to compute E(X). Try to
recompute E(X) this way. The expectation E(X) can also be computed using the
derivative technique of Example 8.23, since (d/dt)(1� p)i = �i(p�1)i�1.

Example 8.28. Let us compute the expectation of the number X of comparisons
needed when running the randomized version of quicksort presented in Example
8.14. Recall that the input is a sequence S = (x1, . . . ,xn) of distinct elements, and
that (y1, . . . ,yn) has the same elements sorted in increasing order. In order to com-
pute E(X), we decompose X as a sum of indicator variables Xi, j, with Xi, j = 1 iff yi
and y j are ever compared, and Xi, j = 0 otherwise. Then it is clear that

X =
n

Â
j=2

j�1

Â
i=1

Xi, j,

and

E(X) =
n

Â
j=2

j�1

Â
i=1

E(Xi, j).

Furthermore, since Xi, j is an indicator variable, we have

E(Xi, j) = Pr(yi and y j are ever compared).

The crucial observation is that yi and y j are ever compared iff either yi or y j is chosen
as the pivot when {yi,yi+1, . . . ,y j} is a subset of the set of elements of the (left or
right) sublist considered for the choice of a pivot.

This is because if the next pivot y is larger than y j, then all the elements in
(yi,yi+1, . . . ,y j) are placed in the list to the left of y, and if y is smaller than yi,
then all the elements in (yi,yi+1, . . . ,y j) are placed in the list to the right of y. Conse-
quently, if yi and y j are ever compared, some pivot y must belong to (yi,yi+1, . . . ,y j),
and every yk 6= y in the list will be compared with y. But if the pivot y is distinct from
yi and y j, then yi is placed in the left sublist and y j in the right sublist, so yi and y j
will never be compared.

It remains to compute the probability that the next pivot chosen in the sublist
Yi, j = (yi,yi+1, . . . ,y j) is yi (or that the next pivot chosen is y j, but the two proba-
bilities are equal). Since the pivot is one of the values in (yi,yi+1, . . . ,y j) and since
each of these is equally likely to be chosen (by hypothesis), we have

Pr(yi is chosen as the next pivot in Yi, j) =
1

j � i+1
.



366 8 An Introduction to Discrete Probability

Consequently, since yi and y j are ever compared iff either yi is chosen as a pivot or
y j is chosen as a pivot, and since these two events are mutally exclusive, we have

E(Xi, j) = Pr(yi and y j are ever compared) =
2

j � i+1
.

It follows that

E(X) =
n

Â
j=2

j�1

Â
i=1

E(Xi, j)

= 2
n

Â
j=2

j

Â
k=2

1
k

(set k = j � i+1)

= 2
n

Â
k=2

n

Â
j=k

1
k

= 2
n

Â
k=2

n� k+1
k

= 2(n+1)
n

Â
k=1

1
k

�4n.

At this stage, we use the result of Problem 6.32. Indeed,

n

Â
k=1

1
k
= Hn

is a harmonic number, and it is shown that

ln(n)+
1
n

 Hn  lnn+1.

Therefore, Hn = lnn+Q(1), which shows that

E(X) = 2n lnn+Q(n).

Therefore, the expected number of comparisons made by the randomized version of
quicksort is 2n lnn+Q(n).

Example 8.29. If X is a random variable with Poisson distribution with parameter l
(see Example 8.17), let us show that its expectation is

E(X) = l .

Recall that a Poisson distribution is given by

f (i) = e�l l i

i!
, i 2 N,
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so we have

E(X) =
•

Â
i=0

ie�l l i

i!

= le�l
•

Â
i=1

l i�1

(i�1)!

= le�l
•

Â
j=0

l j

j!
(let j = i�1)

= le�l el = l ,

as claimed. This is consistent with the fact that the expectation of a random variable
with a binomial distribution is np, under the Poisson approximation where l = np.
We leave it as an exercise to prove that

E(X2) = l (l +1).

Although in general E(XY ) 6= E(X)E(Y ), this is true for independent random
variables.

Proposition 8.12. If two random variables X and Y on the same discrete probability
space are independent, then

E(XY ) = E(X)E(Y ).

Proof. We have

E(XY ) = Â
w2W

X(w)Y (w)Pr(w)

= Â
x

Â
y

xy ·Pr(X = x and Y = y)

= Â
x

Â
y

xy ·Pr(X = x)Pr(Y = y)

=

✓
Â
x

x ·Pr(X = x)
◆✓

Â
y

y ·Pr(Y = y)
◆

= E(X)E(Y ),

as claimed. Note that the independence of X and Y was used in going from line 2 to
line 3. ut

Example 8.30. In Example 8.18 (rolling two dice), we defined the random variables
S1 and S2, where S1 is the value on the first dice and S2 is the value on the second
dice. We also showed that S1 and S2 are independent. If we consider the random
variable P = S1S2, then we have

E(P) = E(S1)E(S2) =
7
2

· 7
2
=

49
4
,
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because
E(S1) = E(S2) =

1+2+3+4+5+6
6

=
6⇥7
2⇥6

= 7/2,

since all probabilities are equal to 1/6. On the other hand, S and P are not indepen-
dent (check it).

8.6 Variance, Standard Deviation

The mean (expectation) E(X) of a random variable X gives some useful information
about it, but it does not say how X is spread. Another quantity, the variance Var(X),
measure the spread of the distribution by finding the “average” of the square differ-
ence (X �E(X))2, namely

Var(X) = E
�
(X �E(X))2�.

Note that computing E(X �E(X)) yields no information, since by linearity of ex-
pectation and since the expectation of a constant is itself,

E(X �E(X)) = E(X)�E(E(X)) = E(X)�E(X) = 0.

Definition 8.11. Given a discrete probability space (W ,Pr), for any random variable
X , the variance Var(X) of X (if it exists) is defined as

Var(X) = E
�
(X �E(X))2�.

The expectation E(X) of a random variable X is often denoted by µ . The variance
is also denoted V(X), for instance, in Graham, Knuth and Patashnik [6]).

Since the variance Var(X) involves a square, it can be quite large, so it is conve-
nient to take its square root and to define the standard deviation s of X as

s =
p

Var(X).

The following result shows that the variance Var(X) can be computed using
E(X2) and E(X).

Proposition 8.13. Given a discrete probability space (W ,Pr), for any random vari-
able X, the variance Var(X) of X is given by

Var(X) = E(X2)� (E(X))2.

Consequently, Var(X)  E(X2).

Proof. Using the linearity of expectation and the fact that the expectation of a con-
stant is itself, we have
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Var(X) = E
�
(X �E(X))2�

= E(X2 �2XE(X)+(E(X))2)

= E(X2)�2E(X)E(X)+(E(X))2

= E(X2)� (E(X))2

as claimed. ut

Example 8.31. For example, if we roll a fair dice, we know that the number S1 on
the dice has expectation E(S1) = 7/2 (see Example 8.18 for the Definition of S1 and
Example 8.30 for the fact that E(S1) = 7/2). We also have

E(S2
1) =

1
6
(12 +22 +32 +42 +52 +62) =

91
6
,

so the variance of S1 is

Var(S1) = E(S2
1)� (E(S1))

2 =
91
6

�
✓

7
2

◆2
=

35
12

.

The quantity E(X2) is called the second moment of X . More generally, we have
the following definition.

Definition 8.12. Given a random variable X on a discrete probability space (W ,Pr),
for any integer k � 1, the kth moment µk of X is given by µk = E(Xk), and the kth
central moment sk of X is defined by sk = E((X � µ1)k).

Typically, only µ = µ1 and s2 are of interest. As before, s =
ps2. However,

s3 and s4 give rise to quantities with exotic names: the skewness (s3/s3) and the
kurtosis (s4/s4 �3).

We can easily compute the variance of a random variable for the binomial distri-
bution and the geometric distribution, since we already computed E(X2).

Example 8.32. In Example 8.26, the case of a binomial distribution, we found that

E(X2) = np((n�1)p+1).

We also found earlier (Example 8.23) that E(X) = np. Therefore, we have

Var(X) = E(X2)� (E(X))2

= np((n�1)p+1)� (np)2

= np(1� p).

Therefore,
Var(X) = np(1� p).

Example 8.33. In Example 8.27, the case of a geometric distribution, we found that
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E(X) =
1
p

E(X2) =
2� p

p2 .

It follows that

Var(X) = E(X2)� (E(X))2

=
2� p

p2 � 1
p2

=
1� p

p2 .

Therefore,

Var(X) =
1� p

p2 .

Example 8.34. In Example 8.29, the case of a Poisson distribution with parameter
l , we found that

E(X) = l
E(X2) = l (l +1).

It follows that

Var(X) = E(X2)� (E(X))2 = l (l +1)�l 2 = l .

Therefore, a random variable with a Poisson distribution has the same value for its
expectation and its variance,

E(X) = Var(X) = l .

In general, if X and Y are not independent variables, Var(X +Y ) 6= Var(X) +
Var(Y ). However, if they are, things are great!

Proposition 8.14. Given a discrete probability space (W ,Pr), for any random vari-
able X and Y , if X and Y are independent, then

Var(X +Y ) = Var(X)+Var(Y ).

