
CIS511
A Survey of LR-Parsing Methods

The Graph Method For Computing Fixed Points
Computation of FIRST, FOLLOW, and LALR(1)

Lookahead Sets

Jean Gallier

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104, USA
jean@saul.cis.upenn.edu

June 27, 2008

Abstract. We give a brief survey on LR-parsing methods. We begin with the definition
of characteristic strings and the construction of Knuth’s LR(0)-characteristic automaton.
Next, we describe the shift/reduce algorithm. The need for lookahead sets is motivated by
the resolution of conflicts. A unified method for computing FIRST, FOLLOW and LALR(1)
lookahead sets is presented. The method uses a same graph algorithm Traverse which
finds all nodes reachable from a given node and computes the union of predefined sets
assigned to these nodes. Hence, the only difference between the various algorithms for
computing FIRST, FOLLOW and LALR(1) lookahead sets lies in the fact that the initial
sets and the graphs are computed in different ways. The method can be viewed as an
efficient way for solving a set of simultaneously recursive equations with set variables. The
method is inspired by DeRemer and Pennello’s method for computing LALR(1) lookahead
sets. However, DeRemer and Pennello use a more sophisticated graph algorithm for finding
strongly connected components. We use a slightly less efficient but simpler algorithm (a
depth-first search). We conclude with a brief presentation of LR(1) parsers.

1

1 LR(0)-Characteristic Automata

The purpose of LR-parsing , invented by D. Knuth in the mid sixties, is the following: Given
a context-free grammar G, for any terminal string w ∈ Σ∗, find out whether w belongs
to the language L(G) generated by G, and if so, construct a rightmost derivation of w, in
a deterministic fashion. Of course, this is not possible for all context-free grammars, but
only for those that correspond to languages that can be recognized by a deterministic PDA
(DPDA). Knuth’s major discovery was that for a certain type of grammars, the LR(k)-
grammars, a certain kind of DPDA could be constructed from the grammar (shift/reduce
parsers). The k in LR(k) refers to the amount of lookahead that is necessary in order to
proceed deterministically. It turns out that k = 1 is sufficient, but even in this case, Knuth
construction produces very large DPDA’s, and his original LR(1) method is not practical.
Fortunately, around 1969, Frank DeRemer, in his MIT Ph.D. thesis, investigated a practical
restriction of Knuth’s method, known as SLR(k), and soon after, the LALR(k) method was
discovered. The SLR(k) and the LALR(k) methods are both based on the construction of
the LR(0)-characteristic automaton from a grammar G, and we begin by explaining this
construction. The additional ingredient needed to obtain an SLR(k) or an LALR(k) parser
from an LR(0) parser is the computation of lookahead sets. In the SLR case, the FOLLOW
sets are needed, and in the LALR case, a more sophisticated version of the FOLLOW sets
is needed. We will consider the construction of these sets in the case k = 1. We will discuss
the shift/reduce algorithm and consider briefly ways of building LR(1)-parsing tables.

For simplicity of exposition, we first assume that grammars have no ε-rules. This restric-
tion will be lifted in Section 10. Given a reduced context-free grammar G = (V, Σ, P, S ′)
augmented with start production S ′ → S, where S ′ does not appear in any other produc-
tions, the set CG of characteristic strings of G is the following subset of V ∗ (watch out, not
Σ∗):

CG = {αβ ∈ V ∗ | S ′ ∗
=⇒
rm

αBv =⇒
rm

αβv,

α, β ∈ V ∗, v ∈ Σ∗, B → β ∈ P}.

In words, CG is a certain set of prefixes of sentential forms obtained in rightmost deriva-
tions: Those obtained by truncating the part of the sentential form immediately following
the rightmost symbol in the righthand side of the production applied at the last step.

The fundamental property of LR-parsing, due to D. Knuth, is that CG is a regular
language. Furthermore, a DFA, DCG, accepting CG, can be constructed from G.

Conceptually, it is simpler to construct the DFA accepting CG in two steps:

(1) First, construct a nondeterministic automaton with ε-rules, NCG, accepting CG.

(2) Apply the subset construction (Rabin and Scott’s method) to NCG to obtain the DFA
DCG.

2

A → α“.”aβ

A → αa“.”β

a

Figure 1: Transition on terminal input a

In fact, careful inspection of the two steps of this construction reveals that it is possible
to construct DCG directly in a single step, and this is the construction usually found in
most textbooks on parsing.

The nondeterministic automaton NCG accepting CG is defined as follows:

The states of NCG
are “marked productions”, where a marked production is a string of

the form A → α“.”β, where A → αβ is a production, and “.” is a symbol not in V called
the “dot” and which can appear anywhere within αβ.

The start state is S ′ → “.”S, and the transitions are defined as follows:

(a) For every terminal a ∈ Σ, if A → α“.”aβ is a marked production, with α, β ∈ V ∗, then
there is a transition on input a from state A → α“.”aβ to state A → αa“.”β obtained
by “shifting the dot.” Such a transition is shown in Figure 1.

(b) For every nonterminal B ∈ N , if A → α“.”Bβ is a marked production, with α, β ∈ V ∗,
then there is a transition on input B from state A → α“.”Bβ to state A → αB“.”β
(obtained by “shifting the dot”), and transitions on input ε (the empty string) to all
states B → “.”γi, for all productions B → γi with left-hand side B. Such transitions
are shown in Figure 2.

