
Chapter 5

Universal RAM Programs and
Undecidability of the Halting Problem

5.1 Pairing Functions

Pairing functions are used to encode pairs of integers into single integers, or
more generally, finite sequences of integers into single integers.

We begin by exhibiting a bijective pairing function,
J : N2 → N.

339



340 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The function J has the graph partially showed below:

...
6 . . .
↘

3 7 . . .
↘ ↘

1 4 8 . . .
↘ ↘ ↘

0 2 5 9 . . .

The function J corresponds to a certain way of enumerating pairs of integers.
Note that the value of x+y is constant along each diagonal, and consequently,
we have

J(x, y) = 1 + 2 + · · ·+ (x + y) + x,

= ((x + y)(x + y + 1) + 2x)/2,

= ((x + y)2 + 3x + y)/2,

that is,
J(x, y) = ((x + y)2 + 3x + y)/2.



5.1. PAIRING FUNCTIONS 341

Let K: N→ N and L: N→ N be the projection functions onto the axes, that
is, the unique functions such that

K(J(a, b)) = a and L(J(a, b)) = b,

for all a, b ∈ N.

Clearly, J is primitive recursive, since it is given by a polynomial.

It is not hard to prove that J is injective and surjective, and that it is strictly
monotonic in each argument, which means that for all x, x′, y, y′ ∈ N, if x < x′

then J(x, y) < J(x′, y), and if y < y′ then J(x, y) < J(x, y′).



342 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The projection functions can be computed explicitly, although this is a bit
tricky.

We only need to observe that by monotonicity of J ,

x ≤ J(x, y) and y ≤ J(x, y),

and thus,

K(z) = min(x ≤ z)(∃y ≤ z)[J(x, y) = z],

and

L(z) = min(y ≤ z)(∃x ≤ z)[J(x, y) = z].



5.1. PAIRING FUNCTIONS 343

The pairing function J(x, y) is also denoted as 〈x, y〉, and K and L are also
denoted as Π1 and Π2.

By induction, we can define bijections between N
n and N for all n ≥ 1. We

let 〈z〉1 = z,
〈x1, x2〉2 = 〈x1, x2〉,

and
〈x1, . . . , xn, xn+1〉n+1 = 〈x1, . . . , 〈xn, xn+1〉〉n.

Note that
〈x1, . . . , xn, xn+1〉n+1 = 〈x1, 〈x2, . . . , xn+1〉n〉.



344 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We can define a uniform projection function, Π, with the following property:
if z = 〈x1, . . . , xn〉, with n ≥ 2, then

Π(i, n, z) = xi

for all i, where 1 ≤ i ≤ n.

The function Π is defined by cases as follows:

Π(i, 0, z) = 0, for all i ≥ 0,

Π(i, 1, z) = z, for all i ≥ 0,

Π(i, 2, z) = Π1(z), if 0 ≤ i ≤ 1,

Π(i, 2, z) = Π2(z), for all i ≥ 2,

and for all n ≥ 2,

Π(i, n + 1, z) =




Π(i, n, z) if 0 ≤ i < n,
Π1(Π(n, n, z)) if i = n,
Π2(Π(n, n, z)) if i > n.



5.1. PAIRING FUNCTIONS 345

By a previous exercise, this is a legitimate primitive recursive definition.
Some basic properties of Π are given as exercises. In particular, the following
properties are easily shown:

(a) 〈0, . . . , 0〉n = 0, 〈x, 0〉 = 〈x, 0, . . . , 0〉n;
(b) Π(0, n, z) = Π(1, n, z) and Π(i, n, z) = Π(n, n, z), for all i ≥ n and all

n, z ∈ N;

(c) 〈Π(1, n, z), . . . , Π(n, n, z)〉n = z, for all n ≥ 1 and all z ∈ N;

(d) Π(i, n, z) ≤ z, for all i, n, z ∈ N;

(e) There is a primitive recursive function Large, such that,

Π(i, n + 1, Large(n + 1, z)) = z,

for i, n, z ∈ N.



346 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

As a first application, we observe that we need only consider partial recursive
functions of a single argument.

Indeed, let ϕ: Nn → N be a partial recursive function of n ≥ 2 arguments.
Let

ϕ(z) = ϕ(Π(1, n, z), . . . , Π(n, n, z)),

for all z ∈ N.