Proof. Recall from Proposition 8.12 that if X and Y are independent, then E(XY ) =
E(X)E(Y ). Then, we have

E((X +Y )2) = E(X2 +2XY +Y 2)

= E(X2)+2E(XY )+E(Y 2)

= E(X2)+2E(X)E(Y )+E(Y 2).
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Using this, we get

Var(X +Y ) = E((X +Y )2)� (E(X +Y ))2

= E(X2)+2E(X)E(Y )+E(Y 2)� ((E(X))2 +2E(X)E(Y )+(E(Y ))2)

= E(X2)� (E(X))2 +E(Y 2)� (E(Y ))2

= Var(X)+Var(Y ),

as claimed. ut

Example 8.35. As an application of Proposition 8.14, if S1 and S2 are the random
variables defined in Example 8.18 where we consider the event of rolling two dice,
since we showed that the random variables S1 and S2 are independent, we can com-
pute the variance of their sum S = S1 +S2 and we get

Var(S) = Var(S1)+Var(S2) =
35
12

+
35
12

=
35
6
.

Recall from Example 8.21 that E(S) = 7.

The following proposition is also useful.

Proposition 8.15. Given a discrete probability space (W ,Pr), for any random vari-
able X, the following properties hold:

1. If X � 0, then E(X) � 0.
2. If X is a random variable with constant value l , then E(X) = l .
3. For any two random variables X and Y defined on the probability space (W ,Pr),

if X  Y , which means that X(w)  Y (w) for all w 2 W , then E(X)  E(Y )
(monotonicity of expectation).

4. For any scalar l 2 R, we have

Var(lX) = l 2Var(X).

Proof. Properties (1) and (2) are obvious. For (3), X  Y iff Y �X � 0, so by (1) we
have E(Y �X) � 0, and by linearity of expectation, E(Y ) � E(X). For (4), we have

Var(lX) = E
�
(lX �E(lX))2�

= E
�
l 2(X �E(X))2�

= l 2E
�
(X �E(X))2�= l 2Var(X),

as claimed. ut

Property (4) shows that unlike expectation, the variance is not linear (although
for independent random variables, Var(X +Y ) = Var(X)+Var(Y ). This also holds
in the more general case of uncorrelated random variables; see Proposition 8.16
below).

Here is an application of geometrically distributed random variables.
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Example 8.36. Suppose there are m different types of coupons (or perhaps, the kinds
of cards that kids like to collect), and that each time one obtains a coupon, it is
equally likely to be any of these types. Let X denote the number of coupons one
needs to collect in order to have at least one of each type. What is the expected
value E(X) of X? This problem is usually called a coupon collecting problem.

The trick is to introduce the random variables Xi, where Xi is the number of
additional coupons needed, after i distinct types have been collected, until another
new type is obtained, for i = 0,1, . . . ,m�1. Clearly,

X =
m�1

Â
i=0

Xi,

and each Xi has a geometric distribution, where each trial has probability of success
pi = (m� i)/m. We know (see Example 8.27,) that

E(Xi) =
1
pi

=
m

m� i
.

Consequently,

E(X) =
m�1

Â
i=0

E(Xi) =
m�1

Â
i=0

m
m� i

= m
m

Â
i=1

1
i
.

Once again, the harmonic number

Hm =
m

Â
k=1

1
k

shows up! Since Hn = lnn+Q(1), we obtain

E(X) = m lnm+Q(m).

For example, if m = 50, then ln50 = 3.912, and m lnm ⇡ 196. If m = 100, then
ln100 = 4.6052, and m lnm ⇡ 461. If the coupons are expensive, one begins to see
why the company makes money!

It turns out that using a little bit of analysis, we can compute the variance of X .
This is because it is easy to check that the Xi are independent, so

Var(X) =
m�1

Â
i=0

Var(Xi).

From Example 8.33, we have

Var(Xi) =
1� pi

p2
i

=

✓
1� m� i

m

◆�
(m� i)2

m2 =
mi

(m� i)2 .

It follows that
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Var(X) =
m�1

Â
i=0

Var(Xi) = m
m�1

Â
i=0

i
(m� i)2 .

To compute this sum, write

m�1

Â
i=0

i
(m� i)2 =

m�1

Â
i=0

m
(m� i)2 �

m�1

Â
i=0

m� i
(m� i)2

=
m�1

Â
i=0

m
(m� i)2 �

m�1

Â
i=0

1
(m� i)

= m
m

Â
j=1

1
j2 �

m

Â
j=1

1
j
.

Now, it is well known from analysis that

lim
m7!•

m

Â
j=1

1
j2 =

p2

6
,

so we get

Var(X) =
m2p2

6
+Q(m lnm).

Let us go back to the example about fixed points of random permutations (Ex-
ample 8.25). We found that the expectation of the number of fixed points is µ = 1.
The reader should compute the standard deviation. The difficulty is that the ran-
dom variables Xk are not independent, (for every permutation p , we have Xk(p) = 1
iff p(k) = k, and 0 otherwise). You will find that s = 1. If you get stuck, look at
Graham, Knuth and Patashnik [6], Chapter 8.

8.7 Covariance, Chebyshev’s Inequality

If X and Y are not independent, we still have

E((X +Y )2) = E(X2 +2XY +Y 2)

= E(X2)+2E(XY )+E(Y 2),

and we get

Var(X +Y ) = E((X +Y )2)� (E(X +Y ))2

= E(X2)+2E(XY )+E(Y 2)� ((E(X))2 +2E(X)E(Y )+(E(Y ))2)

= E(X2)� (E(X))2 +E(Y 2)� (E(Y ))2 +2(E(XY )�E(X)E(Y ))
= Var(X)+Var(Y )+2(E(XY )�E(X)E(Y )).
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The term E(XY )�E(X)E(Y ) has a more convenient form. Indeed, we have

E
�
(X �E(X))(Y �E(Y ))

�
= E

�
XY �XE(Y )�E(X)Y +E(X)E(Y )

�

= E(XY )�E(X)E(Y )�E(X)E(Y )+E(X)E(Y )
= E(XY )�E(X)E(Y ).

In summary we proved that

Var(X +Y ) = Var(X)+Var(Y )+2E
�
(X �E(X))(Y �E(Y ))

�
.

The quantity E
�
(X �E(X))(Y �E(Y ))

�
is well known in probability theory.

Definition 8.13. Given two random variables X and Y , their covariance Cov(X ,Y )
is defined by

Cov(X ,Y ) = E
�
(X �E(X))(Y �E(Y ))

�
= E(XY )�E(X)E(Y ).

If Cov(X ,Y ) = 0 (equivalently, if E(XY ) = E(X)E(Y )), we say that X and Y are
uncorrelated.

Observe that the variance of X is expressed in terms of the covariance of X by

Var(X) = Cov(X ,X).

Let us recap the result of our computation of Var(X +Y ) in terms of Cov(X ,Y ) as
the following proposition.

Proposition 8.16. Given two random variables X and Y , we have

Var(X +Y ) = Var(X)+Var(Y )+2Cov(X ,Y ).

Therefore, if X an Y are uncorrelated (Cov(X ,Y ) = 0), then

Var(X +Y ) = Var(X)+Var(Y ).

In particular, if X and Y are independent, then X and Y are uncorrelated because

Cov(X ,Y ) = E(XY )�E(X)E(Y ) = E(X)E(Y )�E(X)E(Y ) = 0.

This yields another proof of Proposition 8.14.
However, beware that Cov(X ,Y ) = 0 does not necessarily imply that X and Y are

independent. For example, let X and Y be the random variables defined on {�1,0,1}
by

Pr(X = 0) = Pr(X = 1) = Pr(X = �1) =
1
3
,

and
Y =

⇢
0, if X 6= 0
1, if X = 0 .
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Since XY = 0, we have E(XY ) = 0, and since we also have E(X) = 0, we have

Cov(X ,Y ) = E(XY )�E(X)E(Y ) = 0.

However, the reader will check easily that X and Y are not independent.
A better measure of independence is given by the correlation coefficient r(X ,Y )

of X and Y , given by

r(X ,Y ) =
Cov(X ,Y )p

Var(X)
p

Var(Y )
,

provided that Var(X) 6= 0 and Var(Y ) 6= 0. It turns out that |r(X ,Y )|  1, which is
shown using the Cauchy–Schwarz inequality.

Proposition 8.17. (Cauchy–Schwarz inequality) For any two random variables X
and Y on a discrete probability space W , we have

|E(XY )| 
q

E(X2)
q
E(Y 2).

Equality is achieved if and only if there exist some a,b 2 R (not both zero) such
that E((aX +bY )2) = 0.

Proof. This is a standard argument involving a quadratic equation. For any l 2 R,
define the function T (l ) by

T (l ) = E((X +lY )2).

We get

T (l ) = E(X2 +2lXY +l 2Y 2)

= E(X2)+2lE(XY )+l 2E(Y 2).

