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1

. What is Computer-Aided Geometric Desigh”’

CAGD = Techniques for modeling (complex) curved shapes,

using curves and surfaces.

Such techniques are used in 2D and 3D drawing and plot
product design and manufacturing (cars, planes, ships. etc.)
architecture (buildings)

computer animation (movies, computer simulation)
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CAGD

e medical imaging: modeling of organs (brain, prostate, liver,
etc.)

e topographic data, weather data,

e robotics: motion interpolation

e computer vision: 3D models from “point clouds”
e biology and computational chemistry

e archeology, art!
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Some Historical Backgroud

Even in the nineteenth century, ship hulls were designed using long

flexible wooden strips called splines.

In the fourties, engineers at BOEING experimented with
computer-aided methods for designing airplanes.

Various types of surfaces amenable to efficient computer processing

were invented.

In the 1960's, independently, two French engineers working for Citroen
and Renault pioneered the use of CAGD in car design.
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Practical Uses in Industry

Subdivision surfaces are used by
e Intel: scalable 3D models (see home page)
e Pixar: Entertainmemt industry, computer animated movies. (show

movie “Geri's game”).

3-D modeling, simulation and virtual reality tools, used by BOEING

and other aerospace companies (see phantom work).
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More Historical Backgroud

Both Pierre Bézier and Paul de Casteljau proposed schemes for
specifying curves and surfaces using control points, as opposed to
explicit coefficients.

In the early 1970's, Carl de Boor (U. of Wisconsin) and Richard
Riesenfeld (U. of Utah) came up with B-splines curves and surfaces
and the “de Boor algorithm™.

In 1978, Catmull and Clark proposed subdivision surfaces. Catmull is
now one of the vice presidents of Pixar!

A Panorama of Geometric Modeling

Jean Gallier March 20, 2004



2. Problems Considered

(1) Approximating a curved shape. In this type of problem, accuracy is
not so important but smoothness usually is. “Free-hand drawing”
Is a 2D analog.

(2) Interpolating a curved shape. Here, some data points are given
and the interpolating curve or surface must pass through some
required points.

(3) Rendering (i.e., drawing) smooth curves or surfaces.
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Example: Interpolation of Data Points Using a Curve

Problem: Given data points g, -+ @n (in the plane), find a curve

starting at xq, ending at x,,, and passing through al the points.

T L7

Figure 1: Data points xg, x1, 2, T3, T4, T5, Tg, T7
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What's a good interpolation curve?

Clearly, there are infinitely many curves interpolating the data points;
how do we choose a “good” curve.

We need some criteria for what is a good curve.

For example
(a) A smooth curve (what does this mean?)
(b) A curve that does not wiggle excessively.

(c) A curve that can be easily modified locally, without affecting the
entire curve.
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Interpolation Using a Cubic Spline Curve

If we use Bézier spline curves of degree m (usually, m = 3), then we

get good smoothness and no excessive wiggling.
Incremental changes are easily accomodated (it's called local control).

Curves are unique up to the specification of end conditions (for

example, prescribed tangent vectors).
There are efficient algorithms to draw such curves.

Closed curves can also be handled.
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A cubic interpolation spline curve

L2
L1

L6

L4
L5

!

o L7

Figure 2: A cubic interpolation spline curve passing through the points
Loy, L1y L2, L3, T4, T5,Lg, L7
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How is a spline specified?

Spline curves consist of little pieces of (polynomial) curves glued

together.
All individual curves have the same degree (often 3 = cubic curves).

The spline curve is specified by a sequence of line segments, its control

polygon; the vertices are the control points.

There is an algorithmic method for drawing the spline curve from its

control polygon.

Note: The control points usually differ from the data points.
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Control polygon of a spline

do

L2

rog — d_1 Ly — dg

Figure 3: Control polygon of a cubic spline through z, x1, z2, x3, T4, 5,

X6, L7
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A cubic spline and its control polygon

do

| ds |
rog — d_l L7 — d8

Figure 4: A cubic spline curve through ¢, z1, x29, x3, x4, x5, x¢, x7 and

its control polygon
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3. What is @ Curve?

Traditionally, there are two ways of defining curves:

(1) Implicitly: The curve is the zero-locus of one or more equations.
For example, consider the unit circle:

Figure 5: A unit circle
This circle is defined implicity by
2+’ = 1.
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What is a Curve?

(2) Parametrically: The curve is given as the set of points (x,¥) such

that x = f(t),y = g(t). For example, the same circle is given by

xr =cost, y =sint.

Another (cheaper!) rational parametrization:

1 — ¢2 2t
T = —
14+ ¢2 Y

(How do we get the point (—1,0)7)
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Implicit versus Parametric

Implicit definitions are good if we want to decide whether or not a

point belongs to a curve, but not good to draw the curve.

Parametric definitions are much better to draw a curve, but what kind

of functions should we allows for f, g7
We would like functions that are “cheap” to compute.