Then, ϕ is a partial recursive function of a single argument, and ϕ can be
recovered from ϕ, since

ϕ(x1, . . . , xn) = ϕ(〈x1, . . . , xn〉).

Thus, using 〈−,−〉 and Π as coding and decoding functions, we can restrict
our attention to functions of a single argument.



5.1. PAIRING FUNCTIONS 347

It can be shown that there exist coding and decoding functions between Σ∗

and {a1}∗, and that partial recursive functions over Σ∗ can be recoded as
partial recursive functions over {a1}∗.

Since {a1}∗ is isomorphic to N, this shows that we can restrict out attention
to functions defined over N.



348 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

5.2 Coding of RAM Programs

In this Section, we present a specific encoding of RAM programs which allows
us to treat programs as integers.

Encoding programs as integers also allows us to have programs that take
other programs as input, and we obtain a universal program.

Universal programs have the property that given two inputs, the first one
being the code of a program and the second one an input data, the universal
program simulates the actions of the encoded program on the input data.

A coding scheme is also called an indexing or a Gödel numbering , in honor
to Gödel, who invented this technique.



5.2. CODING OF RAM PROGRAMS 349

From results of the previous Chapter, without loss of generality, we can re-
strict out attention to RAM programs computing partial functions of one
argument over N. Furthermore, we only need the following kinds of instruc-
tions, each instruction being coded as shown below. Because we are only
considering functions over N, there is only one kind of instruction of the form
add and jmp (and add increments by 1 the contents of the specified register
Rj).

Ni add Rj code = 〈1, i, j, 0〉
Ni tail Rj code = 〈2, i, j, 0〉
Ni continue code = 〈3, i, 1, 0〉
Ni Rj jmp Nka code = 〈4, i, j, k〉
Ni Rj jmp Nkb code = 〈5, i, j, k〉

Recall that a conditional jump causes a jump to the closest address Nk above
or below iff Rj is nonzero, and if Rj is null, the next instruction is executed.



350 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We assume that all lines in a RAM program are numbered. This is always
feasible, by labeling unnamed instructions with a new and unused line num-
ber.

The code of an instruction I is denoted as #I. To simplify the notation,
we introduce the following decoding primitive recursive functions Typ, Nam,
Reg, and Jmp, defined as follows:

Typ(x) = Π(1, 4, x),

Nam(x) = Π(2, 4, x),

Reg(x) = Π(3, 4, x),

Jmp(x) = Π(4, 4, x).

The functions yield the type, line number, register name, and line number
jumped to, if any, for an instruction coded by x.

We can define the primitive recursive predicate INST, such that INST(x)
holds iff x codes an instruction.



5.2. CODING OF RAM PROGRAMS 351

First, we need the connective ⊃ (implies), defined such that

P ⊃ Q iff ¬P ∨Q.

Then, INST(x) holds iff:

[1 ≤ Typ(x) ≤ 5] ∧ [1 ≤ Reg(x)]∧
[Typ(x) ≤ 3 ⊃ Jmp(x) = 0]∧
[Typ(x) = 3 ⊃ Reg(x) = 1]

Program are coded as follows. If P is a RAM program composed of the n
instructions I1, . . . , In, the code of P , denoted as #P , is

#P = 〈n, #I1, . . . , #In〉.

Recall from a previous exercise that

〈n, #I1, . . . , #In〉 = 〈n, 〈#I1, . . . , #In〉〉.



352 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We define the primitive recursive functions Ln, Pg, and Line, such that:

Ln(x) = Π(1, 2, x),

Pg(x) = Π(2, 2, x),

Line(i, x) = Π(i, Ln(x), Pg(x)).

The function Ln yields the length of the program (the number of instructions),
Pg yields the sequence of instructions in the program (really, a code for the
sequence), and Line(i, x) yields the code of the ith instruction in the program.

If x does not code a program, there is no need to interpret these functions.

The primitive recursive predicate PROG is defined such that PROG(x) holds
iff x codes a program.