Since E((X+lY )2)� 0, we have T (l )� 0 for all l 2R. If E(Y 2)= 0, then we must
have E(XY ) = 0, since otherwise we could choose l so that E(X2)+2lE(XY )< 0.
In this case, the inequality is trivial. If E(Y 2) > 0, then for T (l ) to be nonnegative
the quadratic equation

E(X2)+2lE(XY )+l 2E(Y 2) = 0

should have at most one real root, which is equivalent to the well-known condition

4(E(XY ))2 �4E(X2)E(Y 2)  0,

which is equivalent to

|E(XY )| 
q
E(X2)

q
E(Y 2),

as claimed.
If (E(XY ))2 = E(X2)E(Y 2), then either E(Y 2) = 0, and then with a = 0,b = 1,

we have E((aX +bY )2) = 0, or E(Y 2)> 0, in which case the quadratic equation
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E(X2)+2lE(XY )+l 2E(Y 2) = 0

has a unique real root l0, so we have E((X +l0Y )2) = 0.
Conversely, if E((aX +bY )2) = 0 for some a,b 2 R, then either E(Y 2) = 0, in

which case we showed that we also have E(XY ) = 0, or the quadratic equation has
some real root, so we must have (E(XY ))2 �E(X2)E(Y 2) = 0. In both cases, we
have (E(XY ))2 = E(X2)E(Y 2). ut

It can be shown that for any random variable Z, if E(Z2) = 0, then Pr(Z = 0) =
1; see Grimmett and Stirzaker [7] (Chapter 3, Problem 3.11.2). In fact, this is a
consequence of Proposition 8.2 and Chebyshev’s Inequality (see below), as shown
in Ross [12] (Section 8.2, Proposition 2.3). It follows that if equality is achieved in
the Cauchy–Schwarz inequality, then there are some reals a,b (not both zero) such
that Pr(aX +bY = 0) = 1; in other words, X and Y are dependent with probability
1.

If we apply the Cauchy-Schwarz inequality to the random variables X �E(X)
and Y �E(Y ), we obtain the following result.

Proposition 8.18. For any two random variables X and Y on a discrete probability
space, we have

|r(X ,Y )|  1,

with equality iff there are some real numbers a,b ,g (with a,b not both zero) such
that Pr(aX +bY = g) = 1.

As emphasized by Graham, Knuth and Patashnik [6], the variance plays a key
role in an inequality due to Chebyshev (published in 1867) that tells us that a random
variable will rarely be far from its mean E(X) if its variance Var(X) is small.

Fig. 8.9 Pafnuty Lvovich Chebyshev (1821–1894).

Proposition 8.19. (Chebyshev’s Inequality) If X is any random variable, for every
a > 0, we have

Pr
�
(X �E(X))2 � a

�
 Var(X)

a
.

Proof. We follow Knuth. We have
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Var(X) = Â
w2W

(X(w)�E(X))2Pr(w)

� Â
w2W

(X(w)�E(X))2�a

(X(w)�E(X))2Pr(w)

� Â
w2W

(X(w)�E(X))2�a

aPr(w)

= aPr
�
(X �E(X))2 � a

�
,

which yields the desired inequality. ut
The French know this inequality as the Bienaymé–Chebyshev’s Inequality. Bien-

aymé proved this inequality in 1853, before Chebyshev who published it in 1867.
However, it was Chebyshev who recognized its significance.2 Note that if we re-
place a by a2, the condition (X �E(X))2 � a2 is equivalent to |X �E(X | � a , so
Chebyshev’s inequality can also be stated as

Pr
�
|X �E(X)| � a

�
 Var(X)

a2 .

It is also convenient to restate the Chebyshev’s inequality in terms of the standard
deviation s =

p
Var(X) of X , to write E(X) = µ , and to replace a2 by c2Var(X),

and we get: For every c > 0,

Pr(|X � µ| � cs)  1
c2 ;

equivalently

Pr(|X � µ| < cs) � 1� 1
c2 .

This last inequality says that a random variable will lie within cs of its mean with
probability at least 1�1/c2. If c= 10, the random variable will lie between µ �10s
and µ +10s at least 99% of the time.

Example 8.37. We can apply the Chebyshev inequality to the experiment of Exam-
ple 8.35 where we roll two fair dice. We found that µ = 7 and s2 = 35/6 (for one
roll). If we assume that we perform n independent trials, then the total value of the
n rolls has expecation 7n and the variance if 35n/6. It follows that the sum will be
between

7n�10
r

35n
6

and 7n+10
r

35n
6

at least 99% of the time. If n = 106 (a million rolls), then the total value will be
between 6.976 million and 7.024 million more than 99% of the time.

Another interesting consequence of the Chebyshev’s inequality is this. Suppose
we have a random variable X on some discrete probability space (W ,Pr). For any n,
2 Still, Bienaymé is well loved!
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we can form the product space (W n,Pr) as explained in Definition 8.5, with

Pr(w1, . . . ,wn) = Pr(w1) · · ·Pr(wn), wi 2 W , i = 1, . . . ,n.

Then we define the random variable Xk on the product space by

Xk(w1, . . . ,wn) = X(wk).

It is easy to see that the Xk are independent. Consider the random variable

S = X1 + · · ·+Xn.

We can think of S as taking n independent “samples” from W and adding them to-
gether. By our previous discussion, S has mean nµ and standard deviation s

p
n,

where µ is the mean of X and s is its standard deviation. The Chebyshev’s inequal-
ity implies that the average

X1 + · · ·+Xn

n
will lie between s � 10s/

p
n and s + 10s/

p
n at least 99% of the time. This im-

plies that if we choose n large enough, then the average of n samples will almost
always be very near the expected value µ = E(X).

This concludes our elementary introduction to discrete probability. The reader
should now be well prepared to move on to Grimmett and Stirzaker [3], Ross [4, 5],
Venkatesh [15], Mitzenmacher and Upfal [2], Brémaud [2], and Cinlar [3]. Among
the references listed at the end of this chapter, let us mention the classical volumes
by Feller [4, 5], and Shiryaev [14].

The next three sections are devoted to more advanced topics and are optional.

8.8 Generating Functions; A Glimpse

If a random variable X on some discrete probability space (W ,Pr) takes nonnegative
integer values, then we can define a very useful function, the probability generating
function.

Definition 8.14. Let X be a random variable on some discrete probability space
(W ,Pr). If X takes nonnegative integer values, then its probability generating func-
tion (for short pgf ) GX (z) is defined by

GX (z) = Â
k�0

Pr(X = k)zk == Â
k�0

f (k)zk,

where f is the probability mass function from Definition 8.6. The function GX (z)
can also be expressed as

GX (z) = Â
w2W

Pr(w)zX(w) = E(zX );
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that is,
GX (z) = E(zX ).

Note that
GX (1) = Â

w2W
Pr(w) = 1,

so the radius of convergence of the power series GX (z) is at least 1. The nicest
property about pgf’s is that they usually simplify the computation of the mean and
variance. For example, we have

E(X) = Â
k�0

kPr(X = k)

= Â
k�0

Pr(X = k) · kzk�1��
z=1

= G0
X (1).

Similarly,

E(X2) = Â
k�0

k2Pr(X = k)

= Â
k�0

Pr(X = k) · (k(k �1)zk�2 + kzk�1)
��
z=1

= G00
X (1)+G0

X (1).

In summary we proved the following results.

Proposition 8.20. If GX is the probability generating function of the random vari-
able X, then we have

E(X) = G0
X (1)

Var(X) = G00
X (1)+G0

X (1)� (G0
1(1))

2.

Remark: The above results assume that G0
X (1) and G00

X (1) are well defined, which
is the case if the radius of convergence of the power series GX (z) is greater than 1.
If the radius of convergence of GX (z) is equal to 1 and if limz"1 G0

X (z) exists, then

E(X) = lim
z"1

G0
X (z),

and similarly if limz"1 G00
X (z) exists, then

E(X2) = lim
z"1

G00
X (z).

The above facts follow from Abel’s theorem, a result due to N. Abel. Abel’s theorem
states that if G(x) = Â•

n=0 anzn is a real power series with radius of convergence
R = 1 and if the sum Â•

n=0 an exists, which means that
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Fig. 8.10 Niels Henrik Abel (1802–1829).

lim
n7!•

n

Â
i=0

ai = a

for some a 2 R, then G(z) can be extended to a uniformly convergent series on
[0,1] such that limz 7!1 GX (z) = a. For details, the reader is referred to Grimmett and
Stirzaker [7] (Chapter 5) and Brémaud [2] (Appendix, Section 1.2).

However, as explained in Graham, Knuth and Patashnik [6], we may run into
unexpected problems in using a closed form formula for GX (z). For example, if X
is a random variable with the uniform distribution of order n, which means that X
takes any value in {0,1, . . . ,n�1} with equal probability 1/n, then the pgf of X is

Un(z) =
1
n
(1+ z+ · · ·+ zn�1) =

1� zn

n(1� z)
.

If we set z = 1 in the closed-form expression on the right, we get 0/0. The computa-
tions of the derivatives U 0

X (1) and U 00
X (1) will also be problematic (although we can

resort to L’Hospital’s rule).
Fortunately, there is an easy fix. If G(z) = Ân�0 anzn is a power series that con-

verges for some z with |z| > 1, then G0(z) = Ân�0 nanzn�1 also has that property,
and by Taylor’s theorem, we can write

G(1+ x) = G(1)+
G0(1)

1!
x+

G00(1)
2!

x2 +
G000(1)

3!
x3 + · · · .

It follows that all derivatives of G(z) at z = 1 appear as coefficients when G(1+ x)
is expanded in powers of x. For example, we have

Un(1+ x) =
(1+ x)n �1

nx

=
1
n

✓
n
1

◆
+

1
n

✓
n
2

◆
x+

1
n

✓
n
3

◆
x2 + · · ·+ 1

n

✓
n
n

◆
xn�1.