(c) A state is final if and only if it is of the form A → β“.” (that is, the dot is in the
rightmost position).

The above construction is illustrated by the following example:

Example 1. Consider the grammar G1 given by:

S −→ E

E −→ aEb

E −→ ab

3

A → α“.”Bβ

B → “.”γ1A → αB“.”β B → “.”γm

B ε ε

Figure 2: Transitions from a state A → α“.”Bβ

The NFA for CG1 is shown in Figure 3. The result of making the NFA for CG1 determin-
istic is shown in Figure 4 (where transitions to the “dead state” have been omitted). The
internal structure of the states 1, . . . , 6 is shown below:

1 : S −→ .E

E −→ .aEb

E −→ .ab

2 : E −→ a.Eb

E −→ a.b

E −→ .aEb

E −→ .ab

3 : E −→ aE.b

4 : S −→ E.

5 : E −→ ab.

6 : E −→ aEb.

The next example is slightly more complicated.

Example 2. Consider the grammar G2 given by:

S −→ E

E −→ E + T

E −→ T

T −→ T ∗ a

T −→ a

4

S → .E

E → .aEb

E → a.Eb

E → aE.b

E → aEb.

S → E. E → .ab

E → a.b

E → ab.

E
ε

ε

E

b

a

b

εa ε

Figure 3: NFA for CG1

1 2 3

4 5 6

a E

E b b
a

Figure 4: DFA for CG1

5

1 2 5 7

3 6 8

4

E + T

∗ a

T
∗

a a

Figure 5: DFA for CG2

The result of making the NFA for CG2 deterministic is shown in Figure 5 (where transi-
tions to the “dead state” have been omitted). The internal structure of the states 1, . . . , 8
is shown below:

1 : S −→ .E

E −→ .E + T

E −→ .T

T −→ .T ∗ a

T −→ .a

2 : E −→ E. + T

S −→ E.

3 : E −→ T.

T −→ T. ∗ a

4 : T −→ a.

5 : E −→ E + .T

T −→ .T ∗ a

T −→ .a

6 : T −→ T ∗ .a

7 : E −→ E + T.

T −→ T. ∗ a

8 : T −→ T ∗ a.

Note that some of the marked productions are more important than others. For example,
in state 5, the marked production E −→ E + .T determines the state. The other two items
T −→ .T ∗ a and T −→ .a are obtained by ε-closure. We call a marked production of the

6

form A −→ α.β, where α �= ε, a core item. If we also call S ′ −→ .S a core item, we observe
that every state is completely determined by its subset of core items. The other items in the
state are obtained via ε-closure. We can take advantage of this fact to write a more efficient
algorithm to construct in a single pass the LR(0)-automaton. Also observe the so-called
spelling property : All the transitions entering any given state have the same label.

Given a state s, if s contains both a reduce item A −→ γ. and a shift item B −→ α.aβ,
where a ∈ Σ, we say that there is a shift/reduce conflict in state s on input a. If s contains
two (distinct) reduce items A1 −→ γ1. and A2 −→ γ2., we say that there is a reduce/reduce
conflict in state s. A grammar is said to be LR(0) if the DFA DCG has no conflicts. This is
the case for the grammar G1. However, it should be emphasized that this is extremely rare in
practice. The grammar G1 is just very nice, and a toy example. In fact, G2 is not LR(0). To
eliminate conflicts, one can either compute SLR(1)-lookahead sets, using FOLLOW sets (see
Section 6), or sharper lookahead sets, the LALR(1) sets (see Section 9). For example, the
computation of SLR(1)-lookahead sets for G2 will eliminate the conflicts. We will describe
methods for computing SLR(1)-lookahead sets and LALR(1)-lookahead sets in Sections 6,
9, and 10. A more drastic measure is to compute the LR(1)-automaton, in which the states
incoporate lookahead symbols (see Section 11). However, as we said before, this is not a
practical methods for large grammars.

2 Shift/Reduce Parsers

A shift/reduce parser is a modified kind of DPDA. Firstly, push moves, called shift moves ,
are restricted so that exactly one symbol is pushed on top of the stack. Secondly, more
powerful kinds of pop moves, called reduce moves , are allowed. During a reduce move, a
finite number of stack symbols may be popped off the stack, and the last step of a reduce
move, called a goto move, consists of pushing one symbol on top of new topmost symbol in
the stack. Shift/reduce parsers use parsing tables constructed from the LR(0)-characteristic
automaton DCG associated with the grammar. The shift and goto moves come directly
from the transition table of DCG, but the determination of the reduce moves requires the
computation of lookahead sets . The SLR(1) lookahead sets are obtained from some sets
called the FOLLOW sets (see Section 6), and the LALR(1) lookahead sets LA(s, A −→ γ)
require fancier FOLLOW sets (see Section 9).

The construction of shift/reduce parsers is made simpler by assuming that the end of
input strings w ∈ Σ∗ is indicated by the presence of an endmarker , usually denoted $, and
assumed not to belong to Σ.

