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Homework 6

April 8, 2010; Due April 22, 2010

“A problems” are for practice only, and should not be turned in.

Problem A1. Prove that every context-free language is a recursive set.

Problem A2. Consider the definition of the Kleene T -predicate given in the notes in
Definition 5.4.1.

(i) Verify that T (x, y, z) holds iff x codes a RAM program, y is an input, and z codes a
halting computation of Px on input y.

(ii) Verify that the Kleene normal form holds:

ϕx(y) = Res[min z(T (x, y, z))].

“B problems” must be turned in.

Problem B1 (40 pts). A linear context-free grammar is a context-free grammar whose
productions are of the form either

A −→ uBv, or

A −→ u,

where A, B are nonterminals and u, v ∈ Σ∗. A language is linear context-free iff it is generated
by some linear context-free grammar.

(a) Prove that every regular language is linear context-free. Prove that if L is a linear
context-free language, then for every a ∈ Σ, the language L/a = {w ∈ Σ∗ | wa ∈ L} is also
linear context-free.
Hint . Construct a grammar using some new nonterminals, [A/a], and new productions

[A/a] −→ α, if A −→ αa ∈ P or A −→ αaB ∈ P with B
+

=⇒ ε

and
[A/a] −→ u[B/a], if A −→ uB ∈ P,

(b) Prove that it is undecidable whether a context-free language, L, is linear context-free.
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Hint . To prove part (b), you will need the fact that a certain property P is nontrivial, where
P is defined so that for every context-free language, L, P (L) holds iff L is linear-context-free.
For this, you will need to prove that there is some context-free language that is not linear
context-free. We claim that

L = {ambmcndn | m, n ≥ 1}

is such a language, although this is not so easy to prove rigorously. One way to do so is
to prove a special pumping lemma for the linear context-free languages (which you may use
without proof).

Pumping Lemma for the linear context-free languages :

For every linear context-free grammar, G = (V, Σ, P, S), there is some integer, K ≥ 1,
so that, for every w ∈ Σ∗, if w ∈ L(G) and |w| ≥ K, then there is some decomposition,
u, v, x, y, z, of w so that

(1) w = uvxyz.

(2) uvnxynz ∈ L(G), for all n ≥ 0.

(3) v 6= ε or y 6= ε.

(4) |uvyz| ≤ K.

The new ingredient in this pumping lemma is that |uvyz| ≤ K. Then, you can use this
pumping lemma to prove that L = {ambmcndn | m, n ≥ 1} is not linear context-free.

Problem B2 (30 pts). Given any set, X, for any subset, A ⊆ X, recall that the charac-
teristic function, χA, of A is the function defined so that

χA(x) =
{

1 iff x ∈ A
0 iff x ∈ X − A.

(i) Prove that, for any two subsets, A, B ⊆ X,

χA∩B = χA · χB

χA∪B = χA + χB − χA · χB.

(ii) Given any n ≥ 2 subsets, A1, A2, . . . , An ⊆ X, prove that

χA1∩···∩An = χA1 · · ·χAn

χA1∪···∪An =
∑

I⊆{1,...,n}
I 6=∅

(−1)|I|−1
∏
i∈I

χAi
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(iii) Prove that the union and the intersection of any two r.e sets, A, B ⊆ N, is also an
r.e. set. Prove that the union and the intersection of any two recursive sets, A, B ⊆ N, is
also a recursive set.

Problem B3 (30 pts). Given Σ = {a}, give a Turing machine accepting

L = {a2n | n ≥ 1}.

Remember that your Turing machine must terminate either with a tape containing a
single 1 and possibly some blanks iff the input is correct else with a tape containing a single
0 and possibly some blanks. You should run your Turing Machine interpreter (from HW5)
on the TM recognizing L to make sure that it is correct! Make sure that you test all possible
cases of wrong input!

Problem B4 (20 pts). Prove that the following properties of partial recursive functions
are undecidable:

(a) A partial recursive function is a constant function.

(b) Two partial recursive functions ϕx and ϕy are identical.

(c) A partial recursive function ϕx is equal to a given partial recursive function ϕa.

(d) A partial recursive function diverges for all input.

Problem B5 (40 pts). Let A be any p×q matrix with integer coefficients and let b ∈ Zp be
any vector with integer coefficients. The 0-1 integer programming problem is to find whether
the system

Ax = b

has any solution, x ∈ {0, 1}q.

(i) Prove that the 0-1 integer programming problem is in NP .

(ii) Prove that the 0-1 integer programming problem is NP-complete by providing a
polynomial-time reduction from the bounded-tiling problem. Do not try to reduce any
other problem to the 0-1 integer programming problem.

Hint . Given a tiling problem, ((T , V, H), ŝ, σ0), create a 0-1-valued variable, xmnt, such that
xmnt = 1 iff tile t occurs in position (m, n) in some tiling. Write equations or inequalities
expressing that a tiling exists and then use “slack variables” to convert inequalities to equa-
tions. For example, to express the fact that every position is tiled by a single tile, use the
equation ∑

t∈T

xmnt = 1,

for all m, n with m 6= 0, −s ≤ m ≤ s and 1 ≤ n ≤ s.

(iii) Prove that the restricted 0-1 integer programming problem in which the coefficients
of A are 0 or 1 and all entries in b are equal to 1 is also NP-complete.
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Problem B6 (50 pts). Let NEXP be the class of languages accepted in time bounded
by 2p(n) by a nondeterministic Turing machine, where p(n) is a polynomial. Consider the
problem of tiling a 2s× s rectangle, described in Section 7.5 of the notes (slides on the web),
but only with a single initial tile σ0. Formally, an instance of this problem is of the form
((T , V, H), ŝ, σ0), where s is the binary representation of s ≥ 2 in binary and σ0 is the initial
tile in position (1, 1).

(i) Prove that the above tiling problem is NEXP-complete.

(ii) Now, consider the problem of tiling the entire upper half-plane, starting with a single
tile σ0 (of course, the set of tile patterns, T , is finite). More precisely, this problem is said
to have a solution if for every s > 1, there a function σs tiling the 2s× s-rectangle.

Prove that this problem is undecidable.

TOTAL: 210 points.
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