It follows that

Un(1) = 1; U 0
n(1) =

n�1
2

; U 00
n (1) =

(n�1)(n�2)
3

.
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Then we find that the mean is given by

µ =
n�1

2
,

and the variance (see Proposition 8.20) by

s2 =U 00
n (1)+U 0

n(1)� (U 0
n(1))

2 =
n2 �1

12
.

Another nice fact about pgf’s is that the pdf of the sum X +Y of two independent
variables X and Y is the product their pgf’s.

Proposition 8.21. If X and Y are independent, then

GX+Y (z) = GX (z)GY (z).

Proof. This is because if X and Y are independent, then

Pr(X +Y = n) =
n

Â
k=0

Pr(X = k and Y = n� k)

=
n

Â
k=0

Pr(X = k)Pr(Y = n� k),

a convolution! Therefore, if X and Y are independent, then

GX+Y (z) = GX (z)GY (z),

as claimed. ut

Example 8.38. If we flip a biased coin where the probability of tails is p, then the
pgf for the number of heads after one flip is

H(z) = 1� p+ pz.

If we make n independent flips, then the pgf of the number of heads is

(H(z))n = (1� p+ pz)n.

This allows us to rederive the formulae for the mean and the variance. Writing
Hn(z) = (H(z))n, we get

µ = (Hn(z))0(1) = nH 0(1) = np,

and
s2 = n(H 00(1)+H 0(1)� (H 0(1))2) = n(0+ p� p2) = np(1� p).

Example 8.39. If we flip a biased coin repeatedly until heads first turns up, we saw
that the random variable X that gives the number of trials n until the first occurrence
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of heads has the geometric distribution f (n) = (1 � p)n�1 p. It follows that the pgf
of X is

GX (z) = pz+(1� p)pz2 + · · ·+(1� p)n�1 pzn + · · · = pz
1� (1� p)z

.

Since we are assuming that these trials are independent, the random variables that
tell us that m heads are obtained has pgf

GX (z) =
✓

pz
1� (1� p)z

◆m

= pmzm Â
k

✓
m+ k �1

k

◆
((1� p)z)k

= Â
j

✓
j �1
j �m

◆
pm(1� p) j�mz j.

In the above derivation we used the binomial theorem stated in the remark before
Proposition 6.6 to the term (1� (1� p)z)�m (with r = �m), and the formula

✓
�m

k

◆
= (�1)k

✓
k+m�1

k

◆

from the Remark at the end of Section 6.4. We also made the change of variable
j = m+ k.

An an exercise, the reader should check that the pgf of a Poisson distribution with
parameter l is

GX (z) = el (z�1).

More examples of the use of pgf can be found in Graham, Knuth and Patashnik
[6].

Another interesting generating function is the moment generating function MX (t).

Definition 8.15. The moment generating function MX (t) of a random variable X
(not necessarily taking nonnegative integer values) is defined as follows: for any
t 2 R,

MX (t) = E(etX ) = Â
x

etx f (x),

where f (x) is the mass function of X . If X is a continuous random variable with
density function f , then MX (t) is given by

MX (t) =
Z •

�•
etx f (x)dx.

The main problem with the moment generating function is that it does not always
converge for all t 2 R. If MX (t) converges absolutely on some open interval (�r,r)
with r > 0, then its nth derivative for t = 0 is given by
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M(n)(0) = Â
x

xnetx f (x)
��
t=0 = Â

x
xn f (x) = E(Xn).

Therefore, the moments of X are all defined and given by

E(Xn) = M(n)(0).

Proposition 8.22. Within the radius of convergence of MX (t), we have the Taylor
expansion

MX (t) =
•

Â
k=0

E(Xk)

k!
tk.

This shows that MX (t) is the exponential generating function of the sequence
of moments (E(Xn)); see Graham, Knuth and Patashnik [6]. If X is a continuous
random variable, then the function MX (�t) is the Laplace transform of the density
function f .

Proposition 8.23. If X and Y are independent, then

MX+Y (t) = MX (t)MY (t).

Proof. If X and Y are independent, then E(XY ) = E(X)E(Y ), so we have

E
�
(X +Y )n�=

n

Â
k=0

✓
n
k

◆
E(XkY n�k) =

n

Â
k=0

✓
n
k

◆
E(X)kE(Y )n�k.

By Proposition 8.22, we also have

MX+Y (t) = Â
n

E
�
(X +Y )n�

n!
tn

= Â
n

1
n!

 
n

Â
k=0

✓
n
k

◆
E(X)kE(Y )n�k

!
tn

= Â
n

n

Â
k=0

E(X)k

k!
E(Y )n�k

(n� k)!
tn

= Â
n

n

Â
k=0

E(Xk)

k!
E(Y n�k)

(n� k)!
tn.

But, this last term is the coefficient of tn in MX (t)MY (t). Therefore, as in the case of
pgf’s, if X and Y are independent, then

MX+Y (t) = MX (t)MY (t).

as claimed. ut

Another way to prove the above equation is to use the fact that if X and Y are
independent random variables, then so are etX and etY for any fixed real t. Then
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E(et(X+Y )) = E(etX etY ) = E(etX )E(etY ).

Remark: If the random variable X takes nonnegative integer values, then it is easy
to see that

MX (t) = GX (et),

where GX is the generating function of X , so MX is defined over some open interval
(�r,r) with r > 0 and MX (t)> 0 on this interval. Then the function KX (t)= lnMX (t)
is well defined, and it has a Taylor expansion

KX (t) =
k1

1!
t +

k2

2!
t2 +

k3

3!
t3 + · · ·+ kn

n!
tn + · · · . (⇤)

The numbers kn are called the cumulants of X . Since

MX (t) =
•

Â
n=0

µn

n!
tn,

where µn = E(Xn) is the nth moment of X , by taking exponentials on both sides of
(⇤), we get relations between the cumulants and the moments, namely:

k1 = µ1

k2 = µ2 � µ2
1

k3 = µ3 �3µ1µ2 +2µ3
1

k4 = µ4 �4µ1µ4 +12µ2
1 µ2 �3µ2

2 �6µ4
1

...

Notice that k1 is the mean and k2 is the variance of X . Thus, it appears that the
cumulants are the natural generalization of the mean and variance. Furthermore, be-
cause logs are taken, all cumulants of the sum of two independent random variables
are additive, just as the mean and variance. This property makes cumulants more
important than moments.

The third generating function associated with a random variable X , and the most
important one, is the characteristic function jX (t).

Definition 8.16. The characteristic function jX (t) of a random variable X is defined
by

jX (t) = E(eitX ) = E(cos tX)+ iE(sin tX),

for all t 2 R. If f is the mass function of X , we have

jX (t) = Â
x

eitx f (x) = Â
x

cos(tx) f (x)+ iÂ
x

sin(tx) f (x),

a complex function of the real variable t.
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The “innocent” insertion of i in the exponent has the effect that |eitX | = 1, so
jX (t) converges absolutely and uniformly for all t 2 R.

If X is a continuous random variable with density function f , then

jX (t) =
Z •

�•
eitx f (x)dx.

Up to sign and to a change of variable, jX (t) is basically the Fourier transform of
f . Traditionally, the Fourier transform bf of f is given by

bf (t) =
Z •

�•
e�2pitx f (x)dx.

Next we summarize some of the most important properties of jX without proofs.
Details can be found in Grimmett and Stirzaker [7] (Chapter 5).

Proposition 8.24. The characteristic function jX of a random variable X satisfies
the following properties:

1. jX (0) = 1, |jX (t)|  1.
2. jX is uniformly continuous on R.
3. If j(n)

X (the nth derivative of jX ) exists, then E(|Xk|) is finite if k is even, and
E(|Xk�1|) is finite if k is odd.

4. If X and Y are independent, then

jX+Y (t) = jX (t)jY (t).

The proof is essentially the same as the one we gave for the moment generating
function, modulo powers of i.

5. If X is a random variable, for any two reals a,b,

jaX+b(t) = eitbjX (at).

Definition 8.17. Given two random variables X and Y , their joint characteristic
function jX ,Y (x,y) is defined by

jX ,Y (x,y) = E(eixX eiyY ).

It can be shown that X and Y are independent iff

jX ,Y (x,y) = jX (x)jY (y) for all x,y 2 R.

In general, if all the moments µn = E(Xn) of a random variable X are defined,
these moments do not uniquely define the distribution F of X . There are examples
of distinct distributions F (for X) and G (for Y ) such that E(Xn) = E(Y n) for all n;
see Grimmett and Stirzaker [7] (Chapter 5).

However, if the moment generating function of X is defined on some open inter-
val (�r,r) with r > 0, then MX (t) defines the distribution F of X uniquely.
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The reason is that in this case, the characteristic function jX is holomorphic
on the strip |Im(z)| < r, and then MX can extended on that strip to a holomorphic
function such that jX (t) = MX (it). Furthermore, the characteristic function jX de-
termines the distribution F of X uniquely. This is a rather deep result which is ba-
sically a version of Fourier inversion. If X is a continuous random variable with
density function f , then

f (x) =
1

2p

Z •

�•
e�itxjX (t)dt,

for every x for which f is differentiable.
If the distribution F is not given as above, it is still possible to prove the following

result (see Grimmett and Stirzaker [7] (Chapter 5)):

Theorem 8.1. Two random variables X and Y have the same characteristic function
iff they have the same distribution.