Polynomials (or ratios of polynomials) are cheap to evaluate.
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Polynomial and Non-Polynomial Functions

The function f(t) given by

ft) =2t —t* 4+ 3t — 1
is a polynomial (of degree 3).
The function

F(t) = e cost+tsint
Is not a polynomial. The function

1
142

f(t)
Is not a polynomial, but it is the next best thing: a rational function.
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The idea of a spline

But, polynomial curves of high degree are hard to control. They wiggle

too much!

It is may also be too expansive to use polynomials of high degree. It
will take too long to draw such curves and there will be precision issues.

Instead of using a single polynomial curve use a piecewise polynomial
curve, that is, break up a complicated curve into small manageable

simple curves of low degree (usually 3). Such curves are spline curves.

Dealing with each piece is easy and efficient. There are good
approximations algorithms, for example, the de Casteljau algorithm
(see below).
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Joining the pieces properly

The difficulty in dealing with splines is not to handle the small pieces
constituting a spline, but to insure that these pieces join with an
appropriate amount of smoothness.

Sometimes, it is desirable to have various degrees of smoothness.

This is technically complicated, but good control of smoothness can be
achieved.
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A Spline with Varying smoothness

Figure 6: A cubic spline with varying smoothness
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4. Bézier Curves

We now take a closer look at the individual polynomial curves of low
degree that form a spline.

What's great is that it is possible to define such curves in terms of

control points rather than in terms of explicit polynomials.

Furthermore, this approach leads to efficient recursive algorithms for
drawing such curves, with any prescribed degree of accuracy.

This method is due to Bézier, but the theory was know to nineteenth
century mathematicians. But they did not have the practical

motivations!

. A Panorama of Geometric Modeling
Jean Gallier March 20, 2004 22



Control Points for Polynomial Curves

If a curve, C, is given by

where f(t) and g(t) are polynomials of degree at most m, we say that
C'is a curve of degree m.

In general, a polynomial curve of degree m is specified by m + 1
control points, bg, ..., b,,.

So, a straight line is given by two points (surprise!).
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Control Points for Polynomial Curves

A curve of degree 2 is given by 3 points

A curve of degree 3 is given by 4 points, etc.
Here is an example of a control polygon when m = 3:

b
by .

b
0 by

Figure 7: Control points and polygon for a cubic curve
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A Curve and its control polygon

bo
b3

Figure 8: The (cubic) curve segment and its control polygon
Note that the curve goes through by and bs.
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Constructing a point using affine interpolation

Surprisingly, there is a very simple and efficient method for
constructing points on a curve specified by its control points.

This methods uses affine interpolation.

Given any two points a, b, and any real, t € R, recal that the (affine)
Interpolant
(1 —t)a+tb

Is the point, ¢, on the line ab defined so that
c=a-+ t%.

This means that ¢ = (1 — t)a + tb is “t of the way between a and b".
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Affine interpolation

For example, when ¢t = 1/2, the point ¢ is half way between a and b,
l.e., it is the midpoint of ab.

W=
DN —=
wino
SN[
S

1
a 4

Figure 9: Some Affine interpolant for t =1/4,1/3,1/2,2/3,3/4

If t =0, thenc=a and if t =1, then ¢ = b.
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Constructing a point using affine interpolation

When t ¢ |0, 1], the point (1 — t)a + tb is outside of the line segment
ab, we say talk about extrapolation rather than interpolation.

If a curve, F', is specified by control points, say by, b1, b2, b3, for any
t € |0,1], we can construct the point F'(¢) on F' in three stages, using

affine interpolation steps.

This process is called the de Casteljau algorithm.
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5. The de Casteljau algorithm

Three stages. During stage 3, the last stage, we compute the point on
the curve corresponding to ¢.

b1, 1

b1
. 4
F(1/2) =bg,3

Figure 10: A de Casteljau diagram for ¢t = 1/2
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The subdivision method

If we look carefully at the method, say for m = 3, we discover that the
process has constructed two control polygons

bo, bo,h bo,2, bo,s and bo,3, b1,2, 52,1, bs.

So, we can subdivide recursively each of these control polygons.
This method yields a fast and efficient way of drawing a curve.

Indeed, it can be shown that these polygons quickly to the curve and
that the “error” goes to zero at an exponential rate.
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Example of The subdivision method

Here is an example of subdividing recursively six times:

b1, 1

b1
‘ F(1/2) = bg, 3

Figure 11: Approximating a curve using subdivision
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Another example of subdivision

Here is another example of subdividing six times a curve of degree 4
given by the control polygon

b3 b1

Figure 12: A control polygon for a curve of degree 4
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Example of subdivision, one iteration

Figure 13: Subdivision, 1 iteration
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Example of subdivision, two iterations

Figure 14: Subdivision, 2 iterations
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Example of subdivision, three iterations

Figure 15: Subdivision, 3 iterations
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Example of subdivision, four iterations

Figure 16: Subdivision, 4 iterations
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Example of subdivision, five iterations

Figure 17: Subdivision, 5 iterations
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Example of subdivision, six iterations

Figure 18: Subdivision, 6 iterations
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6. Back to B-Spline Curves!

