Spring, 2010 CIS 511

Introduction to the Theory of Computation Jean Gallier

Homework 2

February 4, 2010; Due February 18, 2010

"A problems" are for practice only, and should not be turned in.

Problem A1. Recall that two regular expressions R and S are equivalent, denoted as $R \cong S$, iff they denote the same regular language $\mathcal{L}[R] = \mathcal{L}[S]$. Show that the following identities hold for regular expressions:

$$R^{**} \cong R^*$$
$$(R+S)^* \cong (R^*+S^*)^*$$
$$(R+S)^* \cong (R^*S^*)^*$$
$$(R+S)^* \cong (R^*S)^*R^*$$

Problem A2. Recall that a homomorphism $h: \Sigma^* \to \Delta^*$ is a function such that h(uv) = h(u)h(v) for all $u, v \in \Sigma^*$. Given any language, $L \subseteq \Sigma^*$, we define h(L) as

$$h(L) = \{h(w) \mid w \in L\}$$

Prove that if $L \subseteq \Sigma^*$ is a regular language, then so is h(L).

Problem A3. Construct an NFA accepting the language $L = \{aa, aaa\}^*$. Apply the subset construction to get a DFA accepting L.

"B problems" must be turned in.

Problem B1 (25 pts). Let $\Sigma = \{a_1, \ldots, a_n\}$ be an alphabet of *n* symbols.

(a) Construct an NFA with 2n + 1 (or 2n) states accepting the set L_n of strings over Σ such that, every string in L_n has an odd number of a_i , for some $a_i \in \Sigma$. Equivalently, if L_n^i is the set of all strings over Σ with an odd number of a_i , then $L_n = L_n^1 \cup \cdots \cup L_n^n$.

(b) Prove that there is a DFA with 2^n states accepting the language L_n .

(c) Prove that every DFA accepting L_n has at least 2^n states.

Hint: If a DFA D with $k < 2^n$ states accepts L_n , show that there are two strings u, v with the property that, for some $a_i \in \Sigma$, u contains an odd number of a_i 's, v contains an even

number of a_i 's, and D ends in the same state after processing u and v. From this, conclude that D accepts incorrect strings.

Problem B2 (25 pts). (a) Let $T = \{0, 1, 2\}$, let C be the set of 20 strings of length three over the alphabet T,

$$C = \{ u \in T^3 \mid u \notin \{110, 111, 112, 101, 121, 011, 211\} \},\$$

let $\Sigma = \{0, 1, 2, c\}$ and consider the language

$$L_M = \{ w \in \Sigma^* \mid w = u_1 c u_2 c \cdots c u_n, \ n \ge 1, u_i \in C \}.$$

Prove that L is regular.

(b) The language L_M has a geometric interpretation as a certain subset of \mathbb{R}^3 (actually, \mathbb{Q}^3), as follows: Given any string, $w = u_1 c u_2 c \cdots c u_n \in L_M$, denoting the *j*th character in u_i by u_i^j , where $j \in \{1, 2, 3\}$, we obtain three strings

$$\begin{split} w^1 &= u_1^1 u_2^1 \cdots u_n^1 \\ w^2 &= u_1^2 u_2^2 \cdots u_n^2 \\ w^3 &= u_1^3 u_2^3 \cdots u_n^3. \end{split}$$

For example, if w = 0.12c001c222c122 we have $w^1 = 0.021$, $w^2 = 1.022$, and $w^3 = 2.122$. Now, a string $v \in T^+$ can be interpreted as a decimal real number written in base three! Indeed, if

$$v = b_1 b_2 \cdots b_k$$
, where $b_i \in \{0, 1, 2\} = T \ (1 \le i \le k),$

we interpret v as $n(v) = 0.b_1b_2\cdots b_k$, i.e.,

$$n(v) = b_1 3^{-1} + b_2 3^{-2} + \dots + b_k 3^{-k}.$$

Finally, a string, $w = u_1 c u_2 c \cdots c u_n \in L_M$, is interpreted as the point, $(x_w, y_w, z_w) \in \mathbb{R}^3$, where

$$x_w = n(w^1), \ y_w = n(w^2), \ z_w = n(w^3).$$

Therefore, the language, L_M , is the encoding of a set of rational points in \mathbb{R}^3 , call it M. This turns out to be the rational part of a fractal known as the *Menger sponge*.

Explain the best you can what are the recursive rules to create the Menger sponge, starting from a unit cube in \mathbb{R}^3 . Draw some pictures illustrating this process and showing approximations of the Menger sponge.