As a corollary, if the moment generating functions MX and MY are defined on
some interval (�r,r) with r > 0 and if MX = MY , then X and Y have the same
distribution. In computer science, this condition seems to be always satisfied.

If X is a discrete random variable that takes integer values, then

f (k) =
1

2p

Z p

�p
e�itkjX (t)dt;

see Grimmett and Stirzaker [7] (Chapter 5, Exercise 4).
There are also some useful continuity theorems which can be found in Grimmett

and Stirzaker [7] (Chapter 5).

8.9 Limit Theorems; A Glimpse

The behavior of the average sum of n independent samples described at the end of
Section 8.6 is an example of a weak law of large numbers. A precise formulation
of such a result is shown below. A version of this result was first shown by Jacob
Bernoulli and was published by his nephew Nicholas in 1713. Bernoulli did not have
Chebyshev’s inequality at this disposal (since Chebyshev’s inequality was proven in
1867), and he had to resort to a very ingenious proof.

Theorem 8.2. (Weak Law of Large Numbers (“Bernoulli’s Theorem”)) Let X1,X2,
. . . ,Xn, . . . be a sequence of random variables. Assume that they are independent,
that they all have the same distribution, and let µ be their common mean and s2 be
their common variance (we assume that both exist). Then for every e > 0,

lim
n7!•

Pr

✓����
X1 + · · ·+Xn

n
� µ

����� e
◆
= 0.
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Fig. 8.11 Jacob (Jacques) Bernoulli (1654–1705).

Proof. As earlier,

E

✓
X1 + · · ·+Xn

n

◆
= µ,

and because the Xi are independent,

Var

✓
X1 + · · ·+Xn

n

◆
=

s2

n
.

Then we apply Chebyshev’s inequality and we obtain

Pr

✓����
X1 + · · ·+Xn

n
� µ

����� e
◆

 s2

ne2 ,

which proves the result. ut

Definition 8.18. The locution independent and identically distributed random vari-
ables is often used to say that some random variables are independent and have the
same distribution. This locution is abbreviated as i.i.d.

Probability books are replete with i.i.d.’s
Another remarkable limit theorem has to do with the limit of the distribution of

the random variable
X1 + · · ·+Xn �nµ

s
p

n
,

where the Xi are i.i.d random variables with mean µ and variance s2. Observe that
the mean of X1 + · · ·+Xn is nµ and its variance is ns2, since the Xi are assumed to
be i.i.d.

We have not discussed a famous distribution, the normal or Gaussian distribution,
only because it is a continuous distribution.

Definition 8.19. The standard normal distribution is the cumulative distribution
function F whose density function is given by

f (x) =
1p
2p

e� 1
2 x2

;
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that is,

F(x) =
1p
2p

Z x

�•
e� 1

2 y2
dy.

More generally, we say that a random variable X is normally distributed with pa-
rameters µ and s2 (and that X has a normal distribution) if its density function is
the function

f (x) =
1p

2ps
e� (x�µ)2

2s2 .

The function f (x) decays to zero very quickly and its graph has a bell–shape.
Figure 8.12 shows some examples of normal distributions.

Fig. 8.12 Examples of normal distributions.

Using a little bit of calculus, it is not hard to show that if a random variable X
is normally distributed with parameters µ and s2, then its mean and variance are
given by

E(X) = µ,
Var(X) = s2.

See Ross [12], Section 5.4. The normal distribution with parameters µ and s2 is
often denoted by N (µ,s2). The standard case corresponds to µ = 0 and s = 1.

In the special case where µ = 0 and s = 1, the density function f is even, which
means that f (�y) = f (y), so making the change of variable y 7! �y, we have

F(�x) =
1p
2p

Z �x

�•
e� 1

2 y2
dy = � 1p

2p

Z x

•
e� 1

2 y2
dy =

1p
2p

Z •

x
e� 1

2 y2
dy,

and since

1 =
1p
2p

Z •

�•
e� 1

2 y2
dy =

1p
2p

Z x

�•
e� 1

2 y2
dy+

1p
2p

Z •

x
e� 1

2 y2
dy,

we get
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1 = F(x)+F(�x),

that is,
F(�x) = 1�F(x). (†2)

The following theorem was first proven by de Moivre in 1733 and generalized by
Laplace in 1812. De Moivre introduced the normal distribution in 1733. However, it
was Gauss who showed in 1809 how important the normal distribution (alternatively
Gaussian distribution) really is.

Fig. 8.13 Abraham de Moivre (1667–1754) (left), Pierre–Simon Laplace (1749–1827) (middle),
Johann Carl Friedrich Gauss (1777–1855) (right).

Theorem 8.3. (de Moivre–Laplace Limit Theorem) Consider n repeated indepen-
dent Bernoulli trials (coin flips) Xi, where the probability of success is p. Then for
all a < b,

lim
n7!•

Pr

✓
a  X1 + · · ·+Xn �npp

np(1� p)
 b
◆
= F(b)�F(a).

Observe that now, we have two approximations for the distribution of a random
variable X = X1 + · · ·+Xn with a binomial distribution. When n is large and p is
small, we have the Poisson approximation. When np(1 � p) is large, the normal
approximation can be shown to be quite good.

Theorem 8.3 is a special case of the following important theorem known as cen-
tral limit theorem.

Theorem 8.4. (Central Limit Theorem) Let X1,X2, . . . ,Xn, . . . be a sequence of ran-
dom variables. Assume that they are independent, that they all have the same dis-
tribution, and let µ be their common mean and s2 be their common variance (we
assume that both exist). Then the distribution of the random variable

X1 + · · ·+Xn �nµ
s

p
n

tends to the standard normal distribution as n goes to infinity. This means that for
every real a,
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lim
n7!•

Pr

✓
X1 + · · ·+Xn �nµ

s
p

n
 a
◆
=

1p
2p

Z a

�•
e� 1

2 x2
.

We lack the machinery to prove this theorem. This machinery involves character-
istic functions and various limit theorems. We refer the interested reader to Ross [12]
(Chapter 8), Grimmett and Stirzaker [7] (Chapter 5), Venkatesh [15], and Shiryaev
[14] (Chapter III).

The central limit theorem was originally stated and proven by Laplace but
Laplace’s proof was not entirely rigorous. Laplace expanded a great deal of efforts
in estimating sums of the form

Â
k

knp+x
p

np(1�p)

✓
n
k

◆
pk(1� p)n�k

using Stirling’s formula.
Reading Laplace’s classical treatise [8, 9] is an amazing experience. The intro-

duction to Volume I is 164 pages long! Among other things, it contains some inter-
esting philosophical remarks about the role of probability theory, for example on the
reliability of the testimony of witnesses. It is definitely worth reading. The second
part of Volume I is devoted to the theory of generating functions, and Volume II
to probability theory proper. Laplace’s treatise was written before 1812, and even
though the factorial notation was introduced in 1808, Laplace does not use it, which
makes for complicated expressions. The exposition is clear, but it is difficult to read
this treatise because definitions and theorems are not clearly delineated. A version
of the central limit theorem is proven in Volume II, Chapter III; Page 306 contains
a key formula involving the Gaussian distribution, although Laplace does not refer
to it by any name (not even as normal distribution). Anybody will be struck by the
elegance and beauty of the typesetting. Lyapunov gave the first rigorous proof of the
central limit theorem around 1901.

Fig. 8.14 Pierre–Simon Laplace (1749–1827) (left), Aleksandr Mikhailovich Lyapunov (1857-
1918) (right).

The following example from Ross [12] illustrates how the central limit theorem
can be used.
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Example 8.40. An astronomer is interested in measuring the distance, in light-years,
from his observatory to a distant star. Although the astronomer has a measuring tech-
nique, he knows that, because of changing atmospheric conditions and normal error,
each time a measurement is made it will not be the exact distance, but merely an ap-
proximation. As a result, the astronomer plans to make a series of measurements
and then use the average value of these measurements as his estimated value of the
actual distance.

If the astronomer believes that the values of the measurements are independent
and identically distributed random variables having a common mean d and a com-
mon variance 4 (light-years), how many measurements need he make to be reason-
ably sure that his estimated distance is accurrate to within ±0.5 light-years?

Suppose that the astronomer makes n observations, and let X1, . . . ,Xn be the n
measurements. By the central limit theorem, the random variable

Zn =
X1 + · · ·+Xn �nd

2
p

n

has approximately a normal distribution. Hence, using (†2),

Pr

✓
�1

2
 X1 + · · ·+Xn

n
�d  1

2

◆
= Pr

✓
�1

2

p
n

2
 Zn  1

2

p
n

2

◆

⇡ F
✓p

n
4

◆
�F

✓
�

p
n

4

◆

= 2F
✓p

n
4

◆
�1.

If the astronomer wants to be 95% certain that his estimated value is accurrate to
within 0.5 light year, he should make n⇤ measurements, where n⇤ is given by

2F
✓p

n⇤

4

◆
�1 = 0.95,

that is,

F
✓p

n⇤

4

◆
= 0.975.

Using tables for the values of the function F , we find that
p

n⇤

4
= 1.96,

which yields
n⇤ ⇡ 61.47.