Consider the grammar G1 of Example 1, where we have numbered the productions 0, 1, 2:

0 : S −→ E

1 : E −→ aEb

2 : E −→ ab

7

The parsing tables associated with the grammar G1 are shown below:

a b $ E

1 s2 4

2 s2 s5 3

3 s6

4 acc

5 r2 r2 r2

6 r1 r1 r1

Entries of the form si are shift actions , where i denotes one of the states, and entries of
the form rn are reduce actions, where n denotes a production number (not a state). The
special action acc means accept, and signals the successful completion of the parse. Entries
of the form i, in the rightmost column, are goto actions . All blank entries are error entries,
and mean that the parse should be aborted.

We will use the notation action(s, a) for the entry corresponding to state s and terminal
a ∈ Σ ∪ {$}, and goto(s, A) for the entry corresponding to state s and nonterminal A ∈
N − {S ′}.

Assuming that the input is w$, we now describe in more detail how a shift/reduce parser
proceeds. The parser uses a stack in which states are pushed and popped. Initially, the stack
contains state 1 and the cursor pointing to the input is positioned on the leftmost symbol.
There are four possibilities:

(1) If action(s, a) = sj, then push state j on top of the stack, and advance to the next
input symbol in w$. This is a shift move.

(2) If action(s, a) = rn, then do the following: First, determine the length k = |γ| of the
righthand side of the production n: A −→ γ. Then, pop the topmost k symbols off
the stack (if k = 0, no symbols are popped). If p is the new top state on the stack
(after the k pop moves), push the state goto(p,A) on top of the stack, where A is the
lefthand side of the “reducing production” A −→ γ. Do not advance the cursor in the
current input. This is a reduce move.

(3) If action(s, $) = acc, then accept. The input string w belongs to L(G).

(4) In all other cases, error, abort the parse. The input string w does not belong to L(G).

Observe that no explicit state control is needed. The current state is always the current
topmost state in the stack. We illustrate below a parse of the input aaabbb$.

stack remaining input action

1 aaabbb$ s2

12 aabbb$ s2

8

122 abbb$ s2

1222 bbb$ s5

12225 bb$ r2

1223 bb$ s6

12236 b$ r1

123 b$ s6

1236 $ r1

14 $ acc

Observe that the sequence of reductions read from bottom-up yields a rightmost deriva-
tion of aaabbb from E (or from S, if we view the action acc as the reduction by the production
S −→ E). This is a general property of LR-parsers.

The SLR(1) reduce entries in the parsing tables are determined as follows: For every state
s containing a reduce item B −→ γ., if B −→ γ is the production number n, enter the action
rn for state s and every terminal a ∈ FOLLOW(B). If the resulting shift/reduce parser has
no conflicts, we say that the grammar is SLR(1). For the LALR(1) reduce entries, enter
the action rn for state s and production n: B −→ γ, for all a ∈ LA(s,B −→ γ). Similarly,
if the shift/reduce parser obtained using LALR(1)-lookahead sets has no conflicts, we say
that the grammar is LALR(1).

3 Computation of FIRST

In order to compute the FOLLOW sets, we first need to to compute the FIRST sets! For
simplicity of exposition, we first assume that grammars have no ε-rules. The general case
will be treated in Section 10.

Given a context-free grammar G = (V, Σ, P, S ′) (augmented with a start production
S ′ −→ S), for every nonterminal A ∈ N = V − Σ, let

FIRST(A) = {a | a ∈ Σ, A
+

=⇒ aα, for some α ∈ V ∗}.
For a terminal a ∈ Σ, let FIRST(a) = {a}. The key to the computation of FIRST(A) is the
following observation: a is in FIRST(A) if either a is in

INITFIRST(A) = {a | a ∈ Σ, A −→ aα ∈ P, for some α ∈ V ∗},
or a is in

{a | a ∈ FIRST(B), A −→ Bα ∈ P, for some α ∈ V ∗, B �= A}.
Note that the second assertion is true because, if B

+
=⇒ aδ, then A =⇒ Bα

+
=⇒ aδα, and

so, FIRST(B) ⊆ FIRST(A) whenever A −→ Bα ∈ P , with A �= B. Hence, the FIRST sets
are the least solution of the following set of recursive equations: For each nonterminal A,

FIRST(A) = INITFIRST(A) ∪
⋃

{FIRST(B) | A −→ Bα ∈ P, A �= B}.

9

In order to explain the method for solving such systems, we will formulate the problem in
more general terms, but first, we describe a “naive” version of the shift/reduce algorithm
that hopefully demystifies the “‘optimized version” described in Section 2.

4 The Intuition Behind the Shift/Reduce Algorithm

Let DCG = (K,V, δ, q0, F) be the DFA accepting the regular language CG, and let δ∗ be the
extension of δ to K ×V ∗. Let us assume that the grammar G is either SLR(1) or LALR(1),
which implies that it has no shift/reduce or reduce/reduce conflicts. We can use the DFA
DCG accepting CG recursively to parse L(G). The function CG is defined as follows: Given
any string µ ∈ V ∗,

CG(µ) =

error if δ∗(q0, µ) = error;
(δ∗(q0, θ), θ, v) if δ∗(q0, θ) ∈ F , µ = θv and θ is the

shortest prefix of µ s.t. δ∗(q0, θ) ∈ F .