B-Splines are specified by a control polygon and a “knot sequence”,
specifying continuity between the curve segments.

dg: 8911

d7: 91114

dy: 123 dg: 111415

dg: 568

ds: 689

Figure 19: Control polygon of a cubic spline
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Example Of a Splines

The previous polygon defines the following spline with two endpoints:

dg: 8911

d7: 91114

dy: 123 dg: 111415

dy: 568

ds: 689

Figure 20: A cubic spline
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Bézier Segments of a spline

d6

ds

Figure 21: Bézier control points of a cubic spline
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Closed Splines

Can we handle closed curves? No prodem . Even for interpolation.

Figure 22: A closed cubic spline
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7. SurfaC€s

A polynomial surface (in R3) is a function, F', of two variables, U,V

given by three polynomials:

r = Fl(va)
y = F2(U7V)
Z = Fg(U,V)

We can think of a surface as a curve of curves. If we hold U constant,
then we obtain a curve (in the parameter V).

We can think of a surface as the result of deforming and stretching a
flat infinite plane, without tearing it, but allowing creases and

self-intersections.
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Example of a Polynomial SurfaC€

For example, the Monkey saddle is given by

Jean Gallier

(U V) = U
y(U, V) = V

AU, V) = U?-3UV2
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Examples of a Surface

Figure 23: A monkey saddle
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Rectangular and Triangular Patches

Usually, we are not interested in the whole surface, but only in a patch.

A patch is a piece of the surface whose domain is a rectangle ©r @
triangle.

A rectangular patch is a patch whose domain is a rectangle.
A triangular patch is a patch whose domain is a triangle.

As in the case of curves, both rectangular and triangular patcheS ¢an
be defined in terms of control points. This time, we use control nets as

opposed to control polygons.
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Examples of a Rectangular Patch

Figure 24: A monkey saddle
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Example of a Triangular Patch

Figure 25: A triangular surface patch
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De Casteljau Algorithm and Subdivision (Surfaces)

Both for rectangular and triangular patches, the de Casteljau algorithm
works (constructing a point on the surface using affine interpolation).

It is an easy generalization of the curve case in the rectangular case,

but it is a little more tricky in the triangular case.

The recursive subdivision method also works, but it is more tricky in

the triangular case.

A triangle can be subdivided in four subtriangles by joining the
midpoints of its edges.
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Example of Subdivision (triangular patch)

Figure 26: Subdivision, 1 iteration
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Example of Subdivision (triangular patch)

Figure 27: Subdivision, 2 iterations
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Example of Subdivision (triangular patch)

Figure 28: Subdivision, 3 iterations
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Surface Splines

What about surface splines?
This depends on the way the domain (in the plane) is subdivided.

There are primarily two ways of subdividing the domain:
(1) Subdivide into rectangles
(2) Subdivide into triangles

Case (1) is easier because only four rectangleS come together at a
common vertex.

There is a well developed technology: NURBS!
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Surface Splines

Case (2) (triangles) Is a lot harder. Unfortunately, many triangles can

share a common vertex.

Yet, rectangular splines are overly restrictive: Only certain kinds of
surfaces can be represented and it is hard (or impossible) to deal with

sharp corners or holes-

Triangular splines are more general and more flexible. Recent work by
Dianna Xu and Gallier proposes new methods for dealing with

triangular splines.
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8. “Sculpting” and Subdivision SurfaC€s

An attractive alternative to surface splines is subdivision surfaces.
The basic idea is reminiscent of “sculpting”.

Start with a solid shape, called a mesh, and apply rules for refining and
smoothing the mesh using a subdivision method.

New vertices, new edges and new faces are created by “smoothing

corners’, as if we used a chisel.

The desired surface is a limit surface (see links in home page).
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Subdivision Surfa€s: Quick History

The idea of defining a curve or a surface via a limit process involving
subdivision goes back to Chaikin (1974).

In 1978, two subdivision schemes for surfaces were proposed by Doo
and Sabin and by Catmull and Clark.

Several years later, Charles Loop in his Master's thesis (1987)
introduced a subdivision scheme based on a mesh consisting strictly of
triangular faces.
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Conclusion and Challenges

Subdivision surfaces are used in the animated movie industry (Pixar)
but they are gaining popularity in other areas of geometic modeling.

See the links in the home page for the talk for more info and some

demos on subdivision surfaces.

Their main drawback is that they are not parametric and it is hard to

predict what the end-shape will be.

It would useful to marry the advantages of triangular splines (a la
Xu/Gallier) and subdivision surfaces.

We're working on it and we need all the help we can get!
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