Since n should be an integer, the astronomer should make 62 observations.
The above analysis relies on the assumption that the distribution of Zn is well

approximated by the normal distribution. If we are concerned about this point, we
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can use Chebyshev’s inequality. If we write

Sn =
X1 + · · ·+Xn

n
,

we have
E(Sn) = d and Var(Sn) =

4
n
,

so by Chebyshev’s inequality, we have

Pr

✓
|Sn �d| > 1

2

◆
 4

n(1/2)2 =
16
n
.

Hence, if we make n = 16/0.05 = 320 observations, we are 95% certain that the
estimate will be accurate to within 0.5 light year.

The method of making repeated measurements in order to “average” errors is
applicable to many different situations (geodesy, astronomy, etc.).

There are generalizations of the central limit theorem to independent but not
necessarily identically distributed random variables. Again, the reader is referred to
Ross [12] (Chapter 8), Grimmett and Stirzaker [7] (Chapter 5), and Shiryaev [14]
(Chapter III).

There is also the famous strong law of large numbers, due to Andrey Kol-
mogorov, proven in 1933 (with an earlier version proved in 1909 by Émile Borel).
In order to state the strong law of large numbers, it is convenient to define various
notions of convergence for random variables.

Fig. 8.15 Félix Edouard Justin Émile Borel (1871–1956) (left), Andrey Nikolaevich Kolmogorov
(1903–1987) (right).

Definition 8.20. Given a sequence of random variable X1,X2, . . . ,Xn, . . ., and some
random variable X (on the same probability space (W ,Pr)), we have the following
definitions:

1. We say that Xn converges to X almost surely (abbreviated a.s.), denoted by
Xn

a.s.�! X , if
Pr({w 2 W | lim

n7!•
Xn(w) = X(w)}) = 1.
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2. We say that Xn converges to X in rth mean, with r � 1, denoted Xn
r�! X , if

E(|Xr
n |) is finite for all n and if

lim
n 7!•

E
�
|Xn �X |r

�
= 0.

3. We say that Xn converges to X in probability, denoted Xn
P�! X , if for every

e > 0,
lim
n 7!•

Pr(|Xn �X | > e) = 0.

4. We say that Xn converges to X in distribution, denoted Xn
D�! X , if

lim
n7!•

Pr(Xn  x) = Pr(X  x),

for every x 2 R for which F(x) = Pr(X  x) is continuous.

Convergence of type (1) is also called convergence almost everywhere or conver-
gence with probability 1. Almost sure convergence can be stated as the fact that the
set

{w 2 W | Xn(w) does not converge to X(w)}

of outcomes for which convergence fails has probability 0.
It can be shown that convergence almost surely and convergence in rth mean to-

gether imply convergence in probability, which implies convergence in distribution.
All converses are false. Neither convergence almost surely nor convergence in rth
mean imply the other. For proofs, interested readers should consult Grimmett and
Stirzaker [7] (Chapter 7) and Shiryaev [14] (Chapter III).

Observe that the convergence of the weak law of large numbers is convergence in
probability, with X = µ and Xn the sum (1/n)(Ân

i=1 Xi) (sorry for the double use of
the variable Xn), and the convergence of the central limit theorem is convergence in
distribution, with x = a and Xn the expression (1/s

p
n)(X1 + · · ·+Xn �nµ) (again,

sorry for the double use of the variable Xn).
The following beautiful result was obtained by Kolmogorov (1933).

Theorem 8.5. (Strong Law of Large Numbers, Kolmogorov) Let X1,X2, . . . ,Xn, . . .
be a sequence of random variables. Assume that they are independent, that they all
have the same distribution, and let µ be their common mean and E(X2

1 ) be their
common second moment (we assume that both exist). Then,

X1 + · · ·+Xn

n

converges almost surely and in mean square to µ = E(X1).

The proof is beyond the scope of this book. Interested readers should consult
Grimmett and Stirzaker [7] (Chapter 7), Venkatesh [15], and Shiryaev [14] (Chapter
III). Fairly accessible proofs under the additional assumption that E(X4

1 ) exists can
be found in Brémaud [2], and Ross [12].
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Actually, for almost sure convergence, the assumption that E(X2
1 ) exists is re-

dundant provided that E(|X1|) exists, in which case µ = E(|X1|), but the proof takes
some work; see Brémaud [2] (Chapter 1, Section 8.4) and Grimmett and Stirzaker
[7] (Chapter 7). There are generalizations of the strong law of large numbers where
the independence assumption on the Xn is relaxed, but again, this is beyond the
scope of this book.

In the next section, we use the moment generating function to obtain bounds on
tail distributions.

8.10 Chernoff Bounds

Given a random variable X , it is often desirable to have information about proba-
bilities of the form Pr(X � a) (for some real a). In particular, it may be useful to
know how quickly such a probability goes to zero as a becomes large (in absolute
value). Such probabilities are called tail distributions. It turns out that the moment
generating function MX (if it exists) yields some useful bounds by applying a very
simple inequality to MX known as Markov’s inequality, due to the mathematician
Andrei Markov, a major contributor to probability theory (the inventor of Markov
chains).

Fig. 8.16 Andrei Andreyevich Markov (1856–1922).

Proposition 8.25. (Markov’s Inequality) Let X be a random variable and assume
that X is nonnegative. Then for every a > 0, we have

Pr(X � a)  E(X)

a
.

Proof. Let Ia be the random variable defined so that

Ia =

⇢
1, if X � a
0, otherwise.

Since X � 0, we have
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Ia  X
a
. (⇤)

Also, since Ia takes only the values 0 and 1, E(Ia) = Pr(X � a). By taking expecta-
tions in (⇤) and using the linearity of expectation (Proposition 8.7), we get

E(Ia)  E(X)

a
,

which is the desired inequality since E(Ia) = Pr(X � a). ut

If we apply Markov’s inequality to the moment generating function MX = E(etX )
we obtain exponential bounds known as Chernoff bounds, after Herman Chernoff.

Fig. 8.17 Herman Chernoff (1923–).

Proposition 8.26. (Chernoff Bounds) Let X be a random variable and assume that
the moment generating function MX = E(etX ) is defined. Then for every a > 0, we
have

Pr(X � a)  min
t>0

e�taMX (t)

Pr(X  a)  min
t<0

e�taMX (t).

Proof. If t > 0, by Markov’s inequality applied to MX (t) = E(etX ), we get

Pr(X � a) = Pr(etX � eta)

 E(etX )e�ta,

and if t < 0, since X  a implies tX � ta, which is equivalent to etx � eta, we get

Pr(X  a) = Pr(etX � eta)

 E(etX )e�ta,

which imply both inequalities of the proposition. ut

In order to make good use of the Chernoff bounds, one needs to find for which
values of t the function e�taMX (t) is minimum. Let us give a few examples.
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Example 8.41. If X has a standard normal distribution, then it is not hard to show
that

MX (t) = et2/2;

see Ross [12] (Section 7, Example 7d). Consequently, for any a > 0 and all t > 0,
we get

Pr(X � a)  e�taet2/2.

The value t that minimizes et2/2�ta is the value that minimizes t2/2 � ta, namely
t = a. Thus, for a > 0, we have

Pr(X � a)  e�a2/2.

Similarly, for a < 0, since X  a iff �X � �a, we obtain

Pr(X  a)  e�a2/2.

The function on the right hand side decays to zero very quickly.

Example 8.42. Let us now consider a random variable X with a Poisson distribution
with parameter l . It is not hard to show that

M(t) = el (et�1);

see Ross [12] (Section 7, Example 7b). Applying the Chernoff bound, for any non-
negative integer k and all t > 0, we get

Pr(X � k)  el (et�1)e�kt .

Using calculus, we can show that the function on the right hand side has a minimum
when l (et �1)�kt is minimum, and this is when et = k/l . If k > l (so that t > 0)
and if we let et = k/l in the Chernoff bound, we obtain

Pr(X � k)  el (k/l�1)
✓

l
k

◆k

,

which is equivalent to

Pr(X � k)  e�l (el )k

kk .

Our third example is taken from Mitzenmacher and Upfal [11] (Chapter 4).

Example 8.43. Suppose we have a sequence of n random variables X1,X2, . . . ,Xn,
such that each Xi is a Bernoulli variable (with value 0 or 1) with probability of
success pi, and assume that these variables are independent. Such sequences are
often called Poisson trials. We wish to apply the Chernoff bounds to the random
variable

X = X1 + · · ·+Xn.
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We have

µ = E(X) =
n

Â
i=1

E(Xi) =
n

Â
i=1

pi.

The moment generating function of Xi is given by

MXi(t) = E(etXi)

= piet +(1� pi)

= 1+ pi(et �1).

Using the fact that 1+ x  ex for all x 2 R, we obtain the bound

MXi(t)  epi(et�1).

Since the Xi are independent, we know from Section 8.8 that

MX (t) =
n

’
i=1

MXi(t)


n

’
i=1

epi(et�1)

= eÂn
i=1 pi(et�1)

= eµ(et�1).

Therefore,
MX (t)  eµ(et�1), for all t.

The next step is to apply the Chernoff bounds. Using a little bit of calculus, we
obtain the following result proven in Mitzenmacher and Upfal [11] (Chapter 4).