The naive shift-reduce algorithm is shown below:

begin

accept := true;

stop := false;

µ := w$; {input string}
while ¬stop do

if CG(µ) = error then

stop := true; accept := false

else

Let (q, θ, v) = CG(µ)

Let B → β be the production so that

action(q, FIRST(v)) = B → β and let θ = αβ

if B → β = S ′ → S then

stop := true

else

µ := αBv {reduction}
endif

endif

endwhile

end

The idea is to recursively run the DFA DCG on the sentential form µ, until the first final
state q is hit. Then, the sentential form µ must be of the form αβv, where v is a terminal

10

string ending in $, and the final state q contains a reduce item of the form B −→ β, with
action(q, FIRST(v)) = B −→ β. Thus, we can reduce µ = αβv to αBv, since we have found
a rightmost derivation step, and repeat the process.

Note that the major inefficiency of the algorithm is that when a reduction is performed,
the prefix α of µ is reparsed entirely by DCG. Since DCG is deterministic, the sequence
of states obtained on input α is uniquely determined. If we keep the sequence of states
produced on input θ by DCG in a stack, then it is possible to avoid reparsing α. Indeed, all
we have to do is update the stack so that just before applying DCG to αAv, the sequence
of states in the stack is the sequence obtained after parsing α. This stack is obtained by
popping the |β| topmost states and performing an update which is just a goto move. This
is the standard version of the shift/reduce algorithm!

5 The Graph Method for Computing Fixed Points

Let X be a finite set representing the domain of the problem (in Section 3 above, X = Σ),
let F (1), . . . , F (N) be N sets to be computed and let I(1), . . . , I(N) be N given subsets of
X. The sets I(1), . . . , I(N) are the initial sets. We also have a directed graph G whose
set of nodes is {1, . . . , N} and which represents relationships among the sets F (i), where
1 ≤ i ≤ N . The graph G has no parallel edges and no loops, but it may have cycles. If there
is an edge from i to j, this is denoted by iGj (note that the absense of loops means that
iGi never holds). Also, the existence of a path from i to j is denoted by iG+j. The graph
G represents a relation, and G+ is the graph of the transitive closure of this relation. The
existence of a path from i to j, including the null path, is denoted by iG∗j. Hence, G∗ is the
reflexive and transitive closure of G. We want to solve for the least solution of the system
of recursive equations:

F (i) = I(i) ∪ {F (j) | iGj, i �= j}, 1 ≤ i ≤ N.

Since (2X)N is a complete lattice under the inclusion ordering (which means that every
family of subsets has a least upper bound, namely, the union of this family), it is an ω-
complete poset, and since the function F : (2X)N → (2X)N induced by the system of equations
is easily seen to preserve least upper bounds of ω-chains, the least solution of the system can
be computed by the standard fixed point technique (as explained in Section 3.7 of the class
notes). We simply compute the sequence of approximations (F k(1), . . . , F k(N)), where

F 0(i) = ∅, 1 ≤ i ≤ N,

and
F k+1(i) = I(i) ∪

⋃
{F k(j) | iGj, i �= j}, 1 ≤ i ≤ N.

It is easily seen that we can stop at k = N − 1, and the least solution is given by

F (i) = F 1(i) ∪ F 2(i) ∪ · · · ∪ FN(i), 1 ≤ i ≤ N.

11

E

T F

Figure 6: Graph GFIRST for G1

However, the above expression can be simplified to

F (i) =
⋃

{I(j) | iG∗j}, 1 ≤ i ≤ N.

This last expression shows that in order to compute F (i), it is necessary to compute the
union of all the initial sets I(j) reachable from i (including i). Hence, any transitive closure
algorithm or graph traversal algorithm will do. For simplicity and for pedagogical reasons,
we use a depth-first search algorithm.

Going back to FIRST, we see that all we have to do is to compute the INITFIRST sets,
the graph GFIRST, and then use the graph traversal algorithm. The graph GFIRST is
computed as follows: The nodes are the nonterminals and there is an edge from A to B
(A �= B) if and only if there is a production of the form A −→ Bα, for some α ∈ V ∗.

Example 1. Computation of the FIRST sets for the grammar G1 given by the rules:

S −→ E$

E −→ E + T

E −→ T

T −→ T ∗ F

T −→ F

F −→ (E)

F −→ −T

F −→ a.

We get

INITFIRST(E) = ∅, INITFIRST(T) = ∅, INITFIRST(F) = {(,−, a}.

The graph GFIRST is shown in Figure 6.
We obtain the following FIRST sets:

FIRST(E) = FIRST(T) = FIRST(F) = {(,−, a}.

12

E

T F

Figure 7: Graph GFOLLOW for G1

6 Computation of FOLLOW

Recall the definition of FOLLOW(A) for a nonterminal A:

FOLLOW(A) = {a | a ∈ Σ, S
+

=⇒ αAaβ, for some α, β ∈ V ∗}.

Note that a is in FOLLOW(A) if either a is in

INITFOLLOW(A) = {a | a ∈ Σ, B −→ αAXβ ∈ P, a ∈ FIRST(X), α, β ∈ V ∗}

or a is in
{a | a ∈ FOLLOW(B), B −→ αA ∈ P, α ∈ V ∗, A �= B}.

Indeed, if S
+

=⇒ λBaρ, then S
+

=⇒ λBaρ =⇒ λαAaρ, and so,

FOLLOW(B) ⊆ FOLLOW(A)

whenever B −→ αA is in P , with A �= B. Hence, the FOLLOW sets are the least solution
of the set of recursive equations: For all nonterminals A,

FOLLOW(A) = INITFOLLOW(A) ∪
⋃

{FOLLOW(B) | B −→ αA ∈ P, α ∈ V ∗, A �= B}.