5.2. CODING OF RAM PROGRAMS 353

Thus, PROG(x) holds if each line codes an instruction, each jump has an in-
struction to jump to, and the last instruction is a continue. Thus, PROG(x)
holds iff

∀i ≤ Ln(x)[i ≥ 1 ⊃
[INST(Line(i, x)) ∧ Typ(Line(Ln(x), x)) = 3

∧[Typ(Line(i, x)) = 4 ⊃
∃j ≤ i− 1[j ≥ 1 ∧ Nam(Line(j, x)) = Jmp(Line(i, x))]]∧

[Typ(Line(i, x)) = 5 ⊃
∃j ≤ Ln(x)[j > i ∧ Nam(Line(j, x)) = Jmp(Line(i, x))]]]]

Note that we have used the fact proved as an exercise that if f is a primi-
tive recursive function and P is a primitive recursive predicate, then ∃x ≤
f(y)P (x) is primitive recursive.



354 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We are now ready to prove a fundamental result in the theory of algorithms.
This result points out some of the limitations of the notion of algorithm.

Theorem 5.2.1 (Undecidability of the halting problem) There is no RAM
program P which halts for all inputs and has the following property when
started with input x in register R1 and with input i in register R2 (the other
registers being set to zero):

(1) P halts with output 1 iff i codes a program that eventually halts when
started on input x (all other registers set to zero).

(2) P halts with output 0 in R1 iff i codes a program that runs forever when
started on input x in R1 (all other registers set to zero).

(3) If i does not code a program, then P halts with output 2 in R2.



5.2. CODING OF RAM PROGRAMS 355

Proof . Assume that P is such a RAM program, and let Q be the following
program:

R2 ← R1
P

N1 continue

R1 jmp N1a
continue

The program Q can be translated into a program using only instructions of
type 1, 2, 3, 4, 5, described previously, and let q be the code of this program.
Let us see what happens if we run this program on input q in R1 (all other
registers set to zero).

Just after execution of the assignment R2 ← R1, the program P is started
with q in both R1 and R2.

Since P is supposed to halt for all inputs, it eventually halts with output 0
or 1 in R1.



356 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

If P halts with output 1 in R1, then Q goes into an infinite loop, while if P

halts with output 0 in R1, then Q halts.

But then, because of the definition of P , we see that P says that Q halts
when started on input q iff Q loops forever on input q, and that Q loops
forever on input q iff Q halts on input q, a contradiction.

Therefore, P cannot exist.



5.2. CODING OF RAM PROGRAMS 357

If we identify the notion of algorithm with that of a RAM program which
halts for all inputs, the above theorem says that there is no algorithm for
deciding whether a RAM program eventually halts for a given input.

We say that the halting problem for RAM programs is undecidable (or unsolv-
able). The above theorem also implies that the halting problem for Turing
machines is undecidable.

Indeed, if we had an algorithm for solving the halting problem for Turing
machines, we could solve the halting problem for RAM programs as follows:
first, apply the algorithm for translating a RAM program into an equivalent
Turing machine, and then apply the algorithm solving the halting problem
for Turing machines.

The argument if typical in computability theory and is called a “reducibility
argument”.



358 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Our next goal is to define a primitive recursive function that describes the
computation of RAM programs.

Assume that we have a RAM program P using n registers R1, . . . , Rn, whose
contents are denoted as r1, . . . , rn.

We can code r1, . . . , rn into a single integer 〈r1, . . . , rn〉.

Conversely, every integer x can be viewed as coding the contents of R1, . . . , Rn,
by taking the sequence
Π(1, n, x), . . . , Π(n, n, x).



5.2. CODING OF RAM PROGRAMS 359

Actually, it is not necessary to know n, the number of registers, if we make
the following observation:

Reg(Line(i, x)) ≤ Line(i, x) ≤ Pg(x)

for all i, x ∈ N.

Then, if x codes a program, then R1, . . . , Rx certainly include all the registers
in the program. Also note that from a previous exercise,

〈r1, . . . , rn, 0, . . . , 0〉 = 〈r1, . . . , rn, 0〉.

We now define the primitive recursive functions Nextline, Nextcont, and
Comp, describing the computation of RAM programs.



360 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Definition 5.2.2 Let x code a program and let i be such that 1 ≤ i ≤ Ln(x).
The following functions are defined:

(1) Nextline(i, x, y) is the number of the next instruction to be executed
after executing the ith instruction in the program coded by x, where the
contents of the registers is coded by y.