Proposition 8.27. Given n independent Bernoulli variables X1, . . . ,Xn with success
probability pi, if we let µ = Ân

i=1 pi and X = X1 + · · ·+Xn, then for any d such that
0 < d < 1, we have

Pr(|X � µ| � d µ)  2e� µd2
3 .

As an application, if the Xi are independent flips of a fair coin (pi = 1/2), then
µ = n/2, and by picking d =

� 6lnn
n
�1/2, it is easy to show that

Pr

✓����X � n
2

�����
1
2
p

6n lnn
◆

 2e� µd2
3 =

2
n
.

This shows that the concentration of the number of heads around the mean n/2
is very tight. Most of the time, the deviations from the mean are of the order
O(

p
n lnn). Another simple calculation using the Chernoff bounds shows that

Pr

✓����X � n
2

�����
n
4

◆
 2e� n

24 .
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This is a much better bound than the bound provided by the Chebyshev inequality:

Pr

✓����X � n
2

�����
n
4

◆
 4

n
.

Example 8.44. Ross [12] and Mitzenmacher and Upfal [11] consider the situation
where a gambler is equally likely to win or lose one unit on every play. Assuming
that these random variables Xi are independent, and that

Pr(Xi = 1) = Pr(Xi = �1) =
1
2
,

let Sn = Ân
i=1 Xi be the gambler’s winning after n plays. It is easy that to see that the

moment generating function of Xi is

MXi(t) =
et + e�t

2
.

Using a little bit of calculus, one finds that

MXi(t)  e
t2
2 .

Since the Xi are independent, we obtain

MSn(t) =
n

’
i=1

MXi(t) = (MXi(t))
n  e

nt2
2 , t > 0.

The Chernoff bound yields

Pr(Sn � a)  e
nt2
2 �ta, t > 0.

The minimum is achieved for t = a/n, and assuming that a > 0, we get

P(Sn � a)  e� a2
2n , a > 0.

For example, if a = 6, we get

Pr(S10 � 6)  e� 36
20 ⇡ 0.1653.

We leave it as exercise to prove that

Pr(Sn � 6) = Pr(gambler wins at least 8 of the first 10 games) =
56

1024
⇡ 0.0547.

Other examples of the use of Chernoff bounds can be found in Mitzenmacher
and Upfal [11] and Ross [13]. There are also inequalities giving a lower bound on
the probability Pr(X > 0), where X is a nonnegative random variable; see Ross [13]
(Chapter 3), which contains other techniques to find bounds on probabilities and
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the Poisson paradigm. Probabilistic methods also play a major role in Motwani and
Raghavan [10].

8.11 Summary

This chapter provides an introduction to discrete probability theory. We define prob-
ability spaces (finite and countably infinite) and quickly get to random variables. We
emphasize that random variables are more important than their underlying probabil-
ity spaces. Notions such as expectation and variance help us to analyze the behavior
of random variables even if their distributions are not known precisely. We give a
number of examples of computations of expectations, including the coupon collec-
tor problem and a randomized version of quicksort.

The last three sections of this chapter contain more advanced material and are
optional. The topics of these optional sections are generating functions (including
the moment generating function and the characteristic function), the limit theorems
(weak law of lage numbers, central limit theorem, and strong law of large numbers),
and Chernoff bounds.

• We define a finite discrete probability space (or finite discrete sample space),
outcomes (or elementary events), and events.

• We define a probability measure (or probability distribution) on a sample space.
• We define a discrete probability space.
• We define a s -algebra.
• We defineindependent events.
• We discuss the birthday problem.
• We give examples of random variables.
• We present a randomized version of the quicksort algorithm.
• We define random variables, and their probability mass functions and cumula-

tive distribution functions.
• We define absolutely continuous random variables and their probability density

functions.
• We give examples of the binomial distribution.
• We give examples of the geometric distribution.
• We show how the Poisson distribution arises as the limit of a binomial distribu-

tion when n is large and p is small.
• We define a conditional probability.
• We present the “Monty Hall Problem.”
• We introduce probability trees (or trees of possibilities).
• We prove several of Bayes’ rules.
• We define: the product of probability spaces.
• independent random variables.
• the joint mass function of two random variables, and the marginal mass func-

tions.
• the expectation (or expected value, or mean) E(X) = µ of a random variable X .
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• We prove the linearity of expectation.
• We introduce indicator functions (indicator variables).
• We define functions of a random variables.
• We compute the expected value of the number of comparsions in the random-

ized version of quicksort.
• We define the variance Var(X) of a random variable X and the standard devia-

tion s of X by s =
p
Var(X).

• We prove that Var(X) = E(X2)� (E(X))2.
• We define the moments and the central moments of a random variable.
• We prove that if X and Y are uncorrelated random variables, then Var(X +Y ) =

Var(X)+Var(Y ); in particular, this equation holds if X and Y are independent.
• We prove: the Cauchy-Schwarz inequality for discrete random variables.
• We prove the Cheybyshev’s inequality and give some of its applications.

The next three sections are optional.

• We state the weak law of large numbers (Bernoulli’s theorem).
• We define the normal distribution (or Gaussian distribution).
• We state the central limit theorem and present an application.
• We define various notions of convergence, including almost sure convergence

and convergence in probability.
• We state Kolmogorov’s strong law of large numbers.
• For a random variable that takes nonnegative integer values, we define the prob-

ability generating function, GX (z) = E(zX ). We show how the derivatives of GX
at z = 1 can be used to compute the mean µ and the variance of X .

• If X and Y are independent random variables, then GX+Y = GX GY .
• We define the moment generating function MX (t) = E(etX ) and show that

M(n)
X (0) = E(Xn).

• If X and Y are independent random variables, then MX+Y = MX MY .
• We define the cumulants of X .
• We define the characteristic function jX (t) = E(eitX ) of X and discuss some

of its properties. Unlike the moment generating function, jX is defined for all
t 2 R.

• If X and Y are independent random variables, then jX+Y = jX jY . The distribu-
tion of a random variable is uniquely determined by its characteristic function.

• We prove Markov’s inequality.
• We prove the general Chernoff bounds in terms of the moment generating func-

tion.
• We compute Chernoff bound for various distributions, including normal and

Poisson.
• We obtain Chernoff bounds for Poisson trials (independent Bernoulli trials with

success probability pi).
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Problems

8.1. In an experiment, a die is rolled continually until a six appears, at which point
the experiment stops. What is the sample space of this experiment? Denote by En
the event that n rolls are necessary to complete the experiment. What points of the

sample space are contained in En? Determine
✓
S•

n=1 En

◆
.

8.2. Suppose A and B are mutally exclusive events for which Pr(A) = 0.3 and
Pr(B) = 0.5. Determine the probabilities of the following events:

(a) either A or B occurs.
(b) A occurs but B does not.
(c) Both A and B occur.

8.3. Two cards are randomly selected from an ordinary playing deck. Define a black-
jack as the event that one of the cards is an ace and the other one is either a ten, a
jack, a queen, or a king. What is the probability that the two selected cards form a
blackjack?

8.4. An urn contains n white and m black balls, where m and n are positive integers.

(a) If two balls are randomly withdrawn, what is the probability that they have the
same color?

(b) If a ball is randomly withdrawn and then replaced before the second one is
drawn, what is the probability that the withdrawn balls are the same color?

(c) Show that the probability in Part (b) is always larger than the one in Part (a).

8.5. Two dice are thrown n times in succession. Compute the probability that a dou-
ble 6 appear at least once. How large need n be to make this probability at least
1/2?

8.6. Let S be a nonempty finite set. Recall that a partition of S is a set {S1, . . . ,Sk}
(k � 1) of nonempty pairwise disjoint subsets of S such that

Sk
i=1 Si = S. Let Tn be

the number of different partitions of the set {1, . . . ,n} (n � 1). Observe that T1 = 1
(the set {1} has the unique partition {{1}}, and T2 = 2 (since {1,2} has the two
partitions {{1,2}} and {{1},{2}}).

(a) Prove that T3 = 5 and T4 = 15 (determine the partitions explicitly).
(b) Prove that

Tn+1 = 1+
n

Â
k=1

✓
n
k

◆
Tk.

8.7. Prove that

Pr(E [F [G) = Pr(E)+Pr(F)+Pr(G)

�Pr(E \F \G)�Pr(E \F \G)�Pr(E \F \G)

�2Pr(E \F \G).
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8.8. Let fn be the number of ways of tossing a coin n times such that successive
heads never appear. Prove that

fn+2 = fn+1 + fn, n � 0, with f0 = 1, f1 = 2.

Let Pn denote the probability that successive heads never appear when a coin is
tossed n times. Find Pn in terms of fn when all possible outcomes are assume equally
likely. Compute P10.

8.9. In a certain community, 36 percent of the families own a dog and 22 percent of
the families that own a dog also own a cat. In addition, 30 percent of the families
own a cat. Determine the following:

(a) the probability that a randomly selected family owns both a dog and a cat.
(b) the conditional probability that a randomly selected family owns a dog given

that it owns a cat.

8.10. Suppose that an insurance company classifies people into one of three classes:
good risk, average risk, and bad risk. The company’s record indicates that the proba-
bilities that good, average, and bad-risk persons will be involved in an accident over
a 1-year span are, respectively, 0.05,0.15, and 0.30. If 20 percent of the population
is a good risk, 50 percent an average risk, and 30 percent a bad risk, what proportion
of people have accidents in a fixed year? If policyholder A had no accidents in 2019,
what is the probability that he or she is a good or average risk?