According to the method explained above, we just have to compute the INITFOLLOW sets
(using FIRST) and the graph GFOLLOW, which is computed as follows: The nodes are the
nonterminals and there is an edge from A to B (A �= B) if and only if there is a production
of the form B −→ αA in P , for some α ∈ V ∗. Note the duality between the construction of
the graph GFIRST and the graph GFOLLOW.

Example 2. Computation of the FOLLOW sets for the grammar G1.

INITFOLLOW(E) = {+,), $}, INITFOLLOW(T) = {∗}, INITFOLLOW(F) = ∅.

The graph GFOLLOW is shown in Figure 7. We have

13

FOLLOW(E) = INITFOLLOW(E),

FOLLOW(T) = INITFOLLOW(T) ∪ INITFOLLOW(E) ∪ INITFOLLOW(F),

FOLLOW(F) = INITFOLLOW(F) ∪ INITFOLLOW(T) ∪ INITFOLLOW(E),

and so

FOLLOW(E) = {+,), $}, FOLLOW(T) = {+, ∗,), $}, FOLLOW(F) = {+, ∗,), $}.

7 Algorithm Traverse

The input is a directed graph Gr having N nodes, and a family of initial sets I[i], 1 ≤ i ≤ N .
We assume that a function successors is available, which returns for each node n in the graph,
the list successors[n] of all immediate successors of n. The output is the list of sets F [i],
1 ≤ i ≤ N , solution of the system of recursive equations of Section 5. Hence,

F [i] =
⋃

{I[j] | iG∗j}, 1 ≤ i ≤ N.

The procedure Reachable visits all nodes reachable from a given node. It uses a stack
STACK and a boolean array V ISITED to keep track of which nodes have been visited.
The procedures Reachable and traverse are shown in Figure 8.

8 More on LR(0)-Characteristic Automata

Let G = (V, Σ, P, S ′) be an augmented context-free grammar with augmented start produc-
tion S ′ −→ S$ (where S ′ only occurs in the augmented production). The righmost derivation
relation is denoted by =⇒

rm
.

Recall that the set CG of characteristic strings for the grammar G is defined by

CG = {αβ ∈ V ∗ | S ′ ∗
=⇒
rm

αAv =⇒
rm

αβv, αβ ∈ V ∗, v ∈ Σ∗}.

The fundamental property of LR-parsing, due to D. Knuth, is stated in the following
theorem:

Theorem 8.1 Let G be a context-free grammar and assume that every nonterminal derives
some terminal string. The language CG (over V ∗) is a regular language. Furthermore, a
deterministic automaton DCG accepting CG can be constructed from G.

The construction of DCG can be found in various places, including the book on Compilers
by Aho, Sethi and Ullman. We explained this construction in Section 1. The proof that the
NFA NCG constructed as indicated in Section 1 is correct, i.e., that it accepts precisely CG,
is nontrivial, but not really hard either. This will be the object of a homework assignment!

14

Procedure Reachable(Gr : graph; startnode : node; I : listofsets;

varF : listofsets);

var currentnode, succnode, i : node; STACK : stack;

V ISITED : array[1..N] of boolean;

begin

for i := 1 to N do

V ISITED[i] := false;

STACK := EMPTY ;

push(STACK, startnode);

while STACK �= EMPTY do

begin

currentnode := top(STACK); pop(STACK);

V ISITED[currentnode] := true;

for each succnode ∈ successors(currentnode) do

if ¬V ISITED[succnode] then

begin

push(STACK, succnode);

F [startnode] := F [startnode] ∪ I[succnode]

end

end

end

The sets F [i], 1 ≤ i ≤ N , are computed as follows:

begin

for i := 1 to N do

F [i] := I[i];

for startnode := 1 to N do

Reachable(Gr, startnode, I, F)

end

Figure 8: Algorithm traverse

15

However, note a subtle point: The construction of NCG is only correct under the assumption
that every nonterminal derives some terminal string. Otherwise, the construction could yield
an NFA NCG accepting strings not in CG.

Recall that the states of the characteristic automaton CGA are sets of items (or marked
productions), where an item is a production with a dot anywhere in its right-hand side.
Note that in constructing CGA, it is not necessary to include the state {S ′ −→ S$.} (the
endmarker $ is only needed to compute the lookahead sets). If a state p contains a marked
production of the form A −→ β., where the dot is the rightmost symbol, state p is called a
reduce state and A −→ β is called a reducing production for p. Given any state q, we say
that a string β ∈ V ∗ accesses q if there is a path from some state p to the state q on input
β in the automaton CGA. Given any two states p, q ∈ CGA, for any β ∈ V ∗, if there is a
sequence of transitions in CGA from p to q on input β, this is denoted by

p
β−→ q.

The initial state which is the closure of the item S ′ −→ .S$ is denoted by 1. The LALR(1)-
lookahead sets are defined in the next section.

9 LALR(1)-Lookahead Sets

For any reduce state q and any reducing production A −→ β for q, let

LA(q, A −→ β) = {a | a ∈ Σ, S ′ ∗
=⇒
rm

αAav =⇒
rm

αβav, α, β ∈ V ∗, v ∈ Σ∗, αβ accesses q}.