(2) Nextcont(i, x, y) is the code of the contents of the registers after execut-
ing the ith instruction in the program coded by x, where the contents
of the registers is coded by y.

(3) Comp(x, y, m) = 〈i, z〉, where i and z are defined such that after running
the program coded by x for m steps, where the initial contents of the
program registers are coded by y, the next instruction to be executed has
line number i, and z is the code of the current contents of the registers.



5.2. CODING OF RAM PROGRAMS 361

Lemma 5.2.3 The functions Nextline, Nextcont, and Comp, are primitive
recursive.

We can now reprove that every RAM computable function is partial recursive.

Indeed, assume that x codes a program P .

We define the partial function End so that for all x, y, where x codes a
program and y codes the contents of its registers, End(x, y) is the number of
steps for which the computation runs before halting, if it halts.

If the program does not halt, then End(x, y) is undefined.



362 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Since

End(x, y) = min m[Π1(Comp(x, y, m)) = Ln(x)],

End is a partial recursive function. However, in general, End is not a total
function.

If ϕ is the partial recursive function computed by the program P coded by
x, then we have

ϕ(y) = Π1(Π2(Comp(x, 〈y, 0〉, End(x, 〈y, 0〉)))).

Observe that ϕ is written in the form ϕ = g ◦ min f , for some primitive
recursive functions f and g.



5.2. CODING OF RAM PROGRAMS 363

We can also exhibit a partial recursive function which enumerates all the
unary partial recursive functions. It is a universal function.

Abusing the notation slightly, we will write ϕ(x, y) for ϕ(〈x, y〉), viewing ϕ
as a function of two arguments (however, ϕ is really a function of a single
argument).

We define the function ϕuniv as follows:

ϕuniv(x, y) =

{
Π1(Π2(Comp(x, 〈y, 0〉, End(x, 〈y, 0〉)))) if PROG(x),
undefined otherwise.

The function ϕuniv is a partial recursive function with the following property:
for every x coding a RAM program P , for every input y,

ϕuniv(x, y) = ϕx(y),

the value of the partial recursive function ϕx computed by the RAM program
P coded by x.



364 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

If x does not code a program, then ϕuniv(x, y) is undefined for all y.

By Lemma 4.8.2, ϕuniv is not recursive. Indeed, being an enumerating func-
tion for the partial recursive functions, it is an enumerating function for the
total recursive functions, and thus, it cannot be recursive.

Being a partial function saves us from a contradiction.

The existence of the function ϕuniv leads us to the notion of an indexing of
the RAM programs.

We can define a listing of the RAM programs as follows.



5.2. CODING OF RAM PROGRAMS 365

If x codes a program (that is, if PROG(x) holds) and P is the program that
x codes, we call this program P the xth RAM program and denote it as Px.
If x does not code a program, we let Px be the program that diverges for
every input:

N1 add R1
N1 R1 jmp N1a
N1 continue

Therefore, in all cases, Px stands for the xth RAM program. Thus, we have
a listing of RAM programs,
P0, P1, P2, P3, . . ., such that every RAM program (of the restricted type con-
sidered here) appears in the list exactly once, except for the “infinite loop”
program.

In particular, note that ϕuniv being a partial recursive function, it is computed
by some RAM program UNIV that has a code univ and is the program Puniv

in the list.



366 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Having an indexing of the RAM programs, we also have an indexing of the
partial recursive functions.

Definition 5.2.4 For every integer x ≥ 0, we let Px be the RAM program
coded by x as defined earlier, and ϕx be the partial recursive function com-
puted by Px.

Remark : Kleene used the notation {x} for the partial recursive function
coded by x. Due to the potential confusion with singleton sets, we follow
Rogers, and use the notation ϕx.

The existence of the universal function ϕuniv is sufficiently important to be
recorded in the following Lemma.

Lemma 5.2.5 For the indexing of RAM programs defined earlier, there is a
universal partial recursive function ϕuniv such that, for all x, y ∈ N, if ϕx is
the partial recursive function computed by Px, then

ϕx(y) = ϕuniv(〈x, y〉).