Extra Credit (20 points). Write a computer program to draw the Menger sponge (based on the ideas above).

Problem B3 (50 pts). Given any two DFA's $D_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ and $D_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$, a morphism $h: D_1 \to D_2$ of DFA's is a function $h: Q_1 \to Q_2$ satisfying the following two conditions:

- (1) $h(\delta_1(p, a)) = \delta_2(h(p), a)$, for all $p \in Q_1$ and all $a \in \Sigma$;
- (2) $h(q_{0,1}) = q_{0,2}$.

An F-map $h: D_1 \to D_2$ of DFA's is a morphism satisfying the condition (3a) $h(F_1) \subseteq F_2$.

A *B*-map $h: D_1 \to D_2$ of *DFA*'s is a morphism satisfying the condition

(3b) $h^{-1}(F_2) \subseteq F_1$.

A proper homomorphism of DFA's is an F-map of DFA's which is also a B-map of DFA's, i.e. it satisfies the condition

(3c) $h^{-1}(F_2) = F_1$.

We say that a morphism (resp. *F*-map, resp. *B*-map) $h: D_1 \to D_2$ is surjective if $h(Q_1) = Q_2$.

(a) Prove that if $f: D_1 \to D_2$ and $g: D_2 \to D_3$ are morphisms (resp. *F*-maps, resp *B*-maps) of DFAs, then $g \circ f: D_1 \to D_3$ is also a morphism (resp. *F*-map, resp *B*-map) of DFAs.

Prove that if $f: D_1 \to D_2$ is an *F*-map that is an isomorphism then it is also a *B*-map, and that if $f: D_1 \to D_2$ is a *B*-map that is an isomorphism then it is also an *F*-map.

(b) If $h: D_1 \to D_2$ is a morphism of DFA's, prove that

$$h(\delta_1^*(p,w)) = \delta_2^*(h(p),w),$$

for all $p \in Q_1$ and all $w \in \Sigma^*$.

As a consequence, prove the following facts:

If $h: D_1 \to D_2$ is an *F*-map of DFA's, then $L(D_1) \subseteq L(D_2)$. If $h: D_1 \to D_2$ is a *B*-map of DFA's, then $L(D_2) \subseteq L(D_1)$. Finally, if $h: D_1 \to D_2$ is a proper homomorphism of DFA's, then $L(D_1) = L(D_2)$.

(c) Let D_1 and D_2 be DFA's and assume that there is a morphism $h: D_1 \to D_2$. Prove that h induces a unique surjective morphism $h_r: (D_1)_r \to (D_2)_r$ (where $(D_1)_r$ and $(D_2)_r$ are the trim DFA's defined in problem B1). This means that if $h: D_1 \to D_2$ and $h': D_1 \to D_2$ are DFA morphisms, then h(p) = h'(p) for all $p \in (Q_1)_r$, and the restriction of h to $(D_1)_r$ is surjective onto $(D_2)_r$. Moreover, if $L(D_1) = L(D_2)$, prove that h induces a unique surjective proper homomorphism $h_r: (D_1)_r \to (D_2)_r$.

(d) Relax the condition that a DFA morphism $h: D_1 \to D_2$ maps $q_{0,1}$ to $q_{0,2}$ (so, it is possible that $h(q_{0,1}) \neq q_{0,2}$), and call such a function a *weak morphism*. We have an obvious

notion of weak *F*-map, weak *B*-map and weak proper homomorphism (by imposing condition (3a) or condition (3b), or (3c)). For any language, $L \subseteq \Sigma^*$ and any fixed string, $u \in \Sigma^*$, let $D_u(L)$, also denoted L/u (called the *(left) derivative of* L by u), be the language

$$D_u(L) = \{ v \in \Sigma^* \mid uv \in L \}.$$

Prove the following facts, **assuming that** D_2 is trim: If $h: D_1 \to D_2$ is a weak *F*-map of DFA's, then $L(D_1) \subseteq D_u(L(D_2))$, for some suitable $u \in \Sigma^*$. If $h: D_1 \to D_2$ is a weak *B*-map of DFA's, then $D_u(L(D_2)) \subseteq L(D_1)$, for the same *u* as above. Finally, if $h: D_1 \to D_2$ is a weak proper homomorphism of DFA's, then $L(D_1) = D_u(L(D_2))$, for the same *u* as above.

Suppose there is a weak morphism $h: D_1 \to D_2$. What can you say about the restriction of h to $(D_1)_r$? What can you say about surjectivity ? (you may need to consider $(D_2)_r$ with respect to a **different** start state). What happens (and what can you say) if D_2 is **not** trim?