In words, LA(q, A −→ β) consists of the terminal symbols for which the reduction by
production A −→ β in state q is the correct action (that is, for which the parse will terminate
successfully). The LA sets can be computed using the FOLLOW sets defined below.

For any state p and any nonterminal A, let

FOLLOW(p,A) = {a | a ∈ Σ, S ′ ∗
=⇒
rm

αAav, α ∈ V ∗, v ∈ Σ∗ and α accesses p}.

Since for any derivation
S ′ ∗

=⇒
rm

αAav =⇒
rm

αβav

where αβ accesses q, there is a state p such that p
β−→ q and α accesses p, it is easy to see

that the following result holds:

Proposition 9.1 For every reduce state q and any reducing production A −→ β for q, we
have

LA(q, A −→ β) =
⋃

{FOLLOW(p,A) | p
β−→ q}.

16

Also, we let
LA({S ′ −→ S.$}, S ′ −→ S$) = FOLLOW(1, S).

Intuitively, when the parser makes the reduction by production A −→ β in state q, each
state p as above is a possible top of stack after the states corresponding to β are popped.
Then the parser must read A in state p, and the next input symbol will be one of the symbols
in FOLLOW(p,A).

The computation of FOLLOW(p,A) is similar to that of FOLLOW(A). First, we compute
INITFOLLOW(p,A), given by

INITFOLLOW(p,A) = {a | a ∈ Σ, ∃q, r, p
A−→ q

a−→ r}.

These are the terminals that can be read in CGA after the “goto transition” on nonterminal
A has been performed from p. These sets can be easily computed from CGA.

Note that for the state p whose core item is S ′ −→ S.$, we have

INITFOLLOW(p, S) = {$}.

Next, observe that if B −→ αA is a production and if

S ′ ∗
=⇒
rm

λBav

where λ accesses p′, then
S ′ ∗

=⇒
rm

λBav =⇒
rm

λαAav

where λ accesses p′ and p′ α−→ p. Hence λα accesses p and

FOLLOW(p′, B) ⊆ FOLLOW(p,A)

whenever there is a production B −→ αA and p′ α−→ p. From this, the following recursive
equations are easily obtained: For all p and all A,

FOLLOW(p,A) = INITFOLLOW(p,A) ∪⋃
{FOLLOW(p′, B) | B −→ αA ∈ P, α ∈ V ∗ and p′ α−→ p}.

From Section 5, we know that these sets can be computed by using the algorithm
traverse. All we need is to compute the graph GLA.

The nodes of the graph GLA are the pairs (p,A), where p is a state and A is a nonterminal.
There is an edge from (p,A) to (p′, B) if and only if there is a production of the form
B −→ αA in P for some α ∈ V ∗ and p′ α−→ p in CGA. Note that it is only necessary to
consider nodes (p,A) for which there is a nonterminal transition on A from p. Such pairs
can be obtained from the parsing table. Also, using the spelling property , that is, the fact

17

that all transitions entering a given state have the same label, it is possible to compute the
relation lookback defined as follows:

(q, A) lookback (p,A) iff p
β−→ q

for some reduce state q and reducing production A −→ β. The above considerations show
that the FOLLOW sets of Section 6 are obtained by ignoring the state component from
FOLLOW(p,A). We now consider the changes that have to be made when ε-rules are
allowed.

10 Computing FIRST, FOLLOW and LA(q, A −→ β) in

the Presence of ε-Rules

First, it is necessary to compute the set E of erasable nonterminals, that is, the set of

nonterminals A such that A
+

=⇒ ε.

We let E be a boolean array and change be a boolean flag. An algorithm for computing
E is shown in Figure 9. Then, in order to compute FIRST, we compute

INITFIRST(A) = {a | a ∈ Σ, A −→ aα ∈ P, or

A −→ A1 · · ·Akaα ∈ P, for some α ∈ V ∗, and E(A1) = · · · = E(Ak) = true}.
The graph GFIRST is obtained as follows: The nodes are the nonterminals, and there is

an edge from A to B if and only if either there is a production A −→ Bα, or a production
A −→ A1 · · ·AkBα, for some α ∈ V ∗, with E(A1) = · · · = E(Ak) = true. Then, we extend
FIRST to strings in V +, in the obvious way. Given any string α ∈ V +, if |α| = 1, then
β = X for some X ∈ V , and

FIRST(β) = FIRST(X)

as before, else if β = X1 · · ·Xn with n ≥ 2 and Xi ∈ V , then

FIRST(β) = FIRST(X1) ∪ · · · ∪ FIRST(Xk),

where k, 1 ≤ k ≤ n, is the largest integer so that

E(X1) = · · · = E(Xk) = true.

To compute FOLLOW, we first compute

INITFOLLOW(A) = {a | a ∈ Σ, B −→ αAβ ∈ P, α ∈ V ∗, β ∈ V +, and a ∈ FIRST(β)}.
The graph GFOLLOW is computed as follows: The nodes are the nonterminals. There is an
edge from A to B if either there is a production of the form B −→ αA, or B −→ αAA1 · · ·Ak,
for some α ∈ V ∗, and with E(A1) = · · · = E(Ak) = true.