5.2. CODING OF RAM PROGRAMS 367

The program UNIV computing ϕuniv can be viewed as an interpreter for
RAM programs. By giving the universal program UNIV the “program” x
and the “data” y, we get the result of executing program Px on input y. We
can view the RAM model as a stored program computer .

By Theorem 5.2.1 and Lemma 5.2.5, the halting problem for the single pro-
gram UNIV is undecidable. Otherwise, the halting problem for RAM pro-
grams would be decidable, a contradiction.

It should be noted that the program UNIV can actually be written (with a
certain amount of pain).

The object of the next Section is to show the existence of Kleene’s T -predicate.
This will yield another important normal form. In addition, the T -predicate
is a basic tool in recursion theory.



368 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

5.3 Kleene’s T -Predicate

In Section 5.2, we have encoded programs. The idea of this Section is to also
encode computations of RAM programs.

Assume that x codes a program, that y is some input (not a code), and that
z codes a computation of Px on input y. The predicate T (x, y, z) is defined
as follows:

T (x, y, z) holds iff x codes a RAM program, y is an input, and z codes a
halting computation of Px on input y.

We will show that T is primitive recursive.



5.3. KLEENE’S T -PREDICATE 369

First, we need to encode computations. We say that z codes a computation
of length n ≥ 1 if

z = 〈n + 2, 〈1, y0〉, 〈i1, y1〉, . . . , 〈in, yn〉〉,

where each ij is the physical location (not the line number) of the next in-
struction to be executed and each yj codes the contents of the registers just
before execution of the instruction at the location ij. Thus, in−1 = Ln(x)
and in is irrelevant. Writing the definition of T is a little simpler if we let
in = Ln(x) + 1.

Also, y0 codes the initial contents of the registers, that is, y0 = 〈y, 0〉, for
some input y. We let Ln(z) = Π1(z).



370 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Definition 5.3.1 The T -predicate is the primitive recursive predicate de-
fined as follows:

T (x, y, z) iff PROG(x) and (Ln(z) ≥ 3) and

∀j ≤ Ln(z)− 3[0 ≤ j ⊃
Nextline(Π1(Π(j + 2, Ln(z), z)), x, Π2(Π(j + 2, Ln(z), z)))

= Π1(Π(j + 3, Ln(z), z))

and

Nextcont(Π1(Π(j + 2, Ln(z), z)), x, Π2(Π(j + 2, Ln(z), z)))

= Π2(Π(j + 3, Ln(z), z))

and

Π1(Π(Ln(z)− 1, Ln(z), z)) = Ln(x) and

Π1(Π(2, Ln(z), z)) = 1 and

y = Π1(Π2(Π(2, Ln(z), z))) and Π2(Π2(Π(2, Ln(z), z))) = 0]

The reader can verify that T (x, y, z) holds iff x codes a RAM program, y is
an input, and z codes a halting computation of Px on input y.



5.3. KLEENE’S T -PREDICATE 371

In order to extract the output of Px from z, we define the primitive recursive
function Res as follows:

Res(z) = Π1(Π2(Π(Ln(z), Ln(z), z))).

Using the T -predicate, we get the so-called Kleene normal form.

Theorem 5.3.2 (Kleene Normal Form) Using the indexing of the partial
recursive functions defined earlier, we have

ϕx(y) = Res[min z(T (x, y, z))],

where T (x, y, z) and Res are primitive recursive.

Note that the universal function ϕuniv can be defined as

ϕuniv(x, y) = Res[min z(T (x, y, z))].

There is another important property of the partial recursive functions, namely,
that composition is effective.



372 CHAPTER 5. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We need two auxiliary primitive recursive functions. The function Conprogs
creates the code of the program obtained by concatenating the programs Px

and Py, and for i ≥ 2, Cumclr(i) is the code of the program which clears
registers R2, . . . , Ri.

To get Cumclr, we can use the function clr(i) such that clr(i) is the code of
the program

N1 tail Ri
N1 Ri jmp N1a
N continue

We leave it as an exercise to prove that clr, Conprogs, and Cumclr, are
primitive recursive.

Theorem 5.3.3 There is a primitive recursive function c such that

ϕc(x,y) = ϕx ◦ ϕy.