Problem B4 (20 pts). Let R be any regular language over some alphabet Σ . Prove that the language

$$L = \{ u \mid \exists v \in \Sigma^*, \, uv \in R, \, |u| = |v| \}$$

is regular

Problem B5 (50 pts). An *a*-transducer (or nondeterministic sequential transducer with accepting states) is a sextuple $M = (K, \Sigma, \Delta, \lambda, q_0, F)$, where K is a finite set of states, Σ is a finite input alphabet, Δ is a finite output alphabet, $q_0 \in K$ is the start (or initial) state, $F \subseteq K$ is the set of accepting (of final) states, and

$$\lambda \subseteq K \times \Sigma^* \times \Delta^* \times K$$

is a finite set of quadruples called the *transition function* of M.

An *a*-transducer defines a binary relation between Σ^* and Δ^* , or equivalently, a function $M: \Sigma^* \to 2^{\Delta^*}$. We can explain what this function is by describing how an *a*-transducer makes a sequence of moves from configurations to configurations. The current configuration of an *a*-transducer is described by a triple $(p, u, v) \in K \times \Sigma^* \times \Delta^*$, where *p* is the current state, *u* is the remaining input, and *v* is some ouput produced so far. We define the binary relation \vdash_M on $K \times \Sigma^* \times \Delta^*$ as follows: For all $p, q \in K, u, \alpha \in \Sigma^*, \beta, v \in \Delta^*$, if $(p, u, v, q) \in \lambda$, then

$$(p, u\alpha, \beta) \vdash_M (q, \alpha, \beta v).$$

Let \vdash_M^* be the transitive and reflexive closure of \vdash_M .

The function $M: \Sigma^* \to 2^{\Delta^*}$ is defined such that for every $w \in \Sigma^*$,

$$M(w) = \{ y \in \Delta^* \mid (q_0, w, \epsilon) \vdash^*_M (f, \epsilon, y), f \in F \}.$$

For every language $L \subseteq \Sigma^*$, let

$$M(L) = \bigcup_{w \in L} M(w).$$

(a) Let $\Sigma = \Delta = \{a, b\}$. Construct an *a*-transducer swapping *a*'s and *b*'s (for instance, if w = abbaa, then y = baabb).

(b) Given an *a*-transducer $M = (K, \Sigma, \Delta, \lambda, q_0, F)$, define the new alphabet T as follows:

$$T = \{ [p, u, v, q] \mid (p, u, v, q) \in \lambda \}.$$

Let $f: T^* \to \Sigma^*$ and $g: T^* \to \Delta^*$ be the homomorphisms defined such that

$$f([p, u, v, q]) = u, \quad \text{and} \quad g([p, u, v, q]) = v.$$

Prove that the language

$$R = \{ [q_0, u_1, v_1, q_1] [q_1, u_2, v_2, q_2] \cdots [q_{n-2}, u_{n-1}, v_{n-1}, q_{n-1}] [q_{n-1}, u_n, v_n, q_n] \\ | [q_{i-1}, u_i, v_i, q_i] \in T, \ 1 \le i \le n, \ q_n \in F, \ n \ge 1 \} \cup \{ \epsilon \mid q_0 \in F \}$$

is a regular language.

(c) Prove that

$$f^{-1}(L) \cap R = \{ [q_0, u_1, v_1, q_1] [q_1, u_2, v_2, q_2] \cdots [q_{n-2}, u_{n-1}, v_{n-1}, q_{n-1}] [q_{n-1}, u_n, v_n, q_n] \\ | [q_{i-1}, u_i, v_i, q_i] \in T, \ u_1 u_2 \cdots u_n \in L, \ q_n \in F, \ n \ge 1 \} \cup \{ \epsilon \mid q_0 \in F, \ \epsilon \in L \}.$$

(d) Prove that

$$M(L) = g(f^{-1}(L) \cap R)$$

If \mathcal{L} is a family of languages closed under intersection with regular languages, homomorphic images, and inverse homomorphic images, is \mathcal{L} closed under *a*-transductions? (Justify your answer).

If L is a regular language, is M(L) regular? (Justify your answer).

(e) If M is an *a*-transducer from Σ^* to Δ^* prove that for any regular language, $L' \subseteq \Delta^*$, the language $M^{-1}(L')$ is also regular (see the definition of $M^{-1}(L')$ in the class notes).

TOTAL: 170 + 20 points.