18

begin

for each nonterminal A do

E(A) := false;

for each nonterminal A such that A −→ ε ∈ P do

E(A) := true;

change := true;

while change do

begin

change := false;

for each A −→ A1 · · ·An ∈ P

s.t. E(A1) = · · · = E(An) = true do

if E(A) = false then

begin

E(A) := true;

change := true

end

end

end

Figure 9: Algorithm for computing E

19

The computation of the LALR(1) lookahead sets is also more complicated because an-
other graph is needed in order to compute INITFOLLOW(p,A). First, the graph GLA is
defined in the following way: The nodes are still the pairs (p,A), as before, but there is an
edge from (p,A) to (p′, B) if and only if either there is some production B −→ αA, for some

α ∈ V ∗ and p′ α−→ p, or a production B −→ αAβ, for some α ∈ V ∗, β ∈ V +, β
+

=⇒ ε, and
p′ α−→ p. The sets INITFOLLOW(p,A) are computed in the following way: First, let

DR(p,A) = {a | a ∈ Σ, ∃q, r, p
A−→ q

a−→ r}.
The sets DR(p,A) are the direct read sets. Note that for the state p whose core item is

S ′ −→ S.$, we have
DR(p, S) = {$}.

Then,

INITFOLLOW(p,A) = DR(p, A) ∪⋃
{a | a ∈ Σ, S ′ ∗

=⇒
rm

αAβav =⇒
rm

αAav, α ∈ V ∗, β ∈ V +, β
+

=⇒ ε, α accesses p}.

The set INITFOLLOW(p,A) is the set of terminals that can be read before any handle
containing A is reduced. The graph GREAD is defined as follows: The nodes are the pairs

(p,A), and there is an edge from (p,A) to (r, C) if and only if p
A−→ r and r

C−→ s, for some
s, with E(C) = true.

Then, it is not difficult to show that the INITFOLLOW sets are the least solution of the
set of recursive equations:

INITFOLLOW(p,A) = DR(p,A) ∪
⋃

{INITFOLLOW(r, C) | (p,A) GREAD (r, C)}.

Hence the INITFOLLOW sets can be computed using the algorithm traverse on the graph
GREAD and the sets DR(p,A), and then, the FOLLOW sets can be computed using traverse
again, with the graph GLA and sets INITFOLLOW. Finally, the sets LA(q, A −→ β) are
computed from the FOLLOW sets using the graph lookback.

From section 5, we note that F (i) = F (j) whenever there is a path from i to j and a
path from j to i, that is, whenever i and j are strongly connected . Hence, the solution of
the system of recursive equations can be computed more efficiently by finding the maximal
strongly connected components of the graph G, since F has a same value on each strongly
connected component. This is the approach followed by DeRemer and Pennello in: Efficient
Computation of LALR(1) Lookahead sets, by F. DeRemer and T. Pennello, TOPLAS, Vol.
4, No. 4, October 1982, pp. 615-649.

We now give an example of grammar which is LALR(1) but not SLR(1).

Example 3. The grammar G2 is given by:

S ′ −→ S$

20

S −→ L = R

S −→ R

L −→ ∗R
L −→ id

R −→ L

The states of the characteristic automaton CGA2 are:

1 : S ′ −→ .S$

S −→ .L = R

S −→ .R

L −→ . ∗ R

L −→ .id

R −→ .L

2 : S ′ −→ S.$

3 : S −→ L. = R

R −→ L.

4 : S −→ R.

5 : L −→ ∗.R
R −→ .L

L −→ . ∗ R

L −→ .id

6 : L −→ id.

7 : S −→ L = .R

R −→ .L

L −→ . ∗ R

L −→ .id

8 : L −→ ∗R.

9 : R −→ L.

10 : S −→ L = R.

We find that

INITFIRST(S) = ∅
INITFIRST(L) = {∗, id}
INITFIRST(R) = ∅.

The graph GFIRST is shown in Figure 10.

21

S

RL

Figure 10: The graph GFIRST

S

RL

Figure 11: The graph GFOLLOW

Then, we find that

FIRST(S) = {∗, id}
FIRST(L) = {∗, id}
FIRST(R) = {∗, id}.

We also have

INITFOLLOW(S) = {$}
INITFOLLOW(L) = {=}
INITFOLLOW(R) = ∅.

The graph GFOLLOW is shown in Figure 11.
Then, we find that

FOLLOW(S) = {$}
FOLLOW(L) = {=, $}
FOLLOW(R) = {=, $}.

Note that there is a shift/reduce conflict in state 3 on input =, since there is a shift
on input = (since S −→ L. = R is in state 3), and a reduce for R → L, since = is in
FOLLOW(R). However, as we shall see, the conflict is resolved if the LALR(1) lookahead
sets are computed.

22

(1, S)

(1, R)

(1, L)

(5, R)

(5, L)

(7, R)

(7, L)

Figure 12: The graph GLA

The graph GLA is shown in Figure 12.
We get the following INITFOLLOW and FOLLOW sets:

INITFOLLOW(1, S) = {$} INITFOLLOW(1, S) = {$}
INITFOLLOW(1, R) = ∅ INITFOLLOW(1, R) = {$}
INITFOLLOW(1, L) = {=} INITFOLLOW(1, L) = {=, $}
INITFOLLOW(5, R) = ∅ INITFOLLOW(5, R) = {=, $}
INITFOLLOW(5, L) = ∅ INITFOLLOW(5, L) = {=, $}
INITFOLLOW(7, R) = ∅ INITFOLLOW(7, R) = {$}
INITFOLLOW(7, L) = ∅ INITFOLLOW(7, L) = {$}.