8.11. Prove that if E1,E2, . . . ,En are independent events, then

Pr(E1 [E2 [ · · ·[En) = 1�
n

’
i=1

(1�Pr(Ei)).

8.12. Recall that independent trials that result in a success with probability p and
failure with probability 1� p are called Bernoulli trials. Let Pn denote the probabil-
ity that n Bernoulli trials result in an even number of successes (0 being considered
even). Prove that

Pn = p(1�Pn�1)+(1� p)Pn�1, n � 1.

Use the above formula to prove by induction that

Pn =
1+(1�2p)n

2
.

8.13. Suppose that a die is rolled twice. What are the possible values that the fol-
lowing random variables can take on:

(a) the maximum value to appear in the two rolls;
(b) the minimum value to appear in the two rolls;
(c) the sum of the two rolls;
(d) the value of the first roll minus the value of the second roll.
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8.14. If the die in Problem 8.13 is assumed to be fair, calculate the probabilities
associated with the random variables in Part (a) through (d).

8.15. A box contains 5 red and 5 blue marbles. Two marbles are withdrawn ran-
domly. If they are the same color, then you win $1.10; if they are different colors,
then you win �$1.00 (that is, you lose $1.00). Calculate

(a) the expected value of the amount you win;
(b) the variance of the amount you win.

8.16. If E(X) = 1 and Var(X) = 5, find

(a) E(2+X2);
(b) Var(4+3X).

8.17. If X has distribution function F , what is the distribution function of the random
variable aX +b , where a,b 2 R, with a 6= 0?

8.18. Let X be a binomial random variable with parameters n and p, which means
that its mass function is given by

f (i) =
✓

n
i

◆
pi(1� p)n�i, i = 0, . . . ,n,

and 0 otherwise. Prove that

E


1

1+X

�
=

1� (1� p)n+1

(n+1)p
.

8.19. Prove that if X is a Poisson random variable with parameter l , then

E(Xn) = lE[(X +1)n�1].

Use this result to compute E(X3).

8.20. Let X be a Poisson random variable with parameter l . Prove that

Pr(X is even) =
1
2
(1+ e�2l )

Hint. Use Problem 8.12 and the relationship between Poisson and binomial random
variables.

8.21. Two fair dice are rolled. Find the joint probability mass function of the random
variables X and Y when

(a) X is the largest value obtained on any die and Y is the sum of the values;
(b) X is the value on the first die and Y is the larger of the two values;
(c) X is the smallest and Y is the largest value obtained on the dice.
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8.22. A bin of five transistors is known to contain two that are defective. The tran-
sistors are to be tested, one at a time, until the defective ones are identified. Denote
by N1 the number of tests made until the first defective is identified and by N2 the
number of additional tests until the second defective is identified. Find the joint
probablity mass function of N1 and N2.

8.23. Choose a number X at random from the set {1,2,3,4,5}. Now choose a num-
ber Y at random from the set {1,2, . . . ,X}.

(a) Find the joint mass function of X and Y .
(b) Are X and Y independent? Why?

8.24. Let X and Y be independent binomial random variables with identical param-
eters p and n (see Problem 8.18). Compute analytically the conditional distribution
of X given that X +Y = m. The result is known as the hypergeometric distribution
and it is of the form �m

i
��n�m

n�i
�

�n
m
� .

8.25. A fair die is rolled 10 times. Calculate the expected sum of the 10 rolls.

8.26. N people arrive separately to a professional dinner. Upon arrival, each person
looks to see if he or she has any friends among those present. That person then sits
either at the table of a friend or at an unoccupied table if none of those present is
a friend. Assuming that each of the

�N
2
�

pairs of people is, independently, a pair of
friends with probability p, find the expected number of occupied tables.

Hint. Let Xi equal 1 or 0, depending on whether the ith arrival sits at a previously
unoccupied table.

8.27. If Xand Y are independent and identically distributed with mean µ and vari-
ance s2, find

E[(X �Y )2].

8.28. Let X be the number of 1’s and Y the number of 2’s that occur in n rolls of a
fair die. Compute Cov(X ,Y ).

8.29. Let X1, . . . ,Xn, . . . be independent with common mean µ and common variance
s2, and set Yn = Xn +Xn+1 +Xn+2. For j � 0, find Cov(Yn,Yn+ j).

8.30. A coin having probability p of coming up heads is continually flipped until
both heads and tails have appeared. Find

(a) the expected number of flips;
(b) the probability that the last flip lands on heads.

8.31. Let A1, . . . ,An be arbitrary events, and define Ck = {at least k of the Ai occur}.
Prove that

n

Â
k=1

Pr(Ck) =
n

Â
k=1

Pr(Ak).

Hint. Let X denote the number of the Ai that occur. Show that both sides of the
preceding equation are equal to E(X).
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8.32. The probability generating function of the discrete nonnegative integer valued
random variable X having probability mass function p j ( j � 0), is defined by

j(s) = E(sX ) =
•

Â
j=0

p js j.

Let Y be a geometric random variable with parameter p = 1 � s, where 0 < s < 1.
Prove that if Y is independent of X , then

j(s) = Pr(X < Y ).

8.33. Show how to compute Cov(X ,Y ) from the joint moment generating function
MX ,Y (t1, t2) of X and Y , where

MX ,Y (t1, t2) = E(et1X+t2Y ).

8.34. From past experience, a professor knows that the test score of a student taking
her final examination is a random variable with mean 75.

(a) Give an upper bound for the probability that a student’s test score will exceed
85. Suppose, in addition, that the professor knows that the variance of a student’s
test score is equal to 25.

(b) What can be said about the probability that a student will score between 65 and
85?

(c) How many students would have to take the examination to ensure, with prob-
ability at least 0.9, that the class average would be within 5 of 75? Do not use
the central limit theorem to solve this question.

8.35. Use the central limit theorem to solve Part (c) of Problem 8.34.

8.36. Let X1, . . . ,X20 be independent Poisson variables with mean 1.

(a) Use the Markov inequality to obtain a bound on

Pr

✓ 20

Â
i=1

Xi > 15
◆
.

(b) Use the central limit theorem to approximate

Pr

✓ 20

Â
i=1

Xi > 15
◆
.

8.37. Let X be a Poisson random variable with mean 20.

(a) Use the Markov inequality to obtain an upper bound on

p = Pr(X � 26).

(b) Use the Chebyshev inequality to obtain an upper bound on p.
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(c) Use the Chernoff bound to obtain an upper bound on p.
(d) Approximate p by making use of the central limit theorem.

8.38. Let (Zn)n�1 be a sequence of random variables and let c 2 R such that, for
every e > 0, Pr(|Zn � c| > e) tends to 0 as n tends to infinity. Prove that for any
bounded continuous function g,

lim
n7!•

E(g(Zn)) = g(c).

8.39. Let X be a discrete random variable whose possible values are positive inte-
gers. If Pr(X = k) is nonincreasing in k 2 N�{0}, prove that

Pr(X = k)  2E(X)

k2 .

8.40. If X is a Poisson random variable with mean l , prove that for all i < l ,

Pr(X  i)  e�l (el )i

ii
.

8.41. Prove the general form of Bayes’ rule (Proposition 8.3(2)). Prove (3) and (4)
of Proposition 8.3.

8.42. In Example 8.14, prove that the sum of the probabilities of all the trees in W
is equal to 1.

8.43. Prove the last sentence (about the independence of X and Y ) in Example 8.19.

8.44. Given two random variables X and Y on a discrete probability space W , for
any function g : R⇥R ! R, the function g(X ,Y ) is a random variable. Prove that
E(g(X ,Y )) (if it exists) is given by

E(g(X ,Y )) = Â
x,y

g(x,y) fX ,Y (x,y),

where fX ,Y is the joint mass function of X and Y .

8.45. Given a Poisson random variable X , prove the formula

E(X2) = l (l +1)

stated in Example 8.29.

8.46. Prove that the pgf of a Poisson distribution with parameter l is

GX (z) = el (z�1).

8.47. Prove Proposition 8.24.
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8.48. Consider Example 8.44. Prove that the moment generating function of Xi is

MXi(t) =
et + e�t

2
.

Prove that

Pr(Sn � 6) = Pr(gambler wins at least 8 of the first 10 games) =
56

1024
⇡ 0.0547.
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2. Pierre Brémaud. Markov Chains, Gibbs Fields, Monte Carlo Simulations, and Queues. TAM
No. 31. New York, NY: Springer, third edition, 2001.

3. E. Cinlar. Introduction to Stochastic Processes. Dover. 1st edition, 2014.
4. William Feller. An Introduction to Probability Theory and its Applications, Vol. 1 . New

York, NY: Wiley, third edition, 1968.
5. William Feller. An Introduction to Probability Theory and its Applications, Vol. 2 . New

York, NY: Wiley, second edition, 1971.
6. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A Foun-

dation For Computer Science. Reading, MA: Addison Wesley, second edition, 1994.
7. Geoffrey Grimmett and David Stirzaker. Probability and Random Processes. Oxford, UK:

Oxford University Press, third edition, 2001.
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