Thus, we get

LA(2, S ′ −→ S$) = FOLLOW(1, S) = {$}
LA(3, R −→ L) = FOLLOW(1, R) = {$}
LA(4, S −→ R) = FOLLOW(1, S) = {$}
LA(6, L −→ id) = FOLLOW(1, L) ∪ FOLLOW(5, L) ∪ FOLLOW(7, L) = {=, $}

LA(8, L −→ ∗R) = FOLLOW(1, L) ∪ FOLLOW(5, L) ∪ FOLLOW(7, L) = {=, $}
LA(9, R −→ L) = FOLLOW(5, R) ∪ FOLLOW(7, R) = {=, $}

LA(10, S −→ L = R) = FOLLOW(1, S) = {$}.

Since LA(3, R −→ L) does not contain =, the conflict is resolved.

23

(A → α.aβ, b)

(A → αa.β, b)

a

Figure 13: Transition on terminal input a

11 LR(1)-Characteristic Automata

We conclude this brief survey on LR-parsing by describing the construction of LR(1)-parsers.
The new ingredient is that when we construct an NFA accepting CG, we incorporate looka-
head symbols into the states. Thus, a state is a pair (A −→ α.β, b), where A −→ α.β is a
marked production, as before, and b ∈ Σ ∪ {$} is a lookahead symbol . The new twist in the
construction of the nondeterministic characteristic automaton is the following:

The start state is (S ′ → .S, $), and the transitions are defined as follows:

(a) For every terminal a ∈ Σ, then there is a transition on input a from state (A → α.aβ, b)
to the state (A → αa.β, b) obtained by “shifting the dot” (where a = b is possible).
Such a transition is shown in Figure 13.

(b) For every nonterminal B ∈ N , there is a transition on input B from state (A → α.Bβ, b)
to state (A → αB.β, b) (obtained by “shifting the dot”), and transitions on input ε
(the empty string) to all states (B → .γ, a), for all productions B → γ with left-hand
side B and all a ∈ FIRST(βb). Such transitions are shown in Figure 14.

(c) A state is final if and only if it is of the form (A → β., b) (that is, the dot is in the
rightmost position).

Example 3. Consider the grammar G3 given by:

0: S −→ E

1: E −→ aEb

2: E −→ ε

24

(A → α.Bβ, b)

(A → αB.β, b) (B → .γ, a)

B ε ε ε

Figure 14: Transitions from a state (A → α.Bβ, b)

The result of making the NFA for CG3 deterministic is shown in Figure 15 (where tran-
sitions to the “dead state” have been omitted). The internal structure of the states 1, . . . , 8
is shown below:

1 : S −→ .E, $

E −→ .aEb, $

E −→ ., $

2 : E −→ a.Eb, $

E −→ .aEb, b

E −→ ., b

3 : E −→ a.Eb, b

E −→ .aEb, b

E −→ ., b

4 : E −→ aE.b, $

5 : E −→ aEb., $

6 : E −→ aE.b, b

7 : E −→ aEb., b

8 : S −→ E., $

The LR(1)-shift/reduce parser associated with DCG is built as follows: The shift and
goto entries come directly from the transitions of DCG, and for every state s, for every item

25

1 2 3

4

5

6

7

8

a a

E E E

b b

a

Figure 15: DFA for CG3

(A −→ γ, b) in s, enter an entry rn for state s and input b, where A −→ γ is production
number n. If the resulting parser has no conflicts, we say that the grammar is an LR(1)
grammar. The LR(1)-shift/reduce parser for G3 is shown below:

a b $ E

1 s2 r2 8

2 s3 r2 4

3 s3 r2 6

4 r5

5 r1

6 r1 s7

7 r1

8 acc

Observe that there are three pairs of states, (2, 3), (4, 6), and (5, 7), where both states in
a common pair only differ by the lookahead symbols. We can merge the states corresponding
to each pair, because the marked items are the same, but now, we have to allow lookahead
sets. Thus, the merging of (2, 3) yields

2′: E −→ a.Eb, {b, $}
E −→ .aEb, {b}
E −→ ., {b},

the merging of (4, 6) yields
3′: E −→ aE.b, {b, $},

the merging of (5, 7) yields
4′: E −→ aEb., {b, $}.

26

We obtain a merged DFA with only five states, and the corresponding shift/reduce parser is
given below:

a b $ E

1 s2′ r2 8

2′ s2′ r2 3′

3′ s4′

4′ r1 r1

8 acc

The reader should verify that this is the LALR(1)-parser. The reader should also check
that that the SLR(1)-parser is given below:

a b $ E

1 s2 r2 r2 5

2 s2 r2 r2 3

3 s4

4 r1 r1

5 acc

The difference between the two parsing tables is that the LALR(1)-lookahead sets are
sharper than the SLR(1)-lookahead sets. This is because the computation of the LALR(1)-
lookahead sets uses a sharper version of FOLLOW sets. It can also be shown that if a
grammar is LALR(1), then the merging of states of an LR(1)-parser always succeeds and
yields the LALR(1) parser. Of course, this is a very inefficient way of producing LALR(1)
parsers, and much better methods exist, such as the graph method described in these notes.
However, there are cases where the merging fails. Sufficient conditions for successful merging
have been investigated, but there is still room for research in this area